概率统计20 假设检验可能产生的两类错误

合集下载

统计学中的假设检验错误类型

统计学中的假设检验错误类型

统计学中的假设检验错误类型统计学中的假设检验是一种常用的方法,用于推断总体参数或者判断两个总体是否有显著差异。

在进行假设检验时,我们通常会根据样本数据得出结论,但由于样本容量的限制和抽样误差的存在,假设检验也存在着一定的错误类型。

本文将介绍统计学中的假设检验错误类型,包括第一类错误和第二类错误。

一、第一类错误第一类错误,也被称为α错误或显著性水平错误,是指在实际上接受了错误的原假设。

即当原假设为真时,却错误地拒绝了原假设。

第一类错误的概率通常用α表示,它是我们在进行假设检验时所能容忍的拒绝原假设的错误概率。

当α的值较小时,我们对原假设要求越严格,也就是要求更高的证据才能拒绝原假设。

第一类错误的发生往往会引起不必要的亏损。

例如,在药物研究中,原假设是新药和对照组无差异,我们拒绝了原假设,即误认为新药比对照组更有效。

然而,实际上新药并没有带来明显的改善,这样就导致了开发者不必要的资金和时间损失。

因此,我们需要控制第一类错误的概率,以减少不必要的费用和资源浪费。

二、第二类错误第二类错误,也被称为β错误,是指在实际上拒绝了错误的原假设。

即当原假设为假时,却错误地接受了原假设。

第二类错误的概率通常用β表示,它是我们未能拒绝原假设的错误概率。

与第一类错误不同的是,我们无法直接控制第二类错误的概率,因为它与总体参数的真实值、样本容量和假设检验的效能有关。

第二类错误的发生往往会导致我们错过了重要的研究结果。

以制药业为例,假设我们想要证明新药的疗效优于对照组,原假设是两者无差异。

然而,由于样本容量不足或其他原因,我们无法拒绝原假设。

这样就可能导致我们未能发现新药的潜在疗效,从而影响到患者的治疗效果和药物研发的进展。

三、控制错误类型的方法为了控制第一类和第二类错误的概率,我们可以采取以下方法:1. 降低显著性水平:通过降低显著性水平α的取值,可以减少第一类错误的发生。

然而,较低的显著性水平也会导致第二类错误的概率增加。

优选剖析假设检验的两类错误并举例说明ppt(共18张PPT)

优选剖析假设检验的两类错误并举例说明ppt(共18张PPT)
犯 β错误的概率大小就是相对正态曲线A 而言,图 1 中阴影部分的面积:
是单侧检验,弃真错误的概率则为 α/2。 出现两类错误的概率计算
命题 2:真实的总体参数(μ)与假设的总体参数(μ0)之间的差异(△μ)越小, 犯β 错误的概率越பைடு நூலகம்。
β错误的概率的计算
• 犯β错误的概率的计算是比较复杂的,由于β错误的 出现原因是属于逻辑上的,所以在总体参数不知道 的情况下是无法计算它出现概率的大小的。
这样我们就可以在总体均值为 870 元和 880元两种情况下, 分别作出两条正态分布曲线 (A线和 B 线) ,见下图。
样本随机抽样调查,人均收入的调查结 如果是单侧检验,弃真错误的概率则为 α/2。
命题 2:真实的总体参数(μ)与假设的总体参数(μ0)之间的差异(△μ)越小, 犯β 错误的概率越大。 例子:一个公司有员工3000 人(研究的总体) ,为了检验公司员工工资统计报表的真实性,研究者作了 50 人的大样本随机抽样调查,人均收入的
出现两类错误的概率计算
• α 错误是由实际推断原理引起的,即 结果表明,如果总体的真值为 870 元,而虚无假设为880元的话,那么,平均而言每100 次抽样中,将约有8次把真实情况当作880 元被接受,即犯
“小概率事件不会发生”的假定所引起 β错误的概率大小是。
在假设检验时,根据检验结果做出的判断,即拒绝H0或不拒绝H0并不是100%的正确,可能发生两种错误 这就是 α 错误出现的原因。
在很多个样本平均数。也就是说,由于小概率事件的
出现,我们把本来真实的原假设拒绝了。这就是 α
错误出现的原因。
β 错误出现原因
• 第二个问题是,统计检验的逻辑犯了从结论推断前 提的错误。命题 B 是由命题 A 经演绎推论出来的, 或写作符号 A→B,命题 C 是我们在检验中所依据

3[1].1假设检验初述,二类错误

3[1].1假设检验初述,二类错误

第三章 假设检验3.1 假设检验 两类错误(1)假设检验(hypothesis test ) 假设检验是统计推断的另一类重要问题,是概率意义下的一种反证法。

一般,当母体X 的分布完全未知,或只知其形式而不知其参数时,为推断母体的有关特性,提出针对母体的某项假设;再对母体进行抽样,依据子样值对所提假设做出接受或拒绝的决策。

(2)决策依据——实际推断原理 小概率事件在一次试验中几乎不发生。

若抽样结果是小概率事件在这一次试验中发生了,就有理由怀疑假设的正确性,从而做出拒绝原假设的决策;否则接受原假设。

例 3.1.1 某饮料厂在自动流水线上装饮料,每瓶的重量(单位:克))10,(~2μN X ,正常生产情况下500=μ,一段时间后,为检查机器工作是否正常,抽取9个样品,称重后算得494=x ,试问:此时自动流水线的工作是否正常?解:①提出假设母体)10,(~2μN X ,其中μ未知,在母体上作原假设0H 和备择假设(或称对立假设)1H 如下:↔==500:00μμH 500:01=≠μμH ②构造检验统计量X ∴的值应与μ很接近,想到用X 的值来检验原假设0H .当原假设成立时,10),,(~0200=σσμN X ,故),(~200n N X σμ,从而)1,0(~/10500/000N n X n X U H -=-=σμ(3-1)③给定小概率,找出拒绝域取小概率02.0=α,则有2αu 使}{2αα=≥u U P (3-2)}{2αu U ≥是一个小概率事件,如果一次抽样的结果是这一小概率事件发生了,则认为原假设不合理,应予拒绝。

即应取拒绝域}),,,{(221αu U x x x W n ≥= }),,,{(221ασμu n X x x x n ≥-= (3-3)④做出决策 这时,494=x ,5000=μ,9,100==n σ,8.1=∴U ;02.0=α,33.201.02==u u α,故2αu U <,∴应接受0H ,即认为机器工作正常.注:①假设检验又称为差异显著性检验;②假设检验是具有概率性质的反证法;③拒绝H的说服力强,接受0H的说服力不强;④α越小,拒绝H的说服力越强。

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验[单选题]1.两个样本均数比较作t检验,其他条件不变,犯第Ⅱ类错误的概率最小的是A.α=0.05B.α=0.(江南博哥)01C.α=0.1D.α=0.2E.该问题提法不对正确答案:D参考解析:一类错误α和二类错误β有一定的关系,α越大,β越小。

所以本题答案选择D。

掌握“Ⅰ型错误与Ⅱ型错误”知识点。

[单选题]5.下列关于均数的标准误的叙述,错误的是A.是样本均数的标准差B.反映样本均数抽样误差大小C.与总体标准差成正比,与根号n成反比D.增加样本含量可以减少标准误E.其值越大,用样本均数估计总体均数的可靠性越好正确答案:E参考解析:样本均数的标准差称为均数的标准误,是描述样本均数抽样误差大小的指标,其大小与总体标准差成正比,与根号n成反比。

标准误越小,抽样误差越小,用样本均数估计总体均数的可靠性越好。

故选项E叙述错误,本题选E。

掌握“标准误及可信区间★”知识点。

[单选题]6.关于可信区间,正确的说法是A.可信区间是总体中大多数个体值的估计范围B.95%可信区间比99%可信区间更好C.不管资料呈什么分布,总体均数的95%的可信区间计算公式是一致的D.可信区间也可用于回答假设检验的问题E.可信区间仅有双侧估计正确答案:D参考解析:按一定的概率估计总体参数的可能范围,该范围称为可信区间,可以用来估计总体均数的可能所在范围,常按95%可信度估计总体参数的可能范围。

掌握“标准误及可信区间★”知识点。

[单选题]7.同类定量资料下列指标,反映样本均数对总体均数代表性的是A.四分位数间距B.标准误C.变异系数D.百分位数E.中位数正确答案:B参考解析:样本均数的标准差即均数的标准误,简称标准误。

可用来描述样本均数的抽样误差,标准误越小,则说明样本均数的抽样误差越小,样本均数对总体均数的代表性越好。

掌握“标准误及可信区间★”知识点。

[单选题]8.比较两药疗效时,下列可作单侧检验的是A.己知A药与B药均有效B.不知A药好还是B药好C.己知A药与B药差不多好D.己知A药不会优于B药E.不知A药与B药是否有效正确答案:D参考解析:已知A药不会优于B药,只有低于B药的一种可能,所以可作单侧检验。

假设检验的两类错误

假设检验的两类错误
W--为拒绝域
显著性 水平α
对差异进行定量的分析, 确定其性质 (是随机误差还是系统误差. 为给出两者界限, 找一检验统计量T, 在H0成立下其分布已知.)
代入 σ=2, n=25, 并由样本值计算得统计量U的实测值:
u=2.51>2.33
落入否定域
故拒绝原假设H0 ,
即新生产织物比过去的织物的强力有提高。
小结:
提出
假设
根据统计调查的目的,
数理统计
提出原假设H0 和备选假设H1
作出 决策
拒绝还是 不能拒绝H0
抽取 样本
检验 假设
P(T∈W)=α
α--犯第一类错误 的概率,
假设检验的两类错误
实际情况
决定
H0为真
H0不真
数理统计
拒绝H0 第一类错误
正确
接受H0
正确
第二类错误
犯两类错误的概率: P{拒绝H0|H0为真}=α,
P{接受H0|H0不真}=β.
显著性水平 α为犯第一类错误(Type I error)的概率; β为犯第二类错误(Type II error)的概率.
X0 n
u0.05
1.645
否定域为W : u u0.05 =1.645
代入 σ=2, n=25, 并由样本值计算得统计量U的实测值:
u=3.125>1.645
落入否定域
故拒绝H0 , 即认为这批燃料率较以往生产的有显著的提高。
例2: 某织物强力指标X的均值 μ0=21公斤. 改进工艺后生产一批织物, 今从中取30件,
数理统计
测得 X =21.55公斤.
假设强力指标服从正态分布 N(μ,σ2),
且已知 σ=1.2公斤, 问在显著性水平 α=0.01 下,

统计学中的假设检验错误类型分析

统计学中的假设检验错误类型分析

统计学中的假设检验错误类型分析假设检验是统计学的重要理论之一,用于判断样本数据对某个总体假设的支持度。

在假设检验过程中,我们会遇到两种类型的错误,即第一类错误和第二类错误。

本文将对这两种错误类型进行分析,并探讨如何降低错误率。

1. 第一类错误第一类错误也被称为显著性水平(Significance Level)或α错误。

它指的是在原假设为真的情况下,拒绝原假设的错误判断。

在假设检验中,我们通常会设定一个显著性水平来进行决策,常见的显著性水平有0.05和0.01。

当结果的p值小于设定的显著性水平时,我们将拒绝原假设。

然而,这种判断并不是绝对准确的,存在一定概率犯下错误。

第一类错误的概率通常用α表示。

当我们将显著性水平设定为0.05时,即α=0.05,意味着有5%的可能犯下第一类错误。

如果显著性水平设定得较低,例如α=0.01,那么犯第一类错误的概率将更小,但同时也会增加犯第二类错误的概率。

2. 第二类错误第二类错误是在原假设为假的情况下,接受原假设的错误判断。

与第一类错误相反,第二类错误常用β表示。

第二类错误的概率与样本大小、效应大小和显著性水平等因素有关。

当样本大小较小时,相同效应大小下犯第二类错误的概率较高;当效应大小较小时,相同样本大小下犯第二类错误的概率也较高;而当显著性水平设定较低时,犯第二类错误的概率也会增加。

3. 降低错误率的方法在实际应用中,我们希望尽可能降低第一类错误和第二类错误的概率,提高假设检验的准确性。

以下是一些常用的方法:3.1 增加样本容量通过增加样本容量,可以降低第一类错误和第二类错误的概率。

较大的样本容量能够提供更充分的信息,减小抽样误差,提高判断结果的准确性。

在样本容量不足时,可能会导致犯下更多的错误。

3.2 提高显著性水平设定较低的显著性水平可以降低第一类错误的概率。

但需要注意的是,过低的显著性水平会增加犯第二类错误的概率,因此需要权衡选择适当的显著性水平。

3.3 增大效应大小提高研究中的效应大小可以降低第二类错误的概率。

假设检验中的两类错误及其控制方法

假设检验中的两类错误及其控制方法

假设检验中的两类错误及其控制方法假设检验是统计学中常用的一种推断方法,用于判断关于总体参数的假设是否成立。

在进行假设检验时,我们一般会面临两类错误,即第一类错误和第二类错误。

本文将介绍这两类错误的含义、造成原因以及控制方法。

一、第一类错误的含义及控制方法第一类错误,也被称为α错误,指的是当原假设为真时,却错误地拒绝了原假设的情况。

换句话说,第一类错误意味着我们得出了一个错误的结论,即在事实上不存在的关系。

控制第一类错误的方法主要是通过控制显著性水平α来实现。

1. 显著性水平的控制显著性水平α定义了我们在进行假设检验时拒绝原假设的临界值。

通常情况下,α的取值为0.05或0.01,代表了我们容忍犯第一类错误的概率。

较小的α值会降低犯第一类错误的风险,但同时也增加了犯第二类错误的概率。

2. 样本容量的控制样本容量对于控制第一类错误也至关重要。

较大的样本容量可以提供更多的信息,从而降低犯第一类错误的概率。

因此,在进行假设检验时,我们应尽可能选择足够大的样本容量来增加推断的准确性。

二、第二类错误的含义及控制方法第二类错误,也被称为β错误,指的是当原假设为假时,却错误地接受了原假设的情况。

换句话说,第二类错误意味着我们未能发现事实上存在的关系。

控制第二类错误的方法主要是通过改进实验设计或增大样本容量来实现。

1. 实验设计的改进良好的实验设计可以降低发生第二类错误的概率。

例如,在两组样本进行比较时,我们可以增加处理组与对照组的差异,从而提高检测到显著差异的能力。

此外,合理的随机分组和对照设计也能够有效地控制第二类错误。

2. 样本容量的增大与控制第一类错误类似,增大样本容量也是控制第二类错误的一种方法。

较大的样本容量可以提高检测到真实差异的概率,从而减少第二类错误的发生。

在做出假设检验计划时,我们应考虑到研究资金、时间和实验设计等方面的限制,尽可能选择足够大的样本容量。

总结:在假设检验中,我们需要控制两类错误,即第一类错误和第二类错误。

统计学 假设检验

统计学 假设检验
第 8 章
假设检验
雪儿·海蒂(Shere Hite)在1987年出版的《女性与爱情:前进中的文化之旅》一书中给
出了大量数据:
● 84%的女性“在情感上对两性关系不满意”(804页)。
● 95%的女性“在恋爱时会因男友而产生情感及心理上的烦恼”(810页)。
● 84%的女性“在与男友的恋爱中有屈尊感”(809页)。
他对这个问题很感兴趣。他兴奋地说道:“让我
们来检验这个命题吧!”并开始策划一个实验。
在实验中,坚持茶有不同味道的那位女士被奉上
一连串的已经调制好的茶,其中,有的是先加茶
后加奶制成的,有的则是先加奶后加茶制成的。
Hypothesis Testing
接下来,在场的许多人都热心地加入到实验中来。
几分钟内,他们在那位女士看不见的地方调制出
Hypothesis Testing
同样,即便这位女士能做出区分,她仍然有猜错的
可能。或者是其中的一杯与奶没有充分地混合,或
者是泡制时茶水不够热。即便这位女士能做出区分
,也很有可能是奉上了10杯茶,她却只是猜对了
其中的9杯。
Hypothesis Testing
是奶加到茶里,还是茶加到奶里?
假设:她没有这种分辨能力,是碰巧猜对的!
假设其中真有99个白球,摸出
红球的概率只有1/100,这是
小概率事件。
小概率事件在一次试验中竟然发生了,不能不
使人怀疑所作的假设。
这个例子中所使用的推理方法,可以称为
带概率性质的反证法
它不同于一般的反证法
一般的反证法要求在原假设成立的条件
下导出的结论是绝对成立的,如果事实与之
矛盾,则完全绝对地否定原假设。
…99个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小概率事件在一次试验中几乎不可能发生
假设检验可能产生的两类错误
第一类错误 弃真
原假设H0 本来是正确的,而小概率 事件发生了,于是否定了H0
引例: 完全有可能次品率的确满足 p ≤ 0.01(200件 产品中次品不超过2件),但仍然抽中了次 品:A 发生。
= P{ A | H0}: 犯第一类错误的概率
P( A |
Ai
)

C5 200i C5 200
i 0,1, 2
件 竟 然
P(
A)

P(
A
|
A2
)

C5 198
/
C5 200

0.95


P( A) 1 P( A) 0.05

假设检验的基本思想
“反证法”
为了检验一个“假设”是否成立,就先假定这 个“假设”成立,而看由此会产生的后果:
第二届四川高校青年教师教学竞赛
《概率统计 II》
假设检验可能产生的 两类错误
(Two Types of Errors in Hypothesis Testing)
2014年7月
姓名:
学校:
问题的提出
某厂有一批产品共200件,须检验合格才能 出厂。按国家标准,次品率不得超过0.01, 今从产品中任取5件,发现这5件中有次品, 问这批产品能否出厂?
假设检验可能产生的两类错误
第二类错误 纳伪
原假设H0 本来不真,而经检验,接受 了H0
引例: 完全有可能次品率p超过了 0.01(200件产 品中次品大于2件),但抽了5次都没抽到
次品:A 发生。
β :犯第二类错误的概率
显著性检验
显著性检验:考虑控制第一类错误的 概率,而不限制犯第二类错误的概率
• 在其它条件都不变的情况下, 越小, 越大;反之, 越大, 越小
• 同时减少, 唯一的方法是增加样本
的容量 • 第二类错误的概率通常很难计算或者根
本计算不出来 α:显著性水平
思考与讨论
有些情况下,第二类错误的危害更大
第一类错误:假设H0 表示没有发生火灾,而报警 第二类错误:假设H1表示发生火灾,却不报警
• 如果导致一个不合理的现象的出现,就拒 绝这个“假设”
• 如果由此没有导出不合理的现象发生,称 原假设是相容的
引例: H0: p ≤ 0.01 H1: p ≤ 0.01
原假设 备择假设
假设检验的基本思想
注:有别于纯数学中的“反证法” “不合理”,不是形式逻辑中的绝对矛盾, 而是基于人们实践中广泛采用的一个原则:
问题:如何根据抽样结果来检验这批产 品的次品率 p ≤ 0.01是否成立?
假设检验的基本思想
分析: H0: 假设“p ≤ 0.01”(p为次品率) 是成立的
那么,200件产品中至多有2件次品

设 Ai 表示“200件产品中有i 件次品”i =0, 1, 2
概 率
A 表示“从200件产品中任取5件,无次品” 事
设总体X~N(μ,σ2), X1, X2, …, Xn是
来自于总体X的一个容量为n的样本,如何在
方差σ2已知的情况下,检验假设0: μ = μ0?
内容小结
• 假设检验:小概率事件在一次试验中几乎 不可能发生
• 两类错误:弃真、纳伪 • 显著性检验:控制范第一类错误的概率
显著性水平 α
课后作业 练习册4-4:第1、2题。
相关文档
最新文档