最新二次函数培优讲义
二次函数(基础思想)讲义

二 次 函 数1、二次函数的常见解析式及其三要素①a 的符号决定抛物线的的开口大小、形状相同;如果a 相同,那么抛物线的开口方向、开口大小完全相同。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .③二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=, ④当0>a 时⇔抛物线开口向上⇔顶点为其最低点⇔a b ac y 最小442-=;当0<a 时⇔抛物线开口向下⇔顶点为其最高点⇔ab ac y 最大442-=。
2、二次函数的性质:⑴增减性:以对称轴h x =为界,具有双向性。
⑵对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线的对称轴垂直平分对称点的连线. 即:若A 、B 两点是抛物线上关于对称轴h x =对称的两点,则有:①B A y y =;②h x x B A =+2(即abx x -=+21)。
基础练习题:1、抛物线y = - 2 ( x – 3 )2– 7 对称轴 x = , 顶点坐标为 ; 2、抛物线 y = 2x 2+ 12x – 25的对称轴为 x = , 顶点坐标为 . 3、若将二次函数y =x 2-2x + 3配方为y =(x -h )2+ k 的形式,则y =4、抛物线y = - 4(x +2)2+5的对称轴是 。
5、抛物线 y = - 3x 2+ 5x - 4开口 , y = 4x 2– 6x + 5 开口 .6、已知P 1(11y ,x )、P 2(22y ,x )、P 3(33y ,x )是抛物线3x 2x y 2--=上的三个点,若321x x x 1<<<,则321y y y 、、的大小关系是____________。
7、已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥38、如图中有相同对称轴的两条抛物线,下列关系不正确的是( ) A h=m B k=n C k >n D h >0,k >0 9、抛物线4)2(22-+-+=m x m x y 的顶点在原点,则m= 10、如图抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点的坐标是(3,0),则A 点的坐标是 11、请选择一组你喜欢的的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:(1)开口向下,(2)当时,y 随x 的增大而增大;当时,y 随x的增大而减小。
二次函数培优专题

二次函数培优专题一、二次函数的基本概念1. 二次函数的定义- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
- 例如y = 2x^2+3x - 1,这里a = 2,b = 3,c=-1。
- 题目解析:判断一个函数是否为二次函数,关键看其是否符合y = ax^2+bx + c(a≠0)的形式。
比如y=3x + 2就不是二次函数,因为它不符合二次函数的定义形式,其中x的最高次数是1;而y=(1)/(x^2)也不是二次函数,因为它不是整式函数。
2. 二次函数的图象- 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,对于二次函数y = x^2,a = 1>0,其图象开口向上;对于y=-2x^2,a=-2 < 0,其图象开口向下。
- 题目解析:给定二次函数,判断其图象开口方向是常见题型。
如y = 3x^2-2x + 1,因为a = 3>0,所以图象开口向上。
对于二次函数图象开口方向的理解,可以从二次函数的增减性角度来看,当a>0时,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大;当a < 0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小。
3. 二次函数的对称轴和顶点坐标- 对于二次函数y = ax^2+bx + c(a≠0),其对称轴公式为x =-(b)/(2a),顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y = 2x^2-4x + 3,a = 2,b=-4,c = 3。
对称轴x=-(-4)/(2×2)=1,顶点纵坐标y=frac{4×2×3-(-4)^2}{4×2}=(24 - 16)/(8)=1,所以顶点坐标为(1,1)。
高一数学 培优教材二次函数

高一年段数学培优教材第二讲 二次函数一、 基础知识: 1. 二次函数的解析式(1)一般式:2()(0)f x ax bx c a =++≠ (2)顶点式:2()()f x a x h k =-+,顶点为(,)h k (3)两根式:12()()()f x a x x x x =-- (4)三点式:132312321313221231213()()()()()()()()()()()()()()()()x x x x x x x x x x x x f x f x f x f x x x x x x x x x x x x x ------=++------2.二次函数的图像和性质(1)2()(0)f x ax bx c a =++≠的图像是一条抛物线,顶点坐标是24(,)24b ac b a a --,对称轴方程为2bx a=-,开口与a 有关。
(2)单调性:当0a >时,()f x 在(,]2b a -∞-上为减函数,在[,)2ba-+∞上为增函数;0a <时相反。
(3)奇偶性:当0b =时,()f x 为偶函数;若()()f a x f a x +=-对x R ∈恒成立,则x a =为()f x 的对称轴。
(4)最值:当x R ∈时,()f x 的最值为244ac b a -,当[,],[,]2b x m n m n a ∈-∈时,()f x 的最值可从(),(),()2bf m f n f a-中选取;当[,],[,]2bx m n m n a∈-∉时,()f x 的最值可从(),()f m f n 中选取。
常依轴与区间[,]m n 的位置分类讨论。
3.三个二次之间的关联及根的分布理论:二次方程2()0(0)f x ax bx c a =++=≠的区间根问题,一般情况需要从三个方面考虑:判别式、区间端点函数值的符号;对称轴与区间端点的关系。
二、 综合应用:例1:已知二次函数()f x 的图像经过三点(1,6),(1,0),(2.5,0)A B C --,求()f x 的解析式。
二次函数辅导讲义

名思教育辅导讲义6、根据二次函数图象提供得信息,确定某一个待定系数得范围例6、如图6所示得抛物线就是二次函数得图象,那么得值就是。
考点2、考抛物线得解析式求二次函数得解析式,就是重点内容。
1、已知抛物线上任意得三个点得坐标,求解析式例1、已知抛物线经过点A(1,2)、B(2,2)、C(3,4),求抛物线得解析式。
2、已知抛物线与x轴得交点坐标,与某一个点得坐标,求解析式例2、已知抛物线与x轴得交点就是A(-2,0)、B(1,0),且经过点C(2,8)。
求该抛物线得解析式。
3、已知抛物线得顶点坐标,与某一个点得坐标,求解析式例3、在直角坐标平面内,二次函数图象得顶点为A(1,-4),且过点B(3,0).求该二次函数得解析式。
4、已知抛物线得对称轴,与某两个点得坐标,求解析式例4、有一座抛物线形拱桥,正常水位时,AB宽为20米,水位上升3米就达到警戒水位线CD,这时水面得宽度为10米。
请您在如图所示得平面直角坐标系中,求出二次函数得解析式。
5、已知一个抛物线得解析式,求平移得函数解析式例5、将抛物线y=x2得图象向右平移3个单位,接着再向上平移6个单位,则平移后得抛物线得解析式为___________。
例6、将抛物线y=2(x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线得表达式为例7、在同一坐标平面内,图象不可能由函数y=2x2+1 得图象通过平移变换、轴对称变换得到得函数就是( )A. y=2(x+1)2-1 B. y=2x2+3C. y=-2x2-1 D.6、抛物线关于x轴对称得抛物线得解析式结论:抛物线y= a+bx+c关于x轴得对称抛物线为:y=-(a+bx+c)。
例8、抛物线 y=2(x-1)2+3关于x轴对称得抛物线得解析式为。
7、抛物线关于y轴对称得抛物线得解析式结论:抛物线y= a+bx+c关于y轴得对称抛物线为:y=a-bx+c。
例9、抛物线 y=2(x-1)2+3关于y轴对称得抛物线得解析式为。
二次函数复习讲义

二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。
其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。
2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。
抛物线的顶点坐标即为对称轴的交点。
二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。
设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。
2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。
设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。
3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。
顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。
标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。
三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。
2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。
3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
第5讲 二次函数y=ax^2(a≠0)的图象与性质(培优课程讲义例题练习含答案)

二次函数y=ax2(a≠0)的图象与性质—知识讲解(提高)【学习目标】1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.5.掌握二次函数y=ax2(a≠0)与y=ax2+c (a≠0)的图象之间的关系.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=ax2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点诠释:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值.(2)二次函数y=ax 2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax 2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 3.二次函数y=ax 2(a ≠0)的图象的性质二次函数y=ax 2(a≠0)的图象的性质,见下表: 函数 图象 开口方向 顶点坐标 对称轴 函数变化 最大(小)值y=ax 2a >0向上 (0,0) y 轴 x >0时,y 随x 增大而增大; x <0时,y 随x 增大而减小.当x=0时,y 最小=0y=ax 2a <0向下 (0,0) y 轴 x >0时,y 随x 增大而减小; x <0时,y 随x 增大而增大.当x=0时,y 最大=0要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴. 要点二、二次函数y=ax 2+c(a ≠0)的图象与性质 1.二次函数y=ax 2+c(a ≠0)的图象 (1)0a >j xOy()0y ax c c =+>cjyxOc()0y ax c c =+<(2)0a <2.二次函数y=ax 2+c(a ≠0)的图象的性质关于二次函数2(0)y ax c a =+≠的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数2(0,0)y ax c a c =+>> 2(0,0)y ax c a c =+<>图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当0x >时,y 随x 的增大而增大;当0x <时,y 随x 的增大而减小.当0x >时,y 随x 的增大而减小;当0x <时,y 随x 的增大而增大.最大(小)值当0x =时,y c =最小值当0x =时,y c =最大值3.二次函数()20y axa =≠与()20y ax c a =+≠之间的关系()20y ax a =≠的图象向上(c >0)【或向下(c <0)】平移│c │个单位得到()20y ax c a =+≠的图象. 要点诠释:j yxOc()20y ax c c =+>j y xOc()0y ax c c =+<抛物线2(0)y ax c a =+≠的对称轴是y 轴,顶点坐标是(0,c),与抛物线2(0)y ax a =≠的形状相同.函数2(0)y ax c a =+≠的图象是由函数2(0)y ax a =≠的图象向上(或向下)平移||c 个单位得到的,顶点坐标为(0,c).抛物线y =ax 2(a ≠0)的对称轴、最值与顶点密不可分,其对称轴即为过顶点且与x 轴垂直的一条直线,其顶点横坐标x =0,抛物线平移不改变抛物线的形状,即a 的值不变,只是位置发生变化而已.【典型例题】类型一、二次函数y=ax 2(a ≠0)的图象与性质1.(•宁夏)已知a ≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( )A .B .C .D .【思路点拨】本题可先由一次函数y=ax 图象得到字母系数的正负,再与二次函数y=ax 2的图象相比较看是否一致.(也可以先固定二次函数y=ax 2图象中a 的正负,再与一次函数比较.) 【答案】C ;【解析】A 、函数y=ax 中,a >0,y=ax 2中,a >0,但当x=1时,两函数图象有交点(1,a ),故A 错误;B 、函数y=ax 中,a <0,y=ax 2中,a >0,故B 错误;C 、函数y=ax 中,a <0,y=ax 2中,a <0,但当x=1时,两函数图象有交点(1,a ),故C 正确;D 、函数y=ax 中,a >0,y=ax 2中,a <0,故D 错误. 故选:C .【总结升华】解此类题的基本方法有两种:方法一,根据选项逐个验证;方法二,分a >0和a <0两种情况讨论直接找答案.但要注意图象的交点情况. 举一反三:【变式】在同一平面直角坐标系中,一次函数y ax c =+与二次函数2y ax c =+的图象大致为( ).【答案】B.2.根据下列条件求a 的取值范围:(1)函数y =(a-2)x 2,当x >0时,y 随x 的增大而减小,当x <0时,y 随x 的增大而增大; (2)函数y =(3a-2)x 2有最大值; (3)抛物线y =(a+2)x 2与抛物线212y x =-的形状相同; (4)函数2aay ax +=的图象是开口向上的抛物线.【思路点拨】根据二次函数y=2ax (a ≠0)的图形和性质,结合草图解决问题. 【答案与解析】(1)由题意得,a-2<0,解得a <2. (2)由题意得,3a-2<0,解得23a <. (3)由题意得,1|2|2a +=-,解得152a =-,232a =-. (4)由题意得,220a a a ⎧+=⎨>⎩,解得a 1=-2,a 2=1,但a >0,∴a =1.【总结升华】解答此类问题,要注意联想二次函数的图象和性质,抓住形状、开口、最值、增减性等特征,并结合草图去确定二次项系数的取值范围. 举一反三:【变式】二次函数y =mx 22-m 有最高点,则m =___________.【答案】-2.3. 二次函数223y x =的图象如图所示,点A 0位于坐标原点,点A 1,A 2,A 3,…,A 2013在y 轴的正半轴上,点B 1,B 2,B 3,…,B 2013在二次函数223y x =位于第一象限的图象上,若△A 0B 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A 2012B 2013A 2013都为等边三角形,求△A 2012B 2013A 2013的边长.【思路点拨】分别求出△A 0A 1B 1,△A 1A 2B 2,△A 2A 3B 3的边长,找出边长的变化规律. 【答案与解析】如图所示,作B 1C 1⊥y 轴,垂足为C 1. ∵△A 0A 1B 1为等边三角形,∴∠A 0B 1C 1=30°.设A 0C 1=a ,则A 0B 1=2a ,B 1C 1=3a .∴B 1(3a ,a ), ∴22(3)3a a =,∴12a =,∴011A B =. 作B 2C 2⊥y 轴,设A 1C 2=m ,则A 1B 2=2m ,C 2B 2=3m , ∴2(3,1)B m m +. ∴221(3)3m m +=. ∴2m 2-m-1=0,即(2m+1)(m-1)=0,∴m =1或12-(舍). ∴A 1B 2=2.同理可求A 2B 3=3,A 3B 4=4,… ∴△A 2012B 2013A 2013的边长为2013.【总结升华】在△A 0A 1B 1,△A 1A 2B 2,△A 2A 3B 3中,运用勾股定理表示出B 1、B 2、B 3的坐标,利用抛物线解析式223y x =建立等式是关键. 类型二、二次函数y=ax 2+c(a ≠0)的图象与性质4.(•江阴市校级二模)关于二次函数y=2x 2+3,下列说法中正确的是( ) A. 它的开口方向是向下;B. 当x <﹣1时,y 随x 的增大而减小;C. 它的对称轴是x=2;D. 当x=0时,y 有最大值是3. 【答案】B. 【解析】A 、∵二次函数y=2x 2+3中,x=2>0,∴此抛物线开口向上,故本选项错误;B 、∵抛物线的对称轴x=﹣=0,∴当x <﹣1时函数图象在对称轴左侧,y 随x 的增大而减小,故本选项正确;C 、抛物线的对称轴为x=0,故本选项错误;D 、∵抛物线开口向上,∴此函数有最小值,故本选项错误.故选B .【总结升华】本题考查了二次函数的性质,主要涉及开口方向,对称轴,与y 轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键.举一反三:【变式】如图所示,抛物线2(0)y ax c a =+<交x 轴于G 、F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B 、E ,它们关于y 轴对称,点G 、B 在y 轴左侧,BA ⊥OG 于点A ,BC ⊥OD 于点C .四边形OABC 与四边形ODEF 的面积分别为6和10,则△ABG 与△BCD 的面积之和为________.【答案】4.(提示:10-6=4.)5.有一个抛物线形的拱形隧道,隧道的最大高度为6m ,跨度为8m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)若要在隧道壁上点P (如图)安装一盏照明灯,灯离地面高4.5m .求灯与点B 的距离.【思路点拨】(1)根据抛物线在坐标系的位置可设解析式:y=ax 2+6,把点A (-4,0)代入即可;(2)灯离地面高4.5m ,即y=4.5时,求x 的值,再根据P 点坐标,勾股定理求PB 的值. 【答案与解析】解:(1)由题意,设抛物线所对应的函数关系为y=ax 2+6(a <0),∵点A (-4,0)或B (4,0)在抛物线上,∴0=a•(-4)2+6, 16a+6=0,16a=-6,38a =-.故抛物线的函数关系式为2368y x =-+. (2)过点P 作PQ ⊥AB 于Q ,连接PB ,则PQ=4.5m .将y=4.5代入2368y x =-+,得x=±2. ∴P (-2,4.5),Q (-2,0), 于是|PQ|=4.5,|BQ|=6, 从而|PB|=224.567.5m += 所以照明灯与点B 的距离为7.5m .【总结升华】本题考查建系确定点的坐标,应用二次函数解决实际问题,建系的方法不唯一.二次函数y=ax 2(a ≠0)的图象与性质—巩固练习(提高)【巩固练习】一、选择题1.若抛物线210(2)my m x -=+的开口向下,则m 的值为( ).A .3B .-3C .23D .23- 2.抛物线24y x =--的顶点坐标,对称轴分别是( ). A .(2,0),直线x =-4 B .(-2,0),直线x =4 C .(1,3),直线x =0 D .(0,-4),直线x =03.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不正确的是( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值 4.关于213y x =,2y x =,23y x =的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同5.(•市北区一模)在同一直角坐标系中,函数y=kx 2﹣k 和y=kx+k (k ≠0)的图象大致是( ).A. B. C. D.6.图中是一个横断面为抛物线形状的拱桥,当水面在l 处时,拱顶(拱桥洞的最高点)离水面2 m , 水面宽4 m .如图所示建立平面直角坐标系,则抛物线的解析式是( ).A .22y x =- B .22y x = C .212y x =- D .212y x = 二、填空题7.抛物线23y x =-的开口 ,对称轴是 ,顶点坐标是 . 8.将抛物线2y x =-向上平移5个单位后,得到的抛物线的解析式是____ ____.9.已知(x 1,y 1),(x 2,y 2)是抛物线2y ax =(a ≠0)上的两点.当210x x <<时,21y y <,则a 的取值范围是________.10. (•巴中模拟)对于二次函数y=ax 2,已知当x 由1增加到2时,函数值减少4,则常数a 的值是 .11.抛物线2y ax c =+与23y x =的形状相同,其顶点坐标为(0,1),则其解析式为 . 12.如图,⊙O 的半径为2,1C 是函数212y x =的图象,2C 是函数212y x =-的图象,则阴影部分的面积是 .三、解答题13.(•仙桃)如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为多少米?14.已知直线1y x =+与x 轴交于点A ,抛物线22y x =-的顶点平移后与点A 重合.(1)求平移后的抛物线C 的解析式;(2)若点B(1x ,1y ),C(2x ,2y )在抛物线C 上,且1212x x -<<,试比较1y ,2y 的大小.15. 已知正方形周长为Ccm ,面积为S cm 2. (1)求S 和C 之间的函数关系式,并画出图象; (2)根据图象,求出S=1 cm 2时,正方形的周长; (3)根据图象,求出C 取何值时,S ≥4 cm 2.【答案与解析】 一、选择题1.【答案】D ;【解析】依题意得m 2-10=2且2+m <0,即m =±3m <-2,所以23m =-2.【答案】D ;【解析】由函数y=ax 2+c 的图象性质可得.3.【答案】D ;【解析】两条抛物线一个开口向上,有最小值,另一个开口向下,有最大值.4.【答案】C ;【解析】根据图象y=ax 2的性质,三个函数的顶点都是原点、对称轴都是y 轴、最低点都为0,由于a值不同,所以他们的图像形状不同.5.【答案】D ;【解析】A 、由一次函数y=kx+k 的图象可得:k >0,此时二次函数y=kx 2﹣kx 的图象应该开口向上,错误;B 、由一次函数y=kx+k 图象可知,k >0,此时二次函数y=kx 2﹣kx 的图象顶点应在y 轴的负半轴,错误;C 、由一次函数y=kx+k 可知,y 随x 增大而减小时,直线与y 轴交于负半轴,错误;D 、正确.故选:D .6.【答案】C ;【解析】依题意知点(2,-2)在y =ax 2图象上,所以-2=a ×22,12a =-.所以212y x =-. 二、填空题7.【答案】向下;y 轴;(0,0).8.【答案】25y x =-+;【解析】根据平移规律:上加下减.9.【答案】a <0 ;【解析】∵x 2<x 1<0,y 2<y 1,所以y 随x 的增大而增大,结合图象知,抛物线开口向下.10.【答案】43-. 【解析】当x=1时,y=ax 2=a ;当x=2时,y=ax 2=4a ,所以a ﹣4a=4,解得a=43-. 故答案为:43-. 11.【答案】y=3x 2+1或y=-3x 2+1.【解析】形状相同,说明a 相同,所以a=3±,再将顶点坐标(0,1)代入即可求出c.12.【答案】2π;【解析】根据抛物线的对称性,将x 轴下方的阴影翻到上方,正好形成一个半圆形,半圆的面积为21222ππ⨯=. 三、解答题13.【答案与解析】解:建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为(0,2),通过以上条件可设顶点式y=ax 2+2,其中a 可通过代入A 点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x 2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离, 可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x 2+2,解得:x=,所以水面宽度增加到米, 故答案为:. 14.【解析】(1)∵1y x =+,∴令0y =,则1x =-,∴(1,0)A -,即抛物线C 的顶点坐标为(1,0)-,又抛物线C 是由抛物线22y x =-平移得到的,∴2a =-,∴抛物线C 的解析式为22(1)y x =-+.(2)由(1)知,抛物线C 的对称轴为直线1x =-.∵20a =-<,∴当1x >-时,y 随x 的增大而减小,又∵12112x x -<-<<,∴12y y >. 15.【解析】解:(1)由题意,得)0(1612>=C C S . 列表、描点、连线,图象如图: (2)根据图象得S=1cm 2时,正方形的周长是4cm .(3)根据图象得,当C ≥8cm 时,S ≥4 cm 2.。
著名机构初中数学培优讲义.二次函数.第10讲(C).学生版

内容基本要求略高要求较高要求二次函数1.能根据实际情境了解二次函数的意义; 2.会利用描点法画出二次函数的图像;1.能通过对实际问题中的情境分析确定二次函数的表达式;2.能从函数图像上认识函数的性质;3.会确定图像的顶点、对称轴和开口方向;4.会利用二次函数的图像求出二次方程的近似解;1.能用二次函数解决简单的实际问题;2.能解决二次函数与其他知识结合的有关问题;1. 能从函数图像上认识函数的性质; 2. 会确定图像的顶点、对称轴和开口方向; 3. .能用二次函数解决简单的实际问题.愤怒的小鸟和人类对抛物线的迷恋人类似乎沉迷于对抛物线轨迹的预测,否则,你如何解释高尔夫运动?或者我们为何如此尊敬橄榄球运动中的四分卫和板球运动中的出色投球手?我们的身体在对准 目标投掷物品上很在行。
在投射物离开手指之前,首先在头脑中预测轨道,转动肩膀,活动肩胛骨,扭动屁股,弯曲胳膊,伸展手指。
中考要求重难点课前预习二次函数这是一系列运动的精确配合。
发射!当投射物全速冲向目标的时候,会有短暂的焦虑和期待。
人类的祖先在早期的狩猎活动中,就已经开始投射标枪,远程制服猎物。
这种活动展示了速度和力量,以及对运动轨迹的预测,并且有丰盛的食物作为报酬。
对抛物线的利用体现了人类作为高级生物的智慧,因为相比直线投射来说,抛物线投射通过对角度的调节,能够为攻击提供更多的灵活性和准确性。
其它动物的捕猎行为更多的是利用直线发射:除了射水鱼 ——它的捕猎行为是针对特定方位喷射水柱,将昆虫打下树叶——没有其它动物使用抛物线。
变色龙喷吐舌头(捕食)时是直线,狗能够捕捉球但无法投射。
没有其它动物有我们这样善于投射的臂膀……鸟类,无论疯狂与否,唯一接近投射的行为是埃及秃鹰向大致方位投射石头,试图打碎鸵鸟蛋的时候。
现代人早已无需通过狩猎获取食物,但是那种原始的快感却一直保留着。
也许这就是愤怒的小鸟成功的原因,当弹弓射出小鸟的那一刻,我们原始的欲望得到了满足,而焦虑得到了释放。
二次函数辅导讲义(学生版)

⼆次函数辅导讲义(学⽣版)⼆次函数辅导讲义⼀、基础知识讲解+中考考点、例题分析考点1:⼆次函数的图象和性质⼀、考点讲解:1.⼆次函数的定义:形如(a≠0,a,b,c为常数)的函数为⼆次函数.2.⼆次函数的图象及性质:⑴⼆次函数y=ax2 (a≠0);当a>0时,抛物线开⼝向上,顶点是最低点;当a<0时,抛物线开⼝向下,顶点是最⾼点;a越⼩,抛物线开⼝越⼤.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。
⑵⼆次函数,顶点为(-,),对称轴x=-;当a>0时,抛物线开⼝向上,图象有最低点,且x>-,y随x的增⼤⽽增⼤,x<-,y随x的增⼤⽽减⼩;当a<0时,抛物线开⼝向下,图象有最⾼点,且x>-,y随x的增⼤⽽减⼩,x<-,y随x的增⼤⽽增⼤.解题⼩诀窍:⼆次函数上两点坐标为(),(),即两点纵坐标相等,则其对称轴为直线。
3.图象的平移:⼆次函数y=ax2 与y=-ax2 的图像关于x轴对称。
平移的简记⼝诀是“上加下减,左加右减”。
⼀、经典考题剖析:【考题1】在平⾯直⾓坐标系内,如果将抛物线向右平移2个单位,向下平移3个单位,平移后⼆次函数的关系式是()A.B.C.D.2.⼆次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()A. B. C. D.4.已知⼆次函数(a≠0)与⼀次函数y=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图1-2-7所⽰,能使y1>y2成⽴的x取值范围是_______5.已知直线y=x 与⼆次函数y=ax 2 -2x -1的图象的⼀个交点 M 的横标为1,则a 的值为()A 、2B 、1C 、3D 、 46.已知反⽐例函数y= x k 的图象在每个象限内y 随x 的增⼤⽽增⼤,则⼆次函数y=2kx 2 -x+k 2的图象⼤致为图1-2-3中的()7、读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发⽣变化.例如:由抛物线①,有y=②,所以抛物线的顶点坐标为(m ,2m -1),即③④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①无论
x取何值, y的值总是正数; ②a=1;③当x=0时,y2 —y i=4 :④2AB=3AC其中正确结论是【
A.①② B .②③ C
2
y = ax + bx + c,
.③④ D .①④
如果a>b>c,且a+ b+ c = 0,则它的图象可能是图所示的()
二次函数培优讲义
1. 已知抛物线y=ax1 2+bx+c经过点A (-2, 7)、B (6, 7 )、C ( 3, -8),则该抛物线上纵坐标为-8的另一点坐标为
2. 如图,抛物线Ci: y=x2-4x的对称轴为直线x=a,将抛物线G向上平移5个单位长度得到抛物线C2,则图中的两条抛物线、直线x=a与y轴所围成的图形
】A. O v t v 1 B. O v t v 2 C. 1v t v 2 D.—1v t
v 1
2 2
二次函数y =ax bx的图象如图,若一元二次方程ax bx m = 0有实数根,则m的最大值为【
A. -3
2 12
10.如图,抛物线y1=a (x+ 2) —3与y2=? (x—3) + 1交于点A (1, 3),过点A作x轴的平行线,分别交
两条抛物线于点B, C.则以下结论:
3.
2 _2
二次函数y =ax bx c的图象如图所示,贝V abc, b -4ac , a b c这3个式子中,值为正数的有)A. 4 个B. 3 个C. 2 个D. 1 个
(图中阴影部分)的面积为
4.
(
已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()
B.a<0,b<0,c=0
C.a<0,b<0,c>0
D.a>0,b>0,c=0
2 1
已知二次函数y二ax bx c(^= 0)的图象如图所示对称轴为x二
2
.2b c> 0 D
5.
A.a>0,b>0,c>0
6.
A. abc>0
7.关于x的二次函数y= x+1 x -m,其图象的对称轴在y轴的右侧,则实数
A. -1<m<0 C. 0<m<1 D. m>1
8.
F列结论中,正确的是【
.4a c :: 2b
m的取值范围是【m< -1 B.
二次函数y=ax2+bx+1 (a*0)的图象的顶点在第一象限,且过点(- 1, 0).设t=a+b+1,则t值的变化范围9.
B. 3
(2) (6) (9)
X = il
4
2
抛物线y - -2x 4x 1在x轴上截得的线段长度是
11.已知二次函数
13.二次函数y =x2 -6x」n的部分图像如图所示,若关于x的一元二次方程x2—6x • n = 0的一个解为人=1 ,
则另一个解x2 = _________
14.抛物线y - -x2 -2x - m,若其顶点在x轴上,则m二_______________
15. 已知抛物线y=ax22x c与x轴的交点都在原点的右侧,则点M ( a,c)在第_______ 象限.
16. 已知抛物线y=x2,bx c与y轴的正半轴交于点 A ,与x轴的正半轴交于B、C两点,且BC=2 , S^ABC=3,
贝y b= ____ , c= _______ .
17. 如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于
—3), 一次函数的图象与抛物线交于B、C两点。
⑴二次函数的解析式为 _______________________ .
⑵当自变量x _____ 时,两函数的函数值都随x增大而增大.
⑶当自变量 _______ 时,一次函数值大于二次函数值.
⑷当自变量x _____ 时,两函数的函数值的积小于0.
竞赛平台:
2
12.已知抛物线y = 5x + (m—1)x + m与x轴的两个交点在y轴同侧,它们的距离平方等于为
49,贝U m的值为
25
()A. —2 B.12 C.24 D.48
(13)
A (—1, 0)、点
B (3, 0)和点
C (0,
全国初中联赛题选(二次函数)松
一、选择、坝空題4
L 若函数y = + -10洽 + $96|),则当自娈重x取1,2,3,..,这100
个自然数时,函数值的和是心
B)3P00)134D)P7A
购全国初中联寒一试二⑷》
2、设关于x的方程曲+ (” ++ 9a=0有两个不等的实数棍心花,且<1
那么,a的取值范围是;(2002全国初中联寡
2 22小2
A) —<a < —C)为弋—一D) ------ <a
7 55711
如果抛物线『= ,齐-卍-1与忙轴的交点为总B,顶点丸C,那么的
面积的最小值是」
A) 1 2C) 3D) 4(1PP9全国初中匿塞人
实际应用:1.如图,在一块三角形区域ABC中,/ C=90 ° ,边AC=8 , BC=6 ,现要在△ ABC内建造一个矩形水池DEFG , 如图的设计方案是使DE在AB上。
⑴求△ ABC中AB边上的高h;
⑵设DG=x,当x取何值时,水池DEFG的面积最大?
⑶实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树。
2. 如图,在梯形ABCD中, AB// CD AB= 7, CD= 1, AD= BC= 5,点M, N 分别在边
AD, BC上运动,并保持MN// AB, MEL AB NF丄AB垂足分别为E , F。
(1) 求梯形ABCD的面积;
(2) 求四边形MEFN面积的最大值;
(3) 试判断四边形MEFN能否为正方形,若能,求出它的面积;若不能,请说明理由。
3. 如图,在直角坐标系中,点A的坐标为(一2, 0),连结OA,将线段OA绕原点0顺时针旋转120 °,得到线段0B.
(1)求点B的坐标;
(2)求经过A、0、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点6使厶B0C的周长最小?若存在,求出点C的坐标;若不存在,请说明理由•
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△ PAB是否有最大面积?若有,求出此时P点的坐标及△ PAB的最大面积;若没有,请说明理由•。