九年级数学下册 2.1 二次函数课件 (新版)北师大版

合集下载

最新北师大版九年级数学下册《二次函数的图象与性质》优质教学课件

最新北师大版九年级数学下册《二次函数的图象与性质》优质教学课件
并写出开口方向、顶点坐标、对称轴.
解:y=(x-4)2-15
开口向上,顶点坐标为(4,-15)
对称轴为直线 x=4
类型2:a=1,b为奇数
5.(例2)求抛物线y=x2+x+1的顶点坐标.
解:∵y=x2+x+1
1
1
2
=x +x+ 4 +1-
4
3
1
2
=(x +x+ )+
1 4 3 4
=(x+ 2 )2+ 4
(3)对称轴为直线x=1.25,顶点坐标为(1.25,-1.125).
(4)对称轴为直线x=0.75,顶点坐标为(0.75,9.375).
【例题】
如图,桥梁的两条钢缆具有相同的抛物线形状.按照图中的
直角坐标系,左面的一条抛物线可以用y=
9
400
表示,而且左、右两条抛物线关于y轴对称.
y/m
10
桥面
我们知道,作出二次函数y=3x2的图象,通过平移抛
物线y=3x2可以得到二次函数y=3x2-6x+5的图象.
那是怎样平移的呢?
只要将表达式右边进行配方就可以知道了.
y=3x2-6x+5
=3(x-1)2+2
配方后的表达式通常称为配方
式或顶点式
y 3x 6 x 5
2
3(x 2x) 5
,-3).
.
(2)画抛物线 y=ax2+bx+c 的草图,
(4)若抛物线与 x 轴的两个交点为 A,B,与 y 轴的交点为 C,求 S△ABC.
= (x2+2x+1)- - = (x+1)2-3,∴抛物线的顶点
4a
要确定五点,即①开口方向;②对

2-1 二次函数(课件)九年级数学下册(北师大版)

2-1 二次函数(课件)九年级数学下册(北师大版)

(4)y=x-2+x;
(5)y=3(x-2)(x-5); 解:二次函数有:(2)(5)
(6)y=x2+ 1 .
x2
y=-5x2的二次项系数为5,一次项系数和常数项为0;
y=3(x-2)(x-5)=3x2-21x+30
二次项系数为3,一次项系数为-21,常数项为30.
例题欣赏 ☞
例2. y m 3 xm27.
想一想
探索&交流
问题2:正方体六个面是全等的正方形,设正方体棱长为 x,表面 积为 y,则 y 关于x 的关系式为 y=6x2 .
此式表示了正方体表面积y与正方 体棱长x之间的关系,对于x的每一 个值,y都有唯一的一个对应值, 即y是x的函数.
探索&交流
问题3:某水产养殖户用长40m的围网,在水库中围一块矩形的水面, 投放鱼苗.你能列出矩形水面的面积关于矩形水面的边长的关系式 吗? 设围成的矩形水面的一边长为x m,那么,矩形水面的另一边长应 为(20-x)m.若它的面积是S m2,则有
(1)问题中有那些变量?其中哪些是自变量?哪些是因变量?
增种的棵树和平均每棵树结的橙子个数是变量.
增种的棵树是自变量,平均每棵树结的橙子个数是因变量.
探索&交流
(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树? 这时平均每棵树结多少个橙子?
果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.
一般地,若两个自变量x,y之间的对应关系可以表示成 y=ax²+bx+c(a,b,c是常数,a≠ 0)的形式,则称y是x的二次函数.
a为二次项系数,ax2叫做二次项; b为一次项系数,bx叫做一次项; c为常数项.
详解 二次函数的特殊形式: 1.只含二次项,即y=ax2(b=0,c=0); 2.不含一次项,即y=ax2+c(b=0,c≠0); 3.不含常数项,即y=ax2+bx(b≠0,c=0).

2020年北师大版九年级数学下册课件:2.1 二次函数 (共20张PPT)

2020年北师大版九年级数学下册课件:2.1 二次函数 (共20张PPT)
-x2)[a(x1+x2-2)+b]=0.∵x1≠x2,∴x1-x2≠0,∴a(x1+x2-2)+b=0,∴x1+x2
=2-ba,∴f(x1+x2)=f2-ba=2-baa2-ba+b=4a-2b.
• (2)所谓二次函数的实质是指自变量的最高次 数是2,所以a≠0,但b、c都可以为0.
• (3)y=ax2+bx+c(a≠0)叫二次函数的一般式, x可以取一切实数,但在实际问题中视具体情
• 【典例】若y=(m-3)·xm2-3m+2+mx+ 1分是析:二由二次次函函数数的定,义,则得mmm2--=33≠m_0+._2=__2,___解_得.m=0.
• 答案:0 • 点评:一个二次函数要同时满足三个条件:
①函数表达式是整式;②化简后自变量的最 高次数是2;③二次项系数不等于0.
• 知识点2 根据实际问题列二次函数表达式
• 根据实际问题列二次函数表达式,一般方法 为:先找出题目中有关两个变量之间的等量 关系,然后用题目中所设出的变量与已知数 值表示这个等量关系,经过适当变形,即可 得到题目所要求的二次函数表达式.
基础过关
1.下列函数中,一定为二次函数的是
A.y=3x-1
B.y=ax2+bx+c
(C )
C.s=2t2-2t+1
D.y=x2+1x
2.如果 y=(a-1)x2-ax+6 是关于 x 的二次函数,那么 a 的取值范围是 ( B )
A.a≠0
B.a≠1
C.a≠1 且 a≠0
D.无法确定
3. 一个直角三角形的两条直角边长的和为 20 cm,其中一直角边长为 x cm,面
2x2.
• (2)不能.理由:由题意,知50x-2x2=300, 解得x=10或15,则50-2x=30或20.当a= 18时,由于18<20,故不能建造符合要求的 养鸡场. (3)由(2)可知,建造符合要求的鸡 场最多有两种方案,a的最小值为20.

北师大版九年级数学下册课件:2.1二次函数 (共17张PPT

北师大版九年级数学下册课件:2.1二次函数 (共17张PPT
设人民币一年定期储蓄的年利率是 x,一年到期后,银行将本金和利息自动 按一年定期储蓄转存.如果存款额是 100元,那么请你写出两年后的本息和 y(元)的表达式(不考虑利息税).
y=100(x+1)²=100x²+200x+100.
二、新课讲解
用心想一想
1.两数的和是20,设其中一个数是x,你能写出这两数 之积y的表达式吗?
四、强化训练
1.下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1;
(2) y x 1 . x
(3) s=3-2t²;
(4) y

1 x2
; x
(5)y=(x+3)²-x²;
(6) v=10πr².
(1)(3) (6)
四、强化训练
2.用总长为60m的篱笆围成矩形场地,场地
目前,我们已经学习了那几种类型的函数?
一、新课引入
变 量 之 间函 的数 关 系
一次函数 反比例函数

y=kx+b (k≠0)
正比例函数
y=kx (k≠0)
y=k/x (k≠0)
二次函数
二、新课讲解
用心想一想
某果园有100棵橙子树,平均每 棵树结600个橙子.现准备多种一 些橙子树以提高果园产量,但是如 果多种树,那么树之间的距离和每 一棵树所接受的阳光就会减少.根 据经验估计,每多种一棵树,平均每 棵树就会少结5个橙子.
例如: y=-5x²+100x+60000,y=100x²+200x+100.
老师提示: (1)关于x的代数式一定是整式,a,b,c为常数,且a≠0. (2)等式的右边最高次数为2,可以没有一次项和常 数项,但不能没有二次项.

北师大版九年级数学下册《二次函数——二次函数的图象与性质》教学PPT课件(4篇)

北师大版九年级数学下册《二次函数——二次函数的图象与性质》教学PPT课件(4篇)
y随着x的增大而减小.
在对称轴的右侧,
y随着x的增大而增大.
在对称轴的左侧,
y随着x的增大而增大.
在对称轴的右侧,
y随着x的增大而减小.
最值
x=0时,y最小=0
x=0时,y最大=0
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说
来,|a|越大,抛物线的开口就越小.
新知讲解
做一做:在同一直角坐标系中,画出二函数 y=2x2+1与y=2x2-1的图象.
y


y=− +2


1
y x 2 -2
2
y=−
-2 O
-2
-4
-6
2
4 x
归纳总结
二次函数y = ax2 +c的图象和性质:
a的符号


a>0
a<0
c>0
c<0
开口方向
对称轴
顶点坐标
向上
向下
y轴(直线x=0)
y轴(直线x=0)
(0,c)
(0,c)
当x<0时,y随x增大而 当x<0时,y随x增大
(1)当c>0 时,向上平移c个单位;
(2)当c<0 时,向下平移︱c︱个单位.
上下平移规律:
平方项不变,常数项上加下减.
练一练
二次函数y=-3x2+1的图象是将( D )
A.抛物线y=-3x2向左平移3个单位得到
B.抛物线y=-3x2向左平移1个单位得到
C.抛物线y=3x2向上平移1个单位得到
5
这两种呢?有没有其他形式的二次
3
函数?
4

北师大版 九年级 数学下册 2.1二次函数概念 课件(共20张PPT)

北师大版 九年级 数学下册  2.1二次函数概念 课件(共20张PPT)

不是二次函数.
是二次函数.
二次项系数: 3 一次项系数: -6
(5)y= _1_ -x x²
常数项: 4
(2) y=x+
_1_ x
不是二次函数.
不是二次函数. (6) v=8π r² 是二次函数.
(3) s=3-2t²是二次函数.
二次项系数: 8π
二次项系数: -2 一次项系数: 0 常数项: 3
一次项系为y个,那么请你写出y 与x之间的关系式.
总产量=果树的总数X每棵-5树x²+产10量0x+60000
y=(100+x)(600-5x)=
观察:函数①②③有什么共同点?
y=6x2①
S=-a²+30a y= -5x²+100x+60000
在上面的问题中,函数都是用自变量的二次式表示的。
2

m 1 n2 1 n 22
一农民用40m长的篱笆围成一个一边靠墙的长方形 菜园,和墙垂直的一边长为Xm,菜园的面积为Ym2, 求y与x之间的函数关系式,并说出自变量的取值范围。 当x=12m时,计算菜园的面积。
解:由题意得: Y=x(40-2x)
x
即:Y=-2x2+40x(0<x<20) m
解:S=a(60 - a)
2 = -a²+30a .
问题2
某果园有100棵橙子树,每一棵树平均结600个橙子. 现准备多种一些橙子树以提高产量,但是如果多种树,那 么树之间的距离和每一棵树所接受的阳光就会减少. 根
据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
某果园有100棵橙子树,每一棵树平均结600个橙 子.现准备多种一些橙子树以提高产量,但是如果多种 树,那么树之间的距离和每一棵树所接受的阳光就会减 少.根据经验估计,每多种一棵树,平均每棵树就会少结 5个橙子.

《二次函数》公开课教学PPT课件【北师大版九年级数学下册】

《二次函数》公开课教学PPT课件【北师大版九年级数学下册】

新知探究
银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量。在我 国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的。
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一 年定期储蓄转存。如果存款是100元,那么请你写出两年后的本息和y(元)的表达 式(不考虑利息税)。
y 100(x 1)2 100x2 200x 100
新知探究
y 5x2 100x 60000 y 100x2 200x 100
y是x的函数吗?y是x的一次函数吗? y是x的反比例函数吗?
新知探究
y 5x2 100x 60000 y 100x2 200x 100
定义:一般地,形如 y ax2 bx c(a,b,c是常数,a≠ 0)的函数叫做x的二次 函数。 提问:
(1)问题中有哪些变量? 其中哪些是自变量?哪些是因变量? (2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结 多少个橙子? (3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.
新知探究
果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,பைடு நூலகம்此果园橙子 的总产量
解: S a(60 a) a(30 a) 2
30a a2 a2 30a
是二次函数。
课堂练习
3、如果函数 y xk2 3k2 kx 1是二次函数,则k的值一定是
0或3
4、如果函数 y (k 3)xk23k2 kx 1是二次函数,则k的值
一定是 0
课堂练习
课堂总结
定义中应该注意的几个问题:
北师大版·统编教材九年级数学下册
第一单元·第1课
二次函数

北师大版九年级数学下册教学课件二次函数

北师大版九年级数学下册教学课件二次函数
2
(2)当x=3cm时,S=225-4×32=189(cm2).
D B
y=-2x2+12x-16
-2
12
-16
2
10.如图所示,矩形的长为4cm,宽为3cm,如果矩形的长与宽 都增加xcm,那么面积增加ycm2.
(1)写出y关于x的函数关系式,并指出自变量x的取值范围; (2)当矩形的长与宽都分别增加2cm、3cm时,矩形的面积各 增加多少? (3)要使矩形的面积增加为18cm2,长和宽 都增加多少米?
观察函数关系式①和②,并思考以下问题: y=-2x2+20x(0<x<10)……………① y=-100x2+100x+200(0≤x≤2)……②
(1)函数关系式①和②的自变量各有几个?(各有1个) (2)多项式-2x2+20x和-100x2+100x+200分别是几 次多项式? (分别是二次项式) (3)函数关系式①和②有什么共同特点?
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。 [y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x<10)化为: y=-2x2+20x(0<x<10)………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+200(0≤x≤2)………………(2)
1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利 润是多少元?
[10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天 可销售约多少件商品?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档