氧传感器的检测与常见故障分析

合集下载

氧传感器的常见故障

氧传感器的常见故障

氧传感器的常见故障氧传感器是现代汽车中重要的排放控制器之一,它能够测量排放气体中氧气的含量,从而调节发动机燃油喷射量。

然而,氧传感器也会面临一些常见的故障问题。

本文将介绍氧传感器的常见故障及解决方法。

故障一:氧传感器损坏氧传感器在工作中处于高温高压等恶劣环境下,长时间使用会导致传感器元件老化和烧坏,从而导致测量数据错误甚至不能正常工作。

此时,我们需要更换氧传感器。

解决方法:根据车型找到相应的氧传感器规格,将损坏的氧传感器更换为新的氧传感器。

更换时要注意安装位置、电源接口和接线,避免损坏其他电气设备。

故障二:氧传感器信号干扰氧传感器信号干扰主要来自于发动机的其他电气设备和信号线路,例如点火器、高压线圈等。

这些干扰信号会影响氧传感器的信号传输和测量准确性。

解决方法:检查和修复故障设备或线路,避免干扰信号传输。

另外,可以在氧传感器信号输出线路上用屏蔽线或电容隔离来减少干扰信号。

故障三:氧传感器污秽长时间工作会使得氧传感器表面附着油脂和碳残留物,这些污秽物会降低氧传感器反应能力,导致氧传感器输出的数据错误。

解决方法:定期清洗氧传感器,在更换机油时清除表面污垢,避免油脂沉积和氧传感器故障。

故障四:氧传感器接线故障氧传感器的电气连接也可能出现故障,例如连接松动、接线断开等,这些故障会导致氧传感器无法正常工作或测量数据错误。

解决方法:检查氧传感器接线情况,确认接线是否松动或断开,及时修复。

故障五:供氧系统故障供氧系统故障会影响氧传感器的工作,例如进气量不足、油压不足等原因会导致氧传感器读数错误。

解决方法:检查供氧系统,确认进气口、节气门、空气滤清器等部件是否正常,及时修复故障。

总之,氧传感器的故障会影响到汽车的排放系数和燃油效率,及时处理故障非常重要。

车主可以定期对氧传感器进行检测,避免氧传感器出现故障并提高车辆的性能和使用寿命。

氧传感器的常见故障及检查方法

氧传感器的常见故障及检查方法

氧传感器的常见故障及检查方法目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。

而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。

汽车维修养护网氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。

因此,必须及时地排除故障或更换。

一、氧传感器的常见故障1.氧传感器中毒氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。

如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。

但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。

另外,氧传感器发生硅中毒也是常有的事。

一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。

修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。

2.积碳由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。

产生积碳,主要表现为油耗上升,排放浓度明显增加。

此时,若将沉积物清除,就会恢复正常工作。

3.氧传感器陶瓷碎裂氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。

因此,处理时要特别小心,发现问题及时更换。

4.加热器电阻丝烧断对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。

氧传感器的检测及故障案例

氧传感器的检测及故障案例

氧传感器的检测及故障案例1、结构和工作原理在使用三效催化转化器降低排放污染的发动机上,氧传感器是必不可少的。

三效催化转化器安装在排气管的中段,它能净化排气中CO、HC和NO某三种主要的有害成分,但只在混合气的空燃比处于接近理论空燃比的一个窄小范围内,三效催化转化器才能有效地起到净化作用。

故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。

并将其转换成电压信号或电阻信号,反馈给ECU。

ECU控制空燃比收敛于理论值。

目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。

(1)氧化锆式氧传感器氧化锆式氧传感器的基本元件是氧化锆陶瓷管(固体电解质),亦称锆管图1。

锆管固定在带有安装螺纹的固定套中,内外表面均覆盖着一层多孔性的铅膜,其内表面与大气接触,外表面与废气接触。

氧传感器的接线端有一个金属护套,其上开有一个用于锆管内腔与大气相通的孔;电线将锆管内表面铂极经绝缘套从此接线端引出。

氧化锆在温度超过300℃后,才能进行正常工作。

早期使用的氧传感器靠排气加热,这种传感器必须在发动机起动运转数分钟后才能开始工作,它只有一根接线与ECU相连(图2a)。

现在,大部分汽车使用带加热器的氧传感器(图2b),这种传感器内有一个电加热元件,可在发动机起动后的20-30内迅速将氧传感器加热至工作温度。

它有三根接线,一根接ECU,另外两根分别接地和电源锆管的陶瓷体是多孔的,渗入其中的氧气,在温度较高时发生电离。

由于锆管内、外侧氧含量不一致,存在浓差,因而氧离子从大气侧向排气一侧扩散,从而使锆管成为一个微电池,在两铂极间产生电压(图3)。

当混合气的实际空燃比小于理论空燃比,即发动机以较浓的混合气运转时,排气中氧含量少,但CO、HC、H2等较多。

这些气体在锆管外表面的铅催化作用下与氧发生反应,将耗尽排气中残余的氧,使锆管外表面氧气浓度变为零,这就使得锆管内、外侧氧浓差加大,两铅极间电压陡增。

因此,锆管氧传感器产生的电压将在理论空燃比时发生突变:稀混合气时,输出电压几乎为零;浓混合气时,输出电压接近1V。

汽车氧传感器常见故障与检查

汽车氧传感器常见故障与检查

( 3) 棕色 顶尖 : 由 铅 污
反 馈 电压 能 按 上 述 规 律 变 化 , 说 明还 可 以使 用。 否则 , 氧 传 感器 已经 失效
只 能更换 。
3 .电 子 示 波 器 测 波 形 法

如 果严重 , 也 必 须 ’ / \ . 染造成 ,
更换氧 传 感器 ;
( 1) 淡灰 色顶 尖 : 这 是 氧 传感 器 的正常颜 色 ;
( 2) 白色 顶 尖 : 由 硅 污 图 3 氧传 感器 正 常 时的 波 形
1 V
染造 成 , 此 时 必 须 更 换 氧 传
感器 :
试使 发动 机高 速运 转 , 以清 除氧 传感
器上 的铅 或积碳 , 然后再 测试 。如果
障后 , 一般 可 以 自动清 除 氧
传 感器 上的积 碳。
0 V
三、 汽 车 氧 传 感器 的检

图 4 氧传 感 器 不 良时 的 波 形 生 高 温 ,在 氧 传 感 器 表 面 产 生 积 碳 ,
阻 的检查
1 .氧 传 感 器 加 热 器 电
考。
四、 结束 语
为 了节 能 和 防 止 汽 车 尾 气 污 染 , 电控 燃 油 喷 射 发 动 机 都 装 有 氧 传 感
板 时 , 混合 气 加 浓 , 反馈 电压 跳 变 上
通 过 观 察 氧 传 感 器 顶 尖 部 位 的 颜 色 也 可 以 判 断
故障 :
升 : 松 开时 , 混合 气 变稀 , 反 馈 电压 应 跳变 下降 。 也 就 是 说 万 用表 指 针 应 在 约 0 . 1 ~ 1 . 0 V 范 围 内 跳 动 一 次 , 否 则 说 明氧 传 感 器 已经 失 效 了。此 时 可 尝

氧气传感器工作原理及故障分析

氧气传感器工作原理及故障分析
第三部分 氧传感器的安装 合理的安装是保证氧传感器可靠运行的关键,许多使用问题均由于氧传感器安装不当造 成的,希望用户一定要特别注意这一点,安装氧传感器请尽量考虑氧传感器的安装要求: 一、采样测量点: 确定测量点是首要的工作。应遵循如下几项原则:
(1) 选择的测量点要求能正确反映所需要的炉内气氛,以保证氧传感器 输出信号的
用户的外置监控单元
一个外置的,由用户后接的装置必须承担测量信号的分析处理,以及循环自检的进行和监控。 对故障报警的反应是根据不同用户的技术要求,同样由该外置监控单元处理。 因此,该单元必须满足一定的要求:
该单元必须具有故障保护功能,就是说,下面提到的过程必须运行在无故障状态, 输入信号准确读入,输出信号准确输出。
图一:通道 K2 的输出信号。 由于测试过程是动态的,所以氧气测量系统的常用功能始终处于被检测状态,并理想地循 环运行。为此,在一个分离的测试通道安置 24V,使传感器电流从外部减弱 20%。测量系 统以一个较小的氧气浓度模拟实际情况。在这个基础上,通道 K1 和通道 K2 的测量信号必
须同样地予以减弱,也就是说,测量系统必须正确计算虚拟的氧气浓度。在这里,4%的宽 带是允许的,即在自测时测量值必须处在前测值的 0.76 和 0.84 倍之间。 实用规则:测量信号必须同样最少减弱 10% 使用这种测试方法首次实现以下可能:不仅 能够发现测量系统硬件上的故障,而且也能发现传感器本身,即二氧化锆密闭空腔故障!
在使用许可的容许偏差时间范围内,对通道 K1 和通道 K2 的测试值持续不断地进行 比较。
需要对 K2 输出信号的时间进行不间断的可信度检测。同时,静态信号应视作内部 误差。
在循环周期内,必须启动自检,并处理分析其对测试信号的影响。两个自检之间的 时间间隔,不能超出一个特定的数值。

氧传感器故障分析与检修

氧传感器故障分析与检修

氧 传 感 器 正 常 工作 时 ,
需 要 30 0 ~
4 2
MO O C IA・ uy T R・ H N J l
维普资讯
BOSCH
一 技 成 n 生 活 之 翼
用 了检 测 仪 读 取 动 态 数 据 流 功 能 。
② 未 燃 的 汽 油 排 入 高 温 的 三 元 催 化 转换 器 内 , 到 空气 中 的 氧分 子就 会 急 骤 遇 燃 烧 起 来 。 催 化 剂 熔 融 , 塞 催 化 转 换 使 堵 器 的 排 气 孔 造 成排 气节 流 。 而 造 成 发 动 从 机 功 率 更 加严 重 下 降 ,给 汽 车 的动 力 性 、 经 济 性造 成极 大 的 影 响 。
45 V。正 常 。 ( 检 查 加 热 元 件 :启 动 发 动 机 。 2) 用 数 字 万 用表 表 笔 连 接 到 插 头 的 1 2 间 和 之 测 电 阻 。显 示 为 o 常 温 下 为 1 ) o( ~5Q 。 说 明加 热 元 件 已 损环 。 ( 3)接 着 从 排 气 管 上拆 下 三 元 催 化
3 .读取发动机控制 系统动态数据流
用 发 动 机 故 障检 测仪 读 取 发 动 机 控 制 系统 动 态 数据 流 ,其 内容 如 表 1 示 。 所
表 2为 原 厂 提 供 的该 款 发 动 机 的 正 常 数
据。
4 .对动态数据流进行分析
( 经 过 对 表 1 表 2的数 据 分 析 后 1) 、
性如图3 示。 所
根源 — — 氧 传 感 器 失 效 , 成 功 地 排 除 了 并
这 个故 障 。
二 氧传感器的构造原理
捷 达 王 GT 型 汽 车采 用 A 发 动 机 , X HP 匹配 德 国 B s h 司 MorncM382控 oc 公 t i o 制 系统 。 装 在 前 排气 管 中 的氧 传 感 器 可 安

氧传感器故障分析【范本模板】

氧传感器故障分析【范本模板】

一、氧传感器的故障分析与诊断1、氧传感器在电控发动机排放控制中的重要性在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。

由于混合气的空燃比一旦偏离理论空燃比,三元催化器对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。

2、氧传感器的种类及氧传感器在汽车上安装的重要性目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种.而常见的氧传感器又有单引线、双引线、三引线及四引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三引线和四引线的为加热型氧化锆式氧传感器,原则上四种引线方式的氧传感器是不能替代使用的。

氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。

因此,必须及时的排除故障或更换. 空燃比对排气中碳氢化合物(HC)和一氧化碳(CO)的含量有很大影响,在空燃比低于14.7:1时,HC及CO含量降低;如果空燃比高于14。

7:1时,HC及CO含量迅速上升。

但是,降低空燃比会导致燃烧温度升高,排气中的氮氧化合物(NOX)升高.所以,理想的空燃比应在接近14。

7:1的很小范围内。

另外三元催化转化器的转化效率只有在空气系数为1的很小范围内最高。

如图1所示三元催化转化器对发动机的排放控制具有极其重要的意义.没有三元催化转化器就不可能满足欧洲排放法规.第二代车载故障诊断系统(OBD—Ⅱ) 具1有对三元催化转化器进行故障诊断的功能.图1 三元催化转换效率图而为了对三元催化转化器进行故障诊断,必须在它的前和后各装一个氧传感器(图2)。

图2 发动机闭环控制系统正常运行的三元催化转化器因其储氧能力而使后氧传感器的动态响应与前氧传感器相比明显差,后氧传感器动态响应曲线的振幅非常小(图3a).反之,如果后氧传感器信号电压的波形非常接近前氧传感器,只不过相位略滞后(图3b),则ECU认为三元催化转化器效率过低。

氧传感器常见的故障及原因

氧传感器常见的故障及原因

氧传感器常见的故障及原因
氧传感器常见的故障及原因很多,以下是其中一些常见的故障及其原因。

1. 传感器无输出信号:这可能是因为传感器的内部元件损坏,例如氧离子传导体损坏,导致氧浓度无法正确测量。

另外,也有可能是传感器的连接线路出现故障,例如线路接触不良或短路。

2. 传感器输出信号不稳定:这可能是由于传感器与其他电子元件之间的干扰导致的,例如传感器周围存在较强的电磁场,干扰了传感器的工作。

此外,温度的变化也可能影响到传感器的输出稳定性。

3. 传感器响应速度变慢:这可能是由于氧传感器的工作温度过低或工作温度过高导致的。

当温度过低时,氧传感器的活性降低,反应速度变慢;而当温度过高时,则会影响到传感器内部元件的稳定性和响应速度。

4. 传感器输出偏差:这可能是因为传感器的校准不准确导致的。

氧传感器通常需要定期进行校准,以保证其测量结果的准确性。

如果传感器长时间没有进行校准,或者校准不正确,就会导致输出偏差。

5. 传感器寿命过短:氧传感器的寿命通常受到气体污染、温度变化、湿度等环境因素的影响。

如果传感器长时间在污染严重的环境中工作,可能会导致传感器的寿命缩短。

此外,如果传感器工作温度超出了其额定范围,也会加速传感器的
老化。

总之,氧传感器的常见故障原因主要包括内部元件损坏、连接线路故障、干扰、温度变化、校准不准确和环境因素等。

为确保氧传感器的正常工作,需要定期对传感器进行维护和校准,避免在恶劣的工作环境下使用传感器,以延长其寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准空气 铂电极
电动势
化锆式氧传感器在 铂电极
温 度 达 到 400℃ 以 上时,若其内部与外 部气体的氧浓度差
图 3 氧化锆式氧传感器的基本 工作原理
较大,氧化锆式氧传感器的 2 个铂电极之间将会产生电动
势。发动机工作时,由于氧传感器内部大气中氧浓度是固
定的而氧传感器外部发动机排出废气中的氧浓度是随空
解决方案
SOLUTION 工艺 / 工装 / 模具 / 诊断 / 检测 / 维修 / 改造
氧传感器的检测与常见故障分析
林祥辉, 陈继福, 赵福全 (浙江吉利汽车研究院有限公司,杭州 311228)
摘 要:电喷车为获得高排气净化率,降低排气中一氧化碳(CO)、碳氢化合物(HC)和氮氧化合物(NOx)成份,必须利
用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。在理论空燃比
(14.7 ∶ 1)附近氧传感器输出的电压有突变,这种特性被用来检测排气中氧气的浓度并反馈给 ECU。ECU 根据来自氧传
感器的电动势差别来精确地控制空燃比,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正
此电压应该是从低电压到高电压循环,一般在 0~1V 之
氧传感器前端的排气系统泄漏,会造成氧传感器输
间变化(注:新车通常在 0.3~0.7V 间变动;燃烧室被积炭 出电压持续过低。排气管冒黑烟时,氧传感器输出电压仍
轻度污染时在 0.2~0.8V 间变动;燃烧室被积炭重度污染 持续过低。
时在 0.1~0.9V 间变动)。然后反复踩动加速踏板,观察氧 4.4.5 导线电阻值过大
密封,所以这段时间排气尾管不冒蓝烟。
打开气门室罩的加油口,急加速时如从此处冒蓝烟,
说明曲轴箱内压力过高,应重点检查活塞环与缸壁之间是 否密封不良以及 PVC(曲轴箱强制通风装置)阀是否发生堵 塞。活塞环与缸壁之间密封不良,急加速时燃烧压力增高, 可使大量废气窜入曲轴箱。PVC 阀堵塞等于关闭了曲轴箱 强制通风道,使曲轴箱内压力过高,进入曲轴箱的混合气 携带部分机油在压力作用下经自然通风管道进入气门室。 3.2 混合气窜入排气系统的预防
燃比变化的,所以将氧化锆式氧传感器 2 个电极之间产生
的电动势输送给 ECU,即可作为判断实际空燃比的依据。
氧化锆式氧传感器的输出特性如图 4 所示。发动机工
作中,当实际空燃比小于理论空燃比(14.7 ∶1)时,排出废气
中的氧含量较低,氧传
感器内部与外部气体的 氧浓度差较大,2 个铂电 极之间产生的信号电压 较高,氧传感器向 ECU 输入高电压信号 (0.75~ 0.90V),此时,ECU 将减 少喷油量,使实际空燃 比增大;当空燃比增大 到理论空燃比时,氧传
号传输给 ECU,用来确定实际的空燃比。
3 氧传感器过早损坏的原因
普通的氧化锆型氧传感器的正常寿命应为 9~10 万 km
上,若使用含硫量较高的劣质燃油,或机油中使用含硫、
磷的抗氧化剂,以及长期低速行驶造成 CO 排放高都会
导致氧传感器污染和 TWC(三元催化转换装置)的污染。
此外,发动机冷却液、机油窜入排气管也会导致氧传感器
电厂及热处理等行业产生了良好的社会效益。
2 氧传感器的主要作用及工作原理
空气 燃油
曲轴位置传感器
空气流量 计或压力 传感器
发动机 喷油器
排气 TWC
氧传感器
燃油喷射量 转速 进气量 ECU 冷却液温度信号
空燃比反馈信号
图 1 发动机闭环控制-氧传感器
氧传感 器是电子燃 油喷射系统 中重要的反 馈传感器, 是发动机燃 油系统实现 闭环控制最
(3)氧传感器热负荷过载,陶瓷体融化。
4.4.2 发动机进气系统发生泄漏
氧传感器调节频率过慢,也称为“老化”。氧传感器调节
使用进气歧管绝对压力传感器(MAP)的发动机,进
频率过慢会造成怠速不稳,部分工况冒黑烟,有时还会出现 气系统发生泄漏会造成混合气过浓;使用 MAF 的发动机
换档熄火现象。因此氧传感器调节频率过慢,必须更换。
进气系统发生泄漏会造成混合气过稀,使氧传感器输出
4.2 氧传感器反馈电压的检测
电压过低。
(1)连接好氧传感器线束插接器,使发动机以较高转 4.4.3 氧传感器加热器损坏
速运转,直到达到氧传感器的工作温度 400℃以上时,再
氧传感器加热器损坏不工作,会造成氧传感器输出
维持怠速运转。
电压过低。
(2)用诊断仪或示波器观察氧传感器输出信号电压, 4.4.4 氧传感器前端的排气系统泄漏
逐渐滴下的机油将汇集在燃烧室室内,当第一次启动时,
会导致排气尾管冒蓝烟,最长可达 10min。
维修时,除更换气门油封外,还应进一步检查气门导
管的工作间隙。
(2)活塞环与缸壁之间密封不良
启动和暖机时不冒蓝烟,行驶中急加速时排气尾管
冒蓝烟,说明活塞环与缸壁之间密封不良。启动和暖机时
发动机温度低,机油粘度大,活塞环与缸壁之间可以保证
电压 U/V
14.7 1.2
1.0
0.8 油 0.6
基准电压 0.4~0.5V
0.4
0.2
油 浓区 稀区
0 13 14 15 16 17 18
空燃比
图 4 氧传感器的输出特性
136 机械工程师 2011 年第 4 期
解决方案
工艺 / 工装 / 模具 / 诊断 / 检测 / 维修 / 改造 SOLUTION
2.2 氧化钛式氧传感器
此种氧传感器工作原理如下:化学反应强、对氧敏
感、易于还原的半导体材料与氧气接触时发生氧化-还原
反应,使晶体结构发生变化,从而导致电阻变化的。它是
一种电阻型气敏传感器。
氧化钛式氧传感器的结构如图 5 所示,主要由二氧
2
化钛 元 件 、导
1
3
4
线 、金 属 外 壳
和接线端子
等组 成 ,当 发
7
65
动机排出废
图 5 氧化钛式氧传感器结构示意图 气 中 ,氧 含 量
1.二氧化钛元件 2.金属外壳 3.陶瓷绝 缘体 4.接线端子 5.陶瓷元件 6.导线 7.金属保护套
较高 时 ,二 氧 化钛电阻值 增大。反之,
发动机排出废气中氧含量较低时,二氧化钛电阻值减小。
利用适当的电路对电阻值进行处理,即可转化为电压信
主要的传感器。如图 1 所示,氧传感器安装在 TWC(三元
催化转换装置)与发动机之间的排气管上,用来检测废气
中的氧浓度。并将检测到的氧浓度信号输送给 ECU,ECU
根据此信号对喷油器的喷油量进行修正,使实际的空燃
比更接近理论的空燃比。
根据氧传感器的构成材料,氧传感器可分为氧化锆
(ZrO2)式氧传感器和氧化钛(TiO2)式氧传感器。 2.1 氧化锆式氧传感器
机械工程师 2011 年第 4 期 137
解决方案
SOLUTION 工艺 / 工装 / 模具 / 诊断 / 检测 / 维修 / 改造
温时其电阻值为 2~5Ω;丰田 量,和节气门开度。大众汽车采用直动式怠速控制系统,
凌志 LS400 轿车氧传感器加 即没有旁通空气道,怠速步进电动机装在节气门上。正常
对铂电极产生腐蚀。 在氧化锆式氧传感 器的线束插接器端 有金属护套,其上有
排气管
排气 陶瓷防护层
电极引线点
大气 电极引线点
小孔,以便使氧化锆
管内通大气。 氧化锆式氧传
感器的基本工作原
陶瓷体 铂电极
图 2 氧化锆式氧传感器的构造
理如图 3 所示。氧化
排气
锆式氧传感器实质 多孔陶瓷层
氧化锆
是一个化学电池,又 称氧浓度差电池,氧
冷车启动困难,缺缸和排气门不良都会造成未燃烧 的混合气窜入排气系统。
(1)发动机缺缸故障的诊断 怠速时如有排气冲击,说明发动机缺缸,用红外线测 温仪逐缸进行检测,哪个缸温度明显低于其他缸,就是哪 个缸燃烧不好。 (2)排气门密封不良的诊断 发动机怠速运转时,在排气尾管处如能听到“噗噗” 声,说明排气门密封不良。 3.3 冷却液窜入排气系统的预防 装有涡轮增压或机械增压的发动机为了防止进气温 度过高导致的进气量减少,在进气管处都安装有冷却液 道。进气歧管垫一旦密封不良,冷却液就会经燃烧室进入 排气系统,造成氧传感器和 TWC 污染。 发动机进气歧管垫、排气管垫和气缸垫都是一次性 的,只要打开就必须换新的,所以在没有得出正确判断前 不要盲目地拆开进气歧管。如火花塞电极和氧传感器的 触头发白(冷却液结晶体是白色的)就说明冷却液窜入燃 烧室和排气系统。 3.4 氧传感器的故障诊断 氧传感器的检测包括两个方面:氧传感器调节频率 的检测与氧传感器反馈电压的检测。 氧传感器调节频率的检测与反馈电压的检测必须具备 以下条件:(1) 发动机控制单元必须和节气门位置传感器匹 配,即发动机处于氧传感器闭环控制工况。(2)冷却液温度大 于 85℃。(3)TWC 前面的排气管和气缸垫必须密封良好。 4 氧传感器调节频率的检测 发动机热机后 (2500r/min 运转 90s 预热氧传感器), 关闭点火开关,连接诊断仪,然后启动发动机,读取氧传感 器的数据流。同时反复踩节气门,每次都必须将节气门踩 到底,待发动机转速上升到 3000r/min 以上,不到 4000r/min 时,迅速完全放松节气门。进行此项检测时,发动机转速到 3000r/min 以上后必须立即切断供油,即松开节气门,自然 停止供油。使混合气过浓过稀交替变化过程中,如此反复, 在 10s 内氧传感器能完成 8 次工作频率变化为合格。 4.1 氧传感器调节频率过慢的原因 (1)氧传感器加热器损坏导致氧传感器进入正常工 作的时间延长,输出电压过低,导致混合气过浓,出现排 气管在部分工况时冒黑烟。 氧传感器加热器的检测:关闭点火开关,拔下氧传感 器电插头,用万用表检测氧传感器插座端子 1、2 之间的 电阻值,如图 6 所示。例如,大众时代超人 AJR 发动机,室
相关文档
最新文档