2012高等数学下试题及参考答案

合集下载

2012年江苏高考数学试卷(高清版含详细答案)

2012年江苏高考数学试卷(高清版含详细答案)

2012年江苏高考数学试卷(高清版含详细答案)参考公式:(1)样本数据x 1 ,x 2 ,…,x n 的方差s 2=n i=11n ∑(x i -x )2,其中n i i=11x n ∑.(2)(2)直棱柱的侧面积S=ch ,其中c 为底面积,h 为高.(3)棱柱的体积V= Sh ,其中S 为底面积,h 为高.一.填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。

.......... 1、已知集合},2,0,1{},4,2,2,1{-=-=B A 则_______,=⋂B A 2、函数)12(log )(5+=x x f 的单调增区间是__________3、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________4、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ Read a ,b If a >b Then m ←a Else m ←b End If Print m5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______6、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s7、已知,2)4tan(=+πx 则xx2tan tan 的值为__________8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f3ππ12710、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为11、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________ 13、设7211a a a ≤≤≤≤ ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________ 14、设集合},,)2(2|),{(222R y x m y x my x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程活盐酸步骤。

专升本 高等数学 2012年专升本高等数学(二)参考答案

专升本 高等数学 2012年专升本高等数学(二)参考答案

第一部分 极限和连续同步练习题1.1参考答案一、选择题1.C2.A3. A 二、填空题4. [4,2][2,4]-- 。

5. π。

6.3cos x 。

三、解答题7.2,1,tan ,12y u u v v w z z x ==+==-。

8.222112111()1()2()1()()21xf x f x x x x x x =++=++→=++。

同步练习题1.2参考答案一、选择题1.D2.C3.D4. C5.B6.C7.C 二、填空题8.2,3 9. 1 10. 0 11. 2-三、解答题12 (1)2121230113lim lim 230332433nn n n n n n n ++→∞→∞⎛⎫+ ⎪++⎝⎭===++⎛⎫+ ⎪⎝⎭。

(2) 221...111lim lim 1...111n n n n n n a a a a b b b b b a b a →∞→∞++++---=⨯=++++---。

(3)111lim ...1335(21)(21)111111111lim 1...lim 12335(21)(21)2(21)2n n n n n n n n →∞→∞→∞⎡⎤++⎢⎥⨯⨯-+⎣⎦⎡⎤⎡⎤=-+-+-=-=⎢⎥⎢⎥-++⎣⎦⎣⎦(4)1lim[ln(1)ln]lim ln(1)ln1xx xx x x ex→+∞→+∞+-=+==。

(5)1114x xx→→→===(6)16x x→→==。

(7)22lim2x xx x→→==--(8)0001(1)11lim lim lim()112x x x x x xx x xe e e e e ex x x x---→→→------==+=+=-。

13.100lim(1)lim[(1)]nmn mnx mxx xmx mx e→→+=+=。

14. ()lim(1)lim[(1)]txt x xt tf x et tπππππ→∞→∞=+=+=,(ln3)3fπ=。

2012年浙江专升本(高等数学)真题试卷(题后含答案及解析)

2012年浙江专升本(高等数学)真题试卷(题后含答案及解析)

2012年浙江专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数f(x)=在x∈(一∞,+∞)上为( )A.有界函数B.奇函数C.偶函数D.周期函数正确答案:A解析:因为=0,故函数f(x)有界,答案A正确;可验证f(x)非奇非偶函数,所以答案B,C错误,也明显不是周期函数.2.已知f′(x0)=2,当△x→0时,dy为△x的( )A.同阶无穷小B.等价无穷小C.高阶无穷小D.低阶无穷小正确答案:A解析:=f′(x0)=2,所以当△x→0时,dy为△x 的同阶无穷小,即A答案正确.3.设函数f(x)满足f(0)=1,f(2)=3,f′(2)=5,f″(x)连续,则xf″(x)dx ( )A.10B.9C.8D.7正确答案:C解析:xf″(x)dx=xdf′(x)=xf′(x)f′(x)dx=2f′(2)一f(x)=2f′(2)一f(2)+f(0)=10—3+1=8,选项C正确.4.由y=,y=1,x=4围成的图形的面积为( )A.B.C.D.正确答案:B解析:画图并利用定积分的几何意义,可知所围图形的面积A=dx-3=,因此答案B正确.5.已知二阶微分方程y″+2y′+2=e-xsinx,则设其特解y*= ( ) A.e-x(acosx+bsinx)B.ae-xcosx+bxe-xsinxC.xe-x(acosx+bsinx)D.axe-xcosx+be-xsinx正确答案:C解析:二阶微分方程y″+2y′+2=e-xsinx的特征方程为r2+2r+2=0,解得r1=-1+i,r2=-1-i,又因λ+ωi=-1+i是特征方程的根,故取k=1,Rm(x)=1,因此y″+2y′+2=e-xsinx具有的特解形式可设为y*=xe-x(acosx+bsinx),答案C正确.填空题6.-(x+1)]=___________.正确答案:2解析:-(x+1)]===2 7.函数y=sin的连续区间为___________.正确答案:[,1]解析:该函数在定义域内处处连续,所以解不等式组,解得定义域为x∈[-,1].因此所求函数的连续区间为x∈[-,1]8.已知f′(3)=2,则=___________.正确答案:一4解析:由导数定义可得=-4.9.若函数y=y(x)由方程y=1+xey所确定.则y′=___________.正确答案:y′=解析:隐函数方程求导,y′=ey+xey.y′,解得y′=10.dx=___________.正确答案:ln|cscx-cotx|+cosx+C解析:dx=∫cscxdx-∫sinxdx=ln|cscx-cotx|+cosx+C11.极限表示的定积分为___________.正确答案:dx解析:利用定积分定义求极限,=,此极限为函数f(x)=在x∈[0,1]上的定积分,即12.级数的收敛区间为___________.正确答案:(-1,1)解析:因为ρ==1,所以幂级数的收敛半径R==1,故收敛区间为(一1,1).13.一阶线性微分方程y′+P(x)y=Q(x)的通解为___________.正确答案:y=e∫-P(x)dx[∫Q(x)e∫P(x)dxdx+C]解析:由一阶线性微分方程y′+P(x)y=Q(x)的通解公式y=e∫-P(x)dx[∫Q(x)e∫P(x)dxdx+C].14.在xOy平面上与向量a=(4,一3,7)垂直的单位向量是___________.正确答案:b=解析:设所求向量b=(x,y,0),则x2+y2=1 ①;且a.b=0,即4x-3y=0②由①和②解得,即b=,0)15.平面2x+y一z一1=0到平面2x+y一z+3=0的距离为___________.正确答案:解析:可以判断两平面平行,故平面2x+y—z一1=0到平面2x+y—z+3=0的距离可以转换为平面2x+y-z-1=0上任一点到平面2x+y-z+3=0的距离,即d=解答题解答时应写出推理、演算步骤。

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2B .2π3C .3π2D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB=a ,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<yC.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=13.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为() A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________.16.已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.18.已知数列{a n}中,a1=1,前n项和23n nnS a+=.(1)求a2,a3;(2)求{a n}的通项公式.19.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.20.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率.21.已知函数f(x)=13x3+x2+ax.(1)讨论f(x)的单调性;(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x 轴的交点在曲线y=f(x)上,求a的值.22.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:1. B ∵正方形组成的集合是矩形组成集合的子集, ∴C B .2. A ∵1y x =+∴y 2=x +1, ∴x =y 2-1,x ,y 互换可得:y =x 2-1. 又∵10y x =+≥.∴反函数中x ≥0,故选A 项. 3.C ∵()sin3x f x ϕ+=是偶函数,∴f (0)=±1. ∴sin 13ϕ=±.∴ππ32k ϕ=+(k ∈Z).∴φ=3k π+3π2(k ∈Z). 又∵φ∈[0,2π],∴当k =0时,3π2ϕ=.故选C 项. 4.A ∵3sin 5α=,且α为第二象限角, ∴24cos 1sin 5αα=-=--.∴3424sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选A 项. 5. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项.6.B 当n =1时,S 1=2a 2,又因S 1=a 1=1,所以21 2a=,213 122S=+=.显然只有B项符合.7.C由题意可采用分步乘法计数原理,甲的排法种数为14A,剩余5人进行全排列:55A,故总的情况有:14A·55A=480种.故选C 项.8.D连结AC交BD于点O,连结OE,∵AB=2,∴AC=又1CC=AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为C H的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.9.D∵a·b=0,∴a⊥b.又∵|a|=1,|b|=2,∴||5AB=.∴||5CD==.∴2||25AD ==. ∴4544445()5555AD AB AB ===-=-a b a b .10. C 设|PF 2|=m ,则|PF 1|=2m , 由双曲线定义|PF 1|-|PF 2|=2a , ∴2m -m=.∴m 又24c ==, ∴由余弦定理可得cos ∠F 1PF 2=2221212||||432||||4PF PF c PF PF +-=.11. D ∵x =ln π>1,y =log 52>1log 2=,121e2z -==>=,且12e -<e 0=1,∴y <z <x . 12. B 如图,由题意:tan ∠BEF =12, ∴2112KX =,∴X 2为HD 中点,2312X D X D =,∴313X D =, 4312X C X C =,∴413X C =, 5412X H X H =,∴512X H =, 5612X A X A =,∴613X A =,∴X 6与E 重合,故选B 项. 13.答案:7 解析:∵(x +12x )8展开式的通项为T r +1=8C r x 8-r(12x)r =C r 82-r x 8-2r,令8-2r =2,解得r =3.∴x 2的系数为38C 2-3=7.14.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 15.答案:5π6解析:y =sin xx=1π2(sin )2sin()23x x x =-. 当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =. 16.答案:35解析:设正方体的棱长为a .连结A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角, 在△AEA 1中,2222213cos 5a a a a a AEA ⎛⎫⎛⎫+++- ⎪ ⎪∠==. 17.解:由A ,B ,C 成等差数列及A +B +C =180°,得B =60°,A +C =120°.由2b 2=3ac 及正弦定理得2sin 2B =3sin A sin C , 故1sin sin 2A C =.cos(A +C )=cos A cos C -sin A sin C =cos A cos C -12, 即cos A cos C -12=12-,cos A cos C =0, cos A =0或cos C =0,所以A =90°或A =30°.18.解:(1)由2243S a =得3(a 1+a 2)=4a 2,解得a 2=3a 1=3; 由3353S a =得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时有a n =S n -S n -1=12133n n n n a a -++-, 整理得111n n n a a n -+=-. 于是a 1=1,a 2=31a 1,a 3=42a 2,… a n -1=2nn -a n -2,a n =11n n +-a n -1.将以上n 个等式两端分别相乘,整理得(1)2n n n a +=. 综上,{a n }的通项公式(1)2n n n a +=. 19.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF .因为AC =P A =2,PE =2EC ,故PC =3EC =,FC = 从而PC FC =,ACEC =, 因为PC ACFC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 2.设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (220,0),D 2,b,0),其中b >0, 则P (0,0,2),E (23,0,23),B 2b,0). 于是PC =(220,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB =b,0). 设m =(x ,y ,z )为平面P AB 的法向量, 则m ·AP =0,m ·AB =0,即2z =0-by =0, 令x =b ,则m =(b,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b =-,n =(1,b-). 因为面P AB ⊥面PBC ,故m·n =0,即20b b-=,故b = 于是n =(1,-1),DP =(2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A , P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2) P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.21.解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.①当a≥1时,f′(x)≥0,且仅当a=1,x=-1时,f′(x)=0,所以f(x)是R上的增函数;②当a<1时,f′(x)=0有两个根x1=-1x2=-1当x∈(-∞,-1时,f′(x)>0,f(x)是增函数;当x∈(-11时,f′(x)<0,f(x)是减函数;当x∈(-1∞)时,f′(x)>0,f(x)是增函数.(2)由题设知,x1,x2为方程f′(x)=0的两个根,故有a<1,x12=-2x1-a,x22=-2x2-a.因此f(x1)=13x13+x12+ax1=13x1(-2x1-a)+x12+ax1=13x12+23ax1=13(-2x1-a)+23ax1=23(a-1)x1-3a.同理,f(x2)=23(a-1)x2-3a.因此直线l 的方程为y =23(a -1)x -3a . 设l 与x 轴的交点为(x 0,0),得02(1)ax a =-, 22322031()[][](12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+----. 由题设知,点(x 0,0)在曲线y =f (x )上,故f (x 0)=0, 解得a =0或23a =或34a =.22.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |=,即2r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M=化简得t 2(t 2-4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离d ==.。

2012年高考理科数学试题及答案-全国卷2

2012年高考理科数学试题及答案-全国卷2

2012年高考数学试题(理) 第1页【共10页】2012年普通高等学校招生全国统一考试(新课标Ⅱ卷)理 科 数 学第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x —y ∈A },则B 中所含元素的个数为( )A 。

3B. 6C. 8D 。

102. 将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有( ) A. 12种B. 10种C 。

9种D 。

8种3。

下面是关于复数iz +-=12的四个命题中,真命题为( )P 1: |z |=2, P 2: z 2=2i , P 3: z 的共轭复数为1+i , P 4: z 的虚部为-1 。

A 。

P 2,P 3B 。

P 1,P 2C 。

P 2,P 4D. P 3,P 44。

设F 1,F 2是椭圆E : 12222=+b y a x )0(>>b a 的左右焦点,P 为直线23ax =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( ) A 。

21B 。

32 C.43 D 。

54 5。

已知{a n }为等比数列,a 4 + a 7 = 2,a5 a6 = 8,则a 1 + a 10 =( )A. 7B. 5C. —5D. —76. 如果执行右边的程序框图,输入正整数N (N ≥2)和实数a 1, a 2,…,a N ,输入A 、B ,则( ) A 。

A +B 为a 1, a 2,…,a N 的和B 。

2B A +为a 1, a 2,…,a N 的算术平均数C 。

A 和B 分别是a 1, a 2,…,a N 中最大的数和最小的数D 。

A 和B 分别是a 1, a 2,…,a N 中最小的数和最大的数 7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )2012年高考数学试题(理) 第2页【共10页】A 。

2012年成人高考(专科起点升本科) 高等数学(二)试题及参考答案

2012年成人高考(专科起点升本科) 高等数学(二)试题及参考答案

2012年成人高等学校专升本招生全国统一考试高等数学(二)试题及参考答案试 题 一、选择题:1—10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.limx→3cos(x-2)x-2=( ).A.1 B.cos1 C.0 D.π22.设函数y=x2+1,则dydx=( ).A.13x3B.x2C.2xD.12x3.设函数f(x)=cosx,则f′π2=( ).A.-1B.-12C.0D.14.下列区间为函数f(x)=sinx的单调增区间的是( ).A.0,π2B.π2,πC.π2,3π2D.(0,2π)5.∫x2dx=( ).A.3x3+CB.x3+CC.x33+CD.x2+C 6.∫11+xdx=( ).A.e1+x+CB.11+x+CC.x+CD.ln|1+x|+C7.设函数z =ln(x +y ),则抄z 抄x(1,1)=( ).A.0B.12C.ln2D.18.曲线y =4-x 2与x 轴所围成的平面图形的面积为( ).A.2B.4C.2πD.4π9.设函数z =ex+y 2,则抄2z抄x2=( ).A.2y B.ex+2yC.ex+y 2D.ex10.设事件A ,B 互不相容,P (A )=0.3,P (B )=0.2,则P (A +B )=( ).A.0.44B.0.5C.0.1D.0.06二、填空题:11—20小题,每小题4分,共40分.11.limx →1x 2+x +2x 2-3=.12.limx →0sin2x3x=.13.设函数f (x )=x 2+1,x <0,a +x ,x ≥0在x =0处连续,则a =.14.曲线y =x 3+3x 的拐点坐标为.15.设函数f (x )=cosx ,则f ″(x )=.16.曲线y =sin(x +1)在点(-1,0)处的切线斜率为.17.∫2x ex 2dx =.18.∫10cosx dx =.19.∫+∞0e-xdx =.20.设函数z =x 2ey,则全微分dz =.三、解答题:21—28题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)计算limx →0ex-1x.22.(本题满分8分)设函数y =ln(x 2+1),求dy .23.(本题满分8分)计算∫lnxxdx .24.(本题满分8分)计算∫x cosx dx . 25.(本题满分8分)已知某篮球运动员每次投篮投中的概率是0.9,记X为他两次独立投篮投中的次数.(1)求X的概率分布;(2)求X的数学期望EX.26.(本题满分10分)求函数f(x)=x3-3x-2的单调区间和极值.27.(本题满分10分)已知函数f(x)=-x2+2x.(1)求曲线y=f(x)与x轴所围成的平面图形的面积S;(2)求(1)中的平面图形绕x轴旋转一周所得旋转体的体积V.28.(本题满分10分)求二元函数f(x,y)=x2+y2+2y的极值.参考答案 一、选择题1.B 2.C 3.A 4.A 5.C6.D7.B8.C9.D10.B二、填空题11.-2 12.2313.114.(0,0)15.-cosx16.117.ex2+C18.sin119.120.2xeydx+x2eydy三、解答题21.解 limx→0ex-1x=limx→0ex1=1.22.解 y′=1x2+1(x2+1)′=2x x2+1,dy=2x x2+1dx.23.解 ∫lnx xdx=∫lnxd(lnx)=12(lnx)2+C.24.解 ∫xcosxdx=∫xd(sinx)=xsinx-∫sinxdx=xsinx+cosx+C.25.解 (1)X可能的取值为0,1,2.P{X=0}=0.1×0.1=0.01,P{X=1}=2×0.9×0.1=0.18,P{X=2}=0.9×0.9=0.81,因此X的概率分布为X012P0.010.180.81 (2)数学期望EX=0×0.01+1×0.18+2×0.81=1.80.26.解 函数f(x)的定义域为(-∞,+∞).f′(x)=3x2-3,令f′(x)=0,得驻点x1=-1,x2=1.x(-∞,-1)-1(-1,1)1(1,+∞)f′(x)+0-0+f(x)赤极大值0尺极小值-4赤 因此f(x)的单调增加区间为(-∞,-1),(1,+∞);单调减少区间为(-1,1). f(x)的极大值为f(-1)=0,极小值为f(1)=-4.27.解 (1)由y=-x2+2x,y=0得交点坐标为(0,0),(2,0).S=∫20(-x2+2x)dx=-x33+x220=43.(2)V=∫20πf2(x)dx=∫20π(-x2+2x)2dx=π∫20(x4-4x3+4x2)dx=π15x5-x4+43x320=1615π.28.解f′x(x,y)=2x,f′y(x,y)=2y+2. 令f′x(x,y)=0,f′y(x,y)=0,得驻点(0,-1). 因为f″x x(x,y)=2,f″xy(x,y)=0,f″y y(x,y)=2,所以A=f″x x(0,-1)=2,B=f″x y(0,-1)=0,C=f″yy(0,-1)=2. 由于A>0且AC-B2>0,故f(x,y)在点(0,-1)处取得极小值,极小值为f(0,-1)=-1.。

2012年高考数学试题及答案

2012年高考数学试题及答案

2012年高考数学试题及答案一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若函数f(x)=x^2-4x+3,求f(0)的值。

A. 3B. -1C. 0D. 1答案:A2. 已知向量a=(3,-2),b=(1,2),求向量a+b的坐标。

A. (4,0)B. (2,0)C. (1,0)D. (0,0)答案:A3. 若三角形ABC的三边长分别为a,b,c,且满足a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B4. 函数y=2^x在定义域内是:A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:A5. 已知数列{an}满足a1=1,an+1=2an+1,求a3的值。

A. 5B. 7C. 9D. 11答案:C6. 若直线l的方程为y=2x+3,求该直线与x轴的交点坐标。

A. (0,3)B. (-3/2,0)C. (3/2,0)D. (0,-3)答案:C7. 已知椭圆的方程为x^2/a^2+y^2/b^2=1,其中a>b>0,求椭圆的离心率e的范围。

A. 0<e<1B. e>1C. e<0D. e=0答案:A8. 函数f(x)=x^3-3x^2+2在区间[1,2]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增答案:D9. 已知双曲线的方程为x^2/a^2-y^2/b^2=1,其中a>0,b>0,求双曲线的渐近线方程。

A. y=±(b/a)xB. y=±(a/b)xC. y=±xD. y=±√(a^2+b^2)x答案:A10. 已知抛物线方程为y^2=4x,求抛物线的焦点坐标。

A. (1,0)B. (0,1)C. (1,1)D. (0,0)答案:A11. 已知正方体的体积为V,求正方体的表面积S。

2012年普通高等学校招生全国统一考试数学江苏卷pdf版含答案

2012年普通高等学校招生全国统一考试数学江苏卷pdf版含答案

解集为 (m ,m + 6) ,则实数 c 的值为 ▲ . 14.已知正数 a ,b ,c 满足:5c − 3a ≤ b ≤ 4c − a ,c ln b ≥ a + c ln c ,则 b 的取值范围是
a
▲.
二、解答题:本大题共 6 小题,共计 90 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说 明、证明过程或演算步骤.
同于点 C),且 AD ⊥ DE ,F 为 B1C1 的中点.
A1
C1
求证:(1)平面 ADE ⊥ 平面 BCC1B1 ; (2)直线 A1F // 平面 ADE.
B1 F E
A
C
D B (第 16 题)
17.(本小题满分 14 分) 如图,建立平面直角坐标系 xOy,x 轴在地平面上,y 轴垂直于地平面,单位长度为 1 千米.某 炮位于坐标原点.已知炮弹发射后的轨迹在方程 y =kx − 1 (1 + k 2 )x2 (k > 0) 表示的曲线上, 20 其中 k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为 3.2 千米,试问它的横坐标 a 不 超过多少时,炮弹可以击中它?请说明理由.
已知实数 x, y 满足: x + y < 1 , 2x − y < 1 , 求证: y < 5 .
3
6
18
【必做题】第 22 题、第 23 题,每题 10 分,共计 20 分. 请在答.题.卡.指.定.区.域.内 作答,解答时应写出文字说明、证明过程或演算步骤。
2.(本小题满分 10 分) 设 ξ 为随机变量,从棱长为 1 的正方体的 12 条棱中任取两条,当两条棱相交时,ξ = 0 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南农业大学期末考试试卷(A 卷)2011~2012学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.设有向量(1,2,2)a =-,(2,1,2)b =-,则数量积()()a b a b -⋅+ 。

2.曲面22z x xy y =++在点(1,1,3)M 处的切平面方程是 。

3.设u =(1,1,1)u =grad 。

4.幂级数0()3n n x∞=∑的收敛半径R = 。

35.微分方程430y y y '''-+=的通解是 。

(今年不作要求)二、单项选择题(本大题共5小题,每小题3分,共15分)1.已知(1,1,1)A ,(2,2,1)B ,(2,1,2)C ,则AB 与AC 的夹角θ是(B )A .4π B .3π C .6π D .2π2.函数2z xy =在点(1,2)处的全微分是 ( D )A .8B .4dx dy +C .22y dx xydy +D .4()dx dy + 3.设L 为圆周222x y a +=,取逆时针方向,则2222()Lx ydx x xy dy ++=⎰( B )A .2a πB .42a π C .2πD .04.下列级数中收敛的是 ( C )A.1n ∞= B.1n ∞= C .114n n ∞=∑ D .114n n∞=∑5.微分方程12x y e-'=的通解是 ( C )A .12x y eC -=+ B .12x y e C =+ C .122x y e C -=-+ D .12x y Ce-=三、计算题(本大题共7小题,每小题7分,共49分) 1.设2,,xs f x xyz y⎛⎫= ⎪⎝⎭,且f 具有一阶连续偏导数,求s x ∂∂,s y ∂∂,s z∂∂. 2. 设由方程22240x y z z +++=确定隐函数(,)z z x y =,求全微分dz 。

3.计算2Dx yd σ⎰⎰,其中D 是由直线2x =,y 1y x=所围成的区域。

4.计算d d d z x y z Ω⎰⎰⎰,其中Ω是由曲面22z x y =+与平面4z =所围成的闭区域。

(今年不作要求)5. 计算()()Lx y dx y x dy ++-⎰,其中L 是2y x =上从点(0,0)到点(1,1)的一段弧。

6.判定级数15!n n n n n ∞=⋅∑的收敛性。

7.试用间接法将函数ln(5)x +展开成x 的幂级数,并确定展开式成立的区间。

四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)1.从斜边之长为l 的一切直角三角形中求有最大周长的直角三角形。

2.计算22(1)84I x dydz xydzdx xzdxdy ∑=-+-⎰⎰,其中∑是由曲线(0)y x e y a =≤≤绕x 轴旋转而成的曲面,取左侧。

(今年不作要求)3.设对于半空间0x >内任意的光滑有向封闭曲面S ,都有2()()0xSxf x dydz xyf x dzdx e zdxdy--=⎰⎰,其中函数()f x在(0,)+∞内具有连续的一阶导数,且lim()1xf x+→=,求()f x。

(今年不作要求)华南农业大学期末考试试卷(A卷)2011~2012学年第2 学期考试科目:高等数学AⅡ参考答案一、填空题(本大题共5小题,每小题3分,共15分)1.02.3330x y z+--=3.或者++j4.35.312x xy C e C e=+二、单项选择题(本大题共5小题,每小题3分,共15分)1.B2.D 3.B 4.C 5.C三、计算题(本大题共7小题,每小题7分,共49分)1.设2,,xs f x xyzy⎛⎫= ⎪⎝⎭,且f具有一阶连续偏导数,求sx∂∂,sy∂∂,sz∂∂。

解:令2u x=,xvy=,,w xyz=则………………1分12u v ws s u s v s wxf f yzfx u x v x w x y∂∂∂∂∂∂∂'''=++=++∂∂∂∂∂∂∂………………3分2v ws s v s w xf xzfy v y w y y∂∂∂∂∂''=+=-+∂∂∂∂∂………………5分ws s wxyfz w z∂∂∂'==∂∂∂………………7分2. 设由方程22240x y z z+++=确定隐函数(,)z z x y=,求全微分dz。

解:令2224F x y z z=+++2xzFz xx F z∂=-=-∂+………………3分2yzFz yy F z∂=-=-∂+………………6分()22x ydz dx dyz z=-+++………………7分3.计算二重积分2Dx ydσ⎰⎰,其中D是由直线2x=,y=及曲线1yx=所围成的区域。

解:原式2211xdx x ydy =⎰⎰………………4分3211()22x dx =-⎰………………6分 118=………………7分 4.计算d d d z x y z Ω⎰⎰⎰,其中Ω是由曲面22z x y =+与平面4z =所围成的闭区域。

解1:把闭区域Ω投影到xOy 面上,得半径为2的圆形闭区域{(,)|02,02π}xy D ρθρθ=≤≤≤≤.………………1分在xy D 内任取一点(,)ρθ,过该点作平行于z 轴的直线,此直线通过曲面22z x y =+穿入Ω内,然后通过平面4z =穿出Ω外.因此闭区域Ω可用不等式24,02,02πz ρρθ≤≤≤≤≤≤………………3分 来表示.于是22π2400d d d d d d d d d z x y z z z z z ρρρθθρρΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰………………5分22π242600011164d (16)d 2π8π.2263θρρρρρ⎡⎤=-=⋅-=⎢⎥⎣⎦⎰⎰………………7分 解2:可用先一后二,或者先二后一也可。

5. 计算曲线积分()()Lx y dx y x dy ++-⎰,其中L 是抛物线2y x =上从点(0,0)到点(1,1)的一段弧。

解:原式1(x dx x =++⎰………………5分12112323=++-………………6分 43=………………7分6.判定级数15!n n n n n ∞=⋅∑的收敛性。

解:1115(1)!lim lim (1)5!n nn n n n n nu n n u n n +++→∞→∞⋅+=⋅+⋅………………4分l i m 5()1n n nn →∞=+………………5分51e=>………………6分∴原级数发散。

………………7分7.试用间接法将函数ln(5)x +展开成x 的幂级数,并确定展开式成立的区间。

解:ln(5)ln[5(1)]5xx +=+………………1分l n 5l n (1)5x=++………………3分11l n 5(1)(1)5n nn n x n +∞+==+-+∑………………6分 115x-<≤,即55x -<≤………………7分 四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)1.从斜边之长为l 的一切直角三角形中求有最大周长的直角三角形。

解:作222()L l x y x y l λ=++++-………………1分222120120Lx x Ly yx y l λλ∂⎧=+=⎪∂⎪∂⎪=+=⎨∂⎪⎪+=⎪⎩………………5分 得x y =………………6分 得x y ==(唯一)………………7分 2.计算22(1)84I x dydz xydzdx xzdxdy ∑=-+-⎰⎰,其中∑是由曲线(0)y x e y a =≤≤绕x 轴旋转而成的曲面,取左侧。

解:作平面a x e =,取右侧,与曲面∑围成闭区域Ω。

………………2分由高斯公式可得22222(1)0a y z a I e dydz dV Ω+≤+-=⎰⎰⎰⎰⎰………………5分所以2222222(1)2(1)a a y z a I e dydz a e π+≤=--=-⎰⎰………………7分3.设对于半空间0x >内任意的光滑有向封闭曲面S ,都有2()()0xSxf x dydz xyf x dzdx e zdxdy --=⎰⎰, 其中函数()f x 在(0,)+∞内具有连续的一阶导数,且0lim ()1x f x +→=,求()f x 。

解:由题设和高斯公式可得220()()('()()())x x SVxf x dydz xyf x dzdx e zdxdy xf x f x xf x e dV =--=±+--⎰⎰⎰⎰⎰…………2分由S 的任意性知2'()()()0,0x xf x f x xf x e x +--=>即211'()(1)(),0x f x f x e x x x+-=>………………3分解之得:()()x xe f x e C x=+………………5分由于00lim ()lim ()1x x x x e f x e C x ++→→=+=,故必有20lim()0x xx e Ce +→+=…………6分 所以1C =-,于是()(1)x xe f x e x=-………………7分。

相关文档
最新文档