最新垂径定理练习题及答案
垂径定理练习题及答案

垂径定理练习题及答案一、选择题1. 在一个圆中,如果一条直径的端点与圆上一点相连,这条线段的中点与圆心的距离是直径的()A. 一半B. 半径B. 直径D. 无法确定2. 垂径定理指出,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是()A. 直径B. 半径C. 线段D. 无法确定3. 圆内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 无法确定4. 如果圆的半径为r,那么圆的直径是()A. 2rB. rC. r的平方D. 2r的平方二、填空题1. 垂径定理告诉我们,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是______。
2. 圆的内接四边形中,如果对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等,等于______。
3. 已知圆的半径为5cm,那么圆的直径是______。
三、解答题1. 已知一个圆的半径为7cm,圆内有一点P,连接点P和圆心O,得到线段OP。
如果OP的长度为4cm,求点P到圆上任意一点的距离。
2. 一个圆的直径为14cm,圆内接四边形ABCD,其中AC为直径。
已知AB=6cm,求BC的长度。
四、证明题1. 证明:如果一个三角形是直角三角形,且斜边是圆的直径,那么这个三角形的外接圆的直径是这个三角形的斜边。
2. 证明:如果一个圆的内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等。
答案:一、选择题1. A2. A3. B4. A二、填空题1. 直径的一半2. 圆的直径3. 10cm三、解答题1. 点P到圆上任意一点的距离是3cm(利用勾股定理,OP为直角三角形的一条直角边,半径为斜边,另一直角边为点P到圆上任意一点的距离)。
2. BC的长度是8cm(利用圆内接四边形的性质,对角线互相平分,且AC是直径,所以BD=7cm,再利用勾股定理求BC)。
垂径定理练习题及答案

1.△ ABC中 , AB=6cm , ∠ A=30° , ∠ B=15° , 则△ ABC绕直线 AC旋转一周所得几何体的表面积为 ____
2.一个圆锥的高为 10 3 cm,侧面展开图是一个半圆,则圆锥的全面积是 3.已知圆锥的母线长是 10cm,侧面展开图的面积是 60π cm2,则这个圆锥的底面半径是
)
A.平分一条直径的弦必垂直于这条直径
B.平分一条弧的直线垂直于这条弧所对的弦
C.弦的垂线必经过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心
7.如图,某公园的一座石拱桥是圆弧形(劣弧) ,其跨度为 24 米,拱的半径为 13 米,则拱高为 ( )
A. 5 米 B . 8 米 C . 7 米 D . 5 3 米
3、如图,在同心圆中,大圆的弦 AB 切小圆于点 C, AB=6,则圆环的面积是 _____________
1.在三角形 ABC中, BC=14, AC=9, AB=13,它的内切圆分别和 BC、 AC、 AB切于点 D、 E、 F,求 AF 、 BD、 CE的长。
第 1 题图 4.如图,已知在△ 切线;
第 2 题图
第 3 题图
ABC中, AB=AC,以 AB 为直径的⊙ O交 AC于点 F,交 BC于点 D,DF⊥ AC于点 F.求证: DF 是⊙ O的
2.如图所示, 已知 PA、PB切⊙ O于 A、B 两点,C是上一动点, 过 C 作⊙ O的切线交 PA于点 M,交 PB于点 N,已知∠ P=56°, 求∠ MON的度数。
A、 B、C 三根木柱,使得 A、 B 之间的
距离与 A、C 之间的距离相等,并测得 BC长为 240 米, A 到 BC的距离为 5 米,如图 5 所示。请你帮他们求出滴水湖的半
圆的垂径定理习题及答案

圆的垂径定理习题一. 选择题 1.如图1,00的直径为10,圆心0到弦AB 的距离0M 的长为3,那么弦AB 的长是( )2.如图,O 0的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段0M 长的最小值为()3.过O 0内一点M 的最长弦为10cm 最短弦长为8cm 则0M 的长为()A* 9cmE, 5cm4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 0A 0B 在 0点钉在一起,并使它们保持垂直,在测直径时,把 0点靠在圆周上,读得刻度0E=8个单位,0F=6个单位,则圆的直位 D. 15个单位5.如图,00的直径AB 垂直弦CD 于 P,且P 是半径0B 的中点,6cmCD ,则直径AB 的长是()6. 下列命题中,正确的是(A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为A.4B. 6C. 7D. 8 B. 3 C. 4 D. 5B . 10个单位 C. 1个单A . 212个单位E & 5米B, 8米C. 7米D,出米D8.0O 的半径为5cm 弦AB//CD ,且AB=8cm,CD=6cn 则AB 与CD 之间的距离为( ) A . 1 cm B. 7cm C. 3 cm 或 4 cm D. 1cm 或 7cm9•已知等腰△ ABC 的三个顶点都在半径为5的0 0上,如果底边BC 的长为8,那么BC 边上的高为 ( ) A . 2 B. 8 C. 2 或 8 D. 3 二、填空题1. _________________________________________________________________________ 已知AB 是O 0的弦,AB= 8cm, OCL AB 与C, 0C=3cm 则O 0的半径为 __________________________ c m2. ____________________________________________________________________ 在直径为10cm 的圆中,弦 AB 的长为8cm,则它的弦心距为 _______________________________ cm3. 在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 _____________________4. 已知AB 是O 0的弦,AB= 8cm, OC L AB 与C, 0C=3cm 则O O 的半径为 ________________ cm5. ______________________________________________________________________________ 如图,O 0的直径AB 垂直于弦CD ,垂足为E ,若/C0氐120°, 0E= 3厘米,贝U CD= ___________ 厘6. _____________________________________________________________ 半径为6cm 的圆中,垂直平分半径 0A 的弦长为 _______________________________________________ c m7. 过O 0内一点M 的最长的弦长为6cm,最短的弦长为4cm,则0M 勺长等于 cm8. 已知AB 是O 0的直径,弦CDL AB E为垂足,CD=8 0E=1则AB= __________9. 如图,AB 为O 0的弦,O 0的半径为5, OC L AB 于点D,交O 0于点C,且CD= l ,则弦AB 的长11. __________________________ 如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于 A 、B 两点,已知P(4, 2)和A(2, 0), 贝卩点B 的坐标是12. ____________________________________________________________ 如图,AB 是O 0的直径,ODL AC 于点D, BC=6cm 则0D ________________________________ cm10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB= 16m 半径04 10m 则中间柱 CD的高度为13. 如图,矩形ABCDf圆心在AB上的圆0交于点G B、F、E, GB=10 EF=8 那么AD= ______14.___________________________________________________________________________ 如图,O O 的半径是 5cm P 是o o 外一点,PO=8cm / P=3GO,则 AB ______________________ cm是 __________________ Cm16. 已知AB 是圆O 的弦,半径OC 垂直AB 交AB 于D,若AB=8 CD=2则圆的半径为 _______________ 17. 一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 ___________________ 米 18. 在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米19. 如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的20. 如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点0 若 AC=8cm DE=2cm 则 OD 的长为 _____________ c m21. 已知等腰△ ABC 的三个顶点都在半径为5的。
初中垂径定理试题及答案

初中垂径定理试题及答案一、选择题1. 在圆中,垂直于弦的直径是该弦的()。
A. 垂线B. 垂径C. 弦心距D. 弦长答案:B2. 垂径定理告诉我们,如果一条线段垂直于弦,并且平分弦,那么它也平分弦所对的()。
A. 弧B. 圆心角C. 弦心距D. 弦长答案:A3. 在圆中,如果一条直径垂直于弦,那么这条直径将弦分成的两段长度()。
A. 相等B. 不相等C. 无法确定D. 取决于圆的大小答案:A二、填空题4. 在圆中,如果弦AB的中点为M,且直径CD垂直于弦AB于点M,则弦AB所对的弧ACB的度数为______。
答案:90°5. 垂径定理在圆的几何学中非常重要,它说明了垂直于弦的直径将弦平分,并且平分的弦所对的弧是______。
答案:相等的三、解答题6. 已知圆O的半径为10cm,弦AB垂直于直径CD于点M,求弦AB的长度。
答案:由于直径CD垂直于弦AB,根据垂径定理,弦AB被直径CD平分,因此弦AB的长度为圆的直径,即20cm。
7. 在一个圆中,弦AC的长度为12cm,弦BC的长度为8cm,且AC和BC相交于点O,求圆的半径。
答案:由于AC和BC相交于圆心O,根据垂径定理,OA=OC,OB=OA,因此OA=OC=6cm,OB=OA=6cm。
根据勾股定理,圆的半径r满足r^2 =OA^2 + OB^2 = 6^2 + 6^2 = 72,所以r = √72 = 6√2 cm。
四、证明题8. 证明:在圆中,如果一条直径垂直于弦,那么这条直径将弦平分。
答案:设圆心为O,直径为CD,弦为AB,且CD垂直于AB于点M。
要证明CM=MD。
由于CD是直径,所以∠CMO=∠DMO=90°。
根据垂径定理,CM=MD,因此这条直径将弦平分。
初三垂径定理练习试题和答案解析

垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8答案:D★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM 长的最小值为()A.2 B.3 C.4 D.5答案:B★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()A.9cm B.6cm C.3cm D.cm41答案:C★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O 点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位答案:B★★5.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD ,则直径AB的长是()A. B. C. D.答案:D★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米答案:B★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm答案:D★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( )A.2 B.8 C.2或8 D.3答案:C二.填空题★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于答案:6★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD=厘米图 4答案:★★6.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.答案:★★7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于cm★★8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________ 答案:★★9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD =l,则弦AB的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m答案:4★★11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是答案:(6,0)★★12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm答案:3★★13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cmPBAO答案:6★★★15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm 答案:7cm 或17cm★★★16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 答案:5★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米 答案:52★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米 答案:7或1★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米答案:5★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
浙教新版九年级上册《3.3 垂径定理》2024年同步练习卷(4)+答案解析

浙教新版九年级上册《3.3垂径定理》2024年同步练习卷(4)一、选择题:本题共5小题,每小题3分,共15分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,已知的直径于点E,则下列结论一定错误的是()A.B.C.D.≌2.如图,AB是的直径,弦于点E,,,则A.8B.5C.3D.23.如图,AB,BC是的两条弦,,垂足为D,若的直径为5,,则AB的长为()A.B.C.4D.54.如图,的直径,AB是的弦,,垂足为若OM::5,则AB的长为()A.8B.12C.15D.165.如图,在半径为5的中,AB、CD是互相垂直的两条弦,垂足为P,且,则OP的长为()A.3B.4C.D.二、填空题:本题共4小题,每小题3分,共12分。
6.如图,AB、AC、BC都是的弦,,,垂足分别为M、N,若,则BC的长为______.7.如图,已知AB是半圆O的直径,弦,,,则BC的长为______.8.如图,AB是半圆O的直径,AC为弦,于D,过点O作交半圆O于点E,过点E作于若,则OF的长为__________.9.如图,在中,弦,点C在AB上移动,连接OC,过点C作,交于点D,则CD长的最大值为______.三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
10.本小题8分已知:如图,AB是的弦,半径OC、OD分别交AB于点E、F,且求证:11.本小题8分如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为,顶棚到路面的距离是,点B到路面的距离为请求出路面CD的宽度.精确到12.本小题8分如图,OD是的半径,AB是弦,且于点C连接AO并延长交于点E,若,,求半径OA的长.13.本小题8分如图是一个半圆形桥洞的截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,,米,于点E,此时测得OE::求CD的长;如果水位以米/小时的速度上升,则经过多长时间桥洞会刚刚被灌满?答案和解析1.【答案】B【解析】解:的直径于点E,,,在和中,,≌,根据已知条件无法证明,故选:根据垂径定理得出,,再根据全等三角形的判定方法“AAS”即可证明≌本题考查了垂径定理的应用和全等三角形的判定,注意:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.【答案】A【解析】解:,AB是直径,,在中,,,故选:根据垂径定理推出,再利用勾股定理求出OE即可解决问题.本题考查垂径定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.【答案】A【解析】解:连接OB,,AO过O,,,,由勾股定理得:,,在中,由勾股定理得:,故选:根据垂径定理求出BD,根据勾股定理求出OD,求出AD,再根据勾股定理求出AB即可.本题考查了垂径定理和勾股定理,能根据垂径定理求出BD长是解此题的关键.4.【答案】D【解析】解:连接OA,的直径,OM::5,,,,,故选:连接OA,先根据的直径,OM::5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.【答案】C【解析】【分析】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.作于M,于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OP的长.【解答】解:作于M,于N,连接OB、OD,由垂径定理、勾股定理得:,弦AB、CD互相垂直,,于M,于N,四边形MONP是矩形,,四边形MONP是正方形,故选:6.【答案】2【解析】解:,,垂足分别为M、N,OM过圆心O,ON过圆心O,,,,,,故答案为:根据垂径定理得出,,根据三角形的中位线性质得出,再求出BC即可.本题考查了三角形的中位线和垂径定理,能根据垂径定理求出和是解此题的关键.7.【答案】【解析】解:过点O作于H,分别过点C、D作于点E,于点F,连接OC,如图,则,在中,,,,,,,又,四边形HOEC是矩形,,,,,故答案为:过点O作于H,分别过点C、D作于点E,于点F,连接OC,如图,根据垂径定理得到,再利用勾股定理计算出,根据题意推出四边形HOEC是矩形,根据矩形的性质及勾股定理即可得解.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.8.【答案】6【解析】【分析】本题考查了垂径定理、全等三角形的性质和判定等知识.熟练掌握垂径定理,证明≌是解决问题的关键.先根据垂径定理求出AD的长,再由AAS定理得出≌,推出即可求出答案.【解答】解:,,,,,,,,在和中,,≌,,故答案为:9.【答案】2【解析】解:,,,当OC的值最小时,CD的值最大,时,OC最小,此时D、B两点重合,,即CD的最大值为2,故答案为:根据勾股定理求出CD,利用垂线段最短得到当时,OC最小,根据垂径定理计算即可.本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.10.【答案】证明:如图,过点O作于点M,则又,【解析】本题考查了等腰三角形的性质及垂径定理.平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.如图,过点O作于点根据垂径定理得到然后利用等腰三角形“三线合一”的性质推知,故11.【答案】解:如图,连接OC,AB交CD于E,由题意知:,所以,,由题意可知:,过O,,在中,由勾股定理得:,,所以路面CD的宽度为【解析】连接OC,求出OC和OE,根据勾股定理求出CE,根据垂径定理求出CD即可.本题考查了垂径定理和勾股定理,能求出CE的长是解此题的关键,注意:垂直于弦的直径平分这条弦.12.【答案】解:弦AB,,,设的半径,,在中,,解得:,【解析】先根据垂径定理求出AC的长,设的半径为r,在中利用勾股定理求出r的值.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.13.【答案】解:直径米,米,,第11页,共11页,::8,::4,设米,则米,在中,由勾股定理得:,解得:负值已舍去,米,米;由得:米,如图,延长OE 交圆O 于点F ,米,小时,答:经过5小时桥洞会刚刚被灌满.【解析】设米,则米,由勾股定理求得DE 的长,即可得出结论;延长OE 交圆O 于点F ,求得EF 的长,即可解决问题.此题主要考查了垂径定理的应用以及勾股定理等知识,熟练掌握垂径定理和勾股定理是解题的关键.。
垂径定理练习题

垂径定理1.下列说法正确的是()A.弧长相等的弧一定是等弧B.所对圆心角相等的弧是等弧C.同弧或等弧所对的圆周角相等D.平分弦的直径必垂直于弦2.下列说法正确的个数有()①相等的弦所对的圆心角相等;②平分弦的直径垂直于这条弦;③直径所对的弧是半圆;④圆是轴对称图形,其对称轴有无数条,对称轴是圆的直径.A.1个B.2个C.3个D.4个3.如图,CD是圆O的直径,AB是弦,CD⊥AB,垂足为M,则下列结论中错误..的是()A.AM=BM B.弧AC=弧BC C.OM=DM D.弧AD=弧BD4.如图,AB是圆O的直径,弦CD⊥AB于点E,OC=15,CD=24,则OE=()A.6 B.62C.9 D.125.如图,圆O的半径为3,圆心O到AB的距离为2,则弦AB的长为()A.2 B.25C.13D.106.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点()13,0A ,直线34y kx k =-+与圆O 交于B 、C 两点,则弦BC 的长的最小值为( )A .22B .24C .10.5D .12.57.如图所示,矩形ABCD 与圆O 相交于M 、N 、F 、E ,若AM=2,DE=1,EF=8,则MN 的长为( )A .2B .4C .6D .88.若圆O 的半径为10 cm ,且两平行弦AC ,BD 的长分别为12 cm ,16 cm ,则两弦间的距离是( )A .2 cmB .14 cmC .2 cm 或14 cmD .6 cm 或8 cm9.如图,A ,B ,C ,D 是⊙O 上的四个点,AD ∥BC,那么弧AB 与弧CD 的数量关系是( )A .弧AB =弧CD B .弧AB >弧CDC .弧AB <弧CD D .无法确定10.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是( )A .8≤AB≤10B .8<AB≤10C .4≤AB≤5D .4<AB≤511.如图,⊙O 1的弦AB 是⊙O 2的切线,且AB ∥O 1O 2,如果AB =12cm ,那么阴影部分的面积为( ).A .36πcm 2B .12πcm 2C .8πcm 2D .6πcm 212.在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图,若它们的直径在同一直线上,较大半圆1O 的弦21AB O O ∥,且与较小半圆2O 相切, AB=4,则班徽图案的面积为( )A .25πB .16πC .8πD .4π13.如图,圆O 的直径AB=10,C 是圆O 上一点,点D 平分弧BC ,2cm DE =,则弦AC= 14.如图,已知AB 是圆O 的弦,点C 在圆O 上,且弧AB=弧BC ,分别连接AO ,CO ,并延长CO ,交弦AB 于点D ,23AB =,CD=3,若点E 在圆O 上,BE ∥OA ,则BE 的长为 .15.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),点B的坐标为(-2,1),则该圆弧所在圆的圆心坐标是.16.某品牌太阳能热水器的实物图和截面示意图如图所示,支架CD与地面垂直,真空集热管AB与地面水平线夹角∠BAC为30°,直线AB与CD都经过水箱截面的圆心O.已知DC=65,AB=180,则水箱内水面宽度BE为cm.17.圆管涵是公路路基排水中常用的涵洞结构类型,它不仅力学性能好,而且构造简单、施工方便.某水平放置的圆管涵圆柱形排水管道的截面是直径为1.2m的圆,如图所示,若水面宽AB=0.8,求水的最大深度.(精确到0.1)18.“两龙“高速公路是某省高速公路隧道和桥梁最多的路段.如图,是一个单心圆曲隧道的截面,若路面AB宽为8米,净高CD为8米,求此隧道单心圆的半径OA.19.如图,在圆O中,AB、CD为直径,弦DE⊥AB于点F,连接BC.(1)若DE=16,BF=15,求圆O的直径;(2)若∠C=∠D,求弦BC与DE的夹角.20.(1)如图1,AB是圆O的直径、C、D是圆O上的两点,若∠BAC=20°,弧AD=弧CD.求:①∠ADC的度数;②求∠DAC的度数;(2)如图2,圆O的弦AB垂直平分半径OC,若圆O的半径为4,求弦AB的长.。
垂径定理练习题

垂径定理练习题一、选择题1、如图,在⊙O 中,CD 是直径,弦AB ⊥CD 于E ,顺次连接AC ,CB ,BD ,DA ,则下列结论中错误的是( )A .AC ⌒ AC =BC ⌒ BCB .AE=EBC .CD 平分∠ACB D .BA 平分∠CBD答案:D2、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =8,OP=3,则⊙O 的半径为( )A .10B .8C .5D .3答案:C解析:连接OC ,CD ⊥AB ,CD=8,则CP=4,又OP=3,由勾股定理,OC=5。
3、如图,半径为4的⊙O 中有弦AB ,以AB 为折痕对折,劣弧恰好经过圆心O ,则弦AB 的长度等于( )A .8B .4C .34D .38答案:C解析:⊙O 半径为4,即OA = OC = 4,易知AB ⊥OC ,OD=CD=2,由勾股定理,AD =32,4。
由垂径定理,AB = 34、如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5答案:B解析:由垂径定理可知点O到线段AB的距离为4,而OM的最大值为半径,最小值为点O 到线段AB的距离,于是4≤OM≤5。
5、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5B.1C.2D.4答案:B解析:过O作OE⊥AB交AB于点D,连接OA、OB,如下图:由题意,AD = 0.4,DE=0.2,不妨设半径OA=x,由勾股定理,有x2 = (x-0.2)2+0.42,解得x = 0.5,则管道直径是1米。
6、如图,直线与两个同心圆分别相交于图示的各点,则正确的是()A.MP与RN的大小关系不定B.MP=RNC.MP<RND.MP>RN答案:B解析:作OA⊥MN于A,如下图:∵OA ⊥MN ,∴MA=NA ,PA=RA ,∴MP=RN 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ODA BCyP B AO垂径定理一.选择题1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( )A .4B .6C .7D .82.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .53.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 414.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm 6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm 2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm 3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________ 9.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m 11.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD= 14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cm 15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm 16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米 18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个隧道所在圆19.如图,是一个隧的半径OA 是____米20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
若AC=8cm ,DE=2cm ,则OD 的长为 cm21.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为 22.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为23.如图,⊙O 的的半径为5,直径AB ⊥弦CD ,垂足为E ,CD=6,那么∠B 的余切值为_________三.解答题1.已知⊙O 的弦AB 长为10,半径长R 为7,OC 是弦AB 的弦心距,求OC 的长 OABB A DC O ·C ABO D OBC AACD B2.已知⊙O 的半径长为50cm ,弦AB 长50cm.求:(1)点O 到AB 的距离;(2)∠AOB 的大小3.如图,直径是50cm 圆柱形油槽装入油后,油深CD 为15cm ,求油面宽度AB4.如图,已知AB 是⊙O 的直径,CD ⊥AB ,垂足为点E ,如果BE=OE ,AB=12m ,求△ACD 的周长5.如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。
已知:AB=24cm ,CD=8cm(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.6.如图,⊙O 是△ABC 的外接圆,圆心O 在这个三角形的高AD 上,AB=10,BC=12.求⊙O 的半径7.如图,已知⊙O 的半径长为25,弦AB 长为48,C 是弧AB 的中点.求AC 的长.8.已知:在△ABC 中,AB=AC=10, BC=16.求△ABC 的外接圆的半径.9.本市新建的滴水湖是圆形人工湖。
为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图5所示。
请你帮他们求出滴水湖的半径。
10.如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD 。
求证:OC=OD11.如图,AB 是⊙O 的弦,点D 是弧AB 中点,过B 作AB 的垂线交AD 的延长线于C .求证:AD =DC12.如图,AB 、CD 是⊙O 的弦,且AB=CD ,OM ⊥AB ,ON ⊥CD ,垂足分别是点M 、N , BA 、DC 的延长线交于点P . 求证:PA=PC《切线的性质与判定》1、如图,在平面直角坐标系中,点在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于M (2,0),N (0,8)两点,则点P 的坐标是_________2、如图,PA 、PB 切⊙O 于A 、B 两点,∠APB=70°,C 是⊙O 上不同于A 、B 的任一点,则∠ACB 等于____________3、如图,在同心圆中,大圆的弦AB 切小圆于点C ,AB=6,则圆环的面积是_____________第1题图 第2题图 第3题图4.如图,已知在△ABC 中, AB=AC ,以AB 为直径的⊙O 交AC 于点F ,交BC 于点D ,DF ⊥AC 于点F .求证:DF 是⊙O 的切线;5、如图,AB 是⊙O 的直径,半径OC ⊥AB ,P 是AB 延长线上一点,PD 切⊙O 于点D ,CD 交AB 于点E ,判断△PDE 的形状,并说明理由.6.21.如图,半径OA ⊥OB ,P 是OB 延长线上一点,PA 交⊙O 于D ,过D 作⊙O 的切线CE 交PO 于C 点,求证:PC=CD .O CDAED CB A E PB AO7、如图,△ABC 为等腰三角形,AB=AC ,O 是底边BC 的中点,⊙O 与腰AB 相切于点D ,求证:AC 与⊙O 相切.8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点 B ,连接OC 交⊙O 于点E ,且OC 与弦AD 平行.求证: CD 是⊙O 的切线.9.如图,在△ABC 中,已知∠ABC=90°,在AB 上取一点E ,以BE 为直径的☉O 恰与AC 相切于点D .若AE=2,AD=4.求⊙O 的直径BE 和线段BC 的长。
10、已知:菱形的对角线相交于点O ,⊙O 与AB 相切于点E , 求证:⊙O 与菱形其他边BC 、CD 、DA 也相切1.在三角形ABC 中,BC=14,AC=9,AB=13,它的内切圆分别和BC 、AC 、AB 切于点D 、E 、F ,求 AF 、BD 、CE 的长。
2.如图所示,已知PA 、PB 切⊙O 于A 、B 两点,C 是上一动点,过C 作⊙O 的切线交PA 于点M ,交PB 于点N ,已知∠P=56°,求∠MON 的度数。
3.如图,⊙I 是△ABC 的内切圆,D ,E ,F 为三个切点,若∠DEF=50°,求∠A 的度数。
4.如图,在△ABC 中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是多少?5.如图,点O 是△ABC 的内切圆的圆心,∠BAC=70°,求∠BOC 的度数.6.如图所示,BC 是⊙O 的直径,P 为⊙O 外的一点,PA 、PB 为⊙O 的切线,切点分别为A 、B .试证明:AC ∥OP .9. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长.10. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点A 、B ,若直径AC= 12,∠P=60o ,求弦AB 的长.11. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.12.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的长.13.已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.14.如图,在△ABC中,已知∠ABC=90o,在AB上取一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2 cm,AD=4 cm.(1)求⊙O的直径BE的长;(2)计算△ABC的面积.1.△ABC中, AB=6cm , ∠A=30°, ∠B=15°, 则△ABC绕直线AC 旋转一周所得几何体的表面积为____2.一个圆锥的高为310cm,侧面展开图是一个半圆,则圆锥的全面积是3.已知圆锥的母线长是10cm,侧面展开图的面积是60πcm2,则这个圆锥的底面半径是cm.4.已知圆锥的底面半径是2cm,母线长是5cm,则它的侧面积是.5.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是.6.一个圆锥形的烟囱帽的侧面积为2000πcm2,母线长为50cm,那么这个烟囱帽的底面直径为7.圆锥的底面半径为3,母线长为5,求圆锥的侧面积 1 8.圆锥的侧面积为π15,底面半径为3,求圆锥的高。