圆柱和圆锥知识点归纳总结.doc
完整版)圆柱体和圆锥体知识点复习整理

完整版)圆柱体和圆锥体知识点复习整理圆柱体和圆锥体知识点复整理
本文档旨在提供关于圆柱体和圆锥体的知识点复整理。
以下是相关的知识点介绍:
圆柱体(Cylinder)
圆柱体是一个由两个平行的圆面和一个定位于两圆面之间的侧面所组成的几何体。
以下是一些圆柱体的重要特征:
底面积:圆柱体底面的面积可以通过圆的面积公式计算。
圆的面积公式为:A = πr²,其中 r 是圆的半径。
侧面积:圆柱体的侧面积可以通过将圆的周长乘以圆柱体的高度来计算。
侧面积公式为:A = 2πrh,其中 h 是圆柱体的高度,r 是圆的半径。
总表面积:圆柱体的总表面积可通过将底面积和侧面积相加来计算。
总表面积公式为:A = 2πr² + 2πrh。
圆锥体(Cone)
圆锥体是一个由一个圆形底面和一个定位于底面圆心的侧面所组成的几何体。
以下是一些圆锥体的重要特征:
底面积:圆锥体底面的面积可以通过圆的面积公式计算。
圆的面积公式为:A = πr²,其中 r 是底面圆的半径。
侧面积:圆锥体的侧面积可以通过将圆的周长乘以圆锥体的斜高来计算。
侧面积公式为:A = πrl,其中 l 是圆锥体的斜高,r 是底面圆的半径。
总表面积:圆锥体的总表面积可通过将底面积和侧面积相加来计算。
总表面积公式为:A = πr² + πrl。
以上是关于圆柱体和圆锥体的知识点复习整理。
希望对您有所帮助!。
苏教版六年级数学下册第二单元知识点归纳

第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。
2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。
3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。
4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。
第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。
第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。
第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。
(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。
与求体积除以3相反。
培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。
2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。
圆柱圆锥知识点总结

圆柱圆锥知识点总结一、圆柱的定义和性质圆柱是由一个矩形绕着一条平行于其中一边的直线移动而得到的几何体。
圆柱的底面是一个圆,上下底面平行且相等,侧面是一个矩形。
通常情况下,我们所说的圆柱指的是直圆柱,即底面和侧面直角相交的圆柱。
圆柱的性质:1. 圆柱的侧面是一个矩形,其面积等于底面周长乘以高度。
2. 圆柱的体积等于底面积乘以高度,即V=πr^2*h。
3. 圆柱的表面积等于两个底面积之和加上侧面积,即S=2πr^2+2πrh。
二、圆锥的定义和性质圆锥是由一个直角三角形绕着它的一个直角边旋转一周而得到的几何体。
圆锥的侧面是一个由母线和母线上一点到底面的连线组成的扇形。
通常情况下,我们所说的圆锥指的是直圆锥,即底面圆和侧面直角相交的圆锥。
圆锥的性质:1. 圆锥的侧面是一个扇形,其面积等于底面周长乘以母线的一半。
2. 圆锥的体积等于1/3底面积乘以高度,即V=1/3πr^2*h。
3. 圆锥的表面积等于底面积加上底面到顶点的母线所绕成的曲面积,即S=πr^2+πrl。
三、圆柱和圆锥的应用1. 圆柱和圆锥在日常生活中有着广泛的应用,比如有些容器的外形就是圆柱或者圆锥;例如筒形创可贴盒,花瓶,饮料瓶等。
2. 圆柱和圆锥的公式和计算方法可以用来解决一些实际问题,比如计算容器的容积和表面积,计算油桶的容量,设计工程建筑结构等。
3. 圆柱和圆锥的几何图形在工程实践中也有着广泛的应用,比如圆柱形的桥墩,圆锥形的喷水池等。
四、圆柱和圆锥知识点的考点在中学数学课本和考试中,圆柱和圆锥作为基础几何图形经常出现,特别是在解题和推导中经常需要用到它们的性质和公式。
掌握好圆柱和圆锥的知识对于初中数学的学习和考试成绩至关重要。
总结通过对圆柱和圆锥的定义、性质、公式和应用等方面的了解,我们可以更好地理解这两种几何图形的特点和作用,进而提高我们的数学运算能力和解决实际问题的能力。
在学习和应用过程中,我们要注重在不断的练习和实践中巩固这些知识,才能更好地应用它们解决实际问题,提高数学素养。
圆柱体与圆锥体知识点

圆柱体与圆锥体知识点圆柱体与圆锥体是几何学中的重要概念,它们在日常生活和工程设计中都有广泛的应用。
本文将详细介绍圆柱体与圆锥体的定义、性质、公式及其应用。
一、圆柱体的定义和性质圆柱体是由两个平行且相等的圆面和它们之间的侧面组成的几何体。
圆柱体的侧面是一个矩形,其两条边分别与两个圆面的切线垂直相交。
以下是圆柱体的一些性质:1. 所有生成圆柱体的平行直线都与底面圆相切。
2. 圆柱体的两个底面圆半径相等。
3. 圆柱体的侧面积等于底面周长乘以高度。
4. 圆柱体的体积等于底面积乘以高度。
二、圆柱体的公式1. 底面积公式:圆柱体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆柱体的侧面积等于底面周长乘以高度。
公式表示为:侧面积= 2πrh,其中r为底面圆的半径,h为圆柱体的高度。
3. 全面积公式:圆柱体的全面积等于底面积加上两倍的侧面积。
体的高度。
4. 体积公式:圆柱体的体积等于底面积乘以高度。
公式表示为:体积 = 底面积 × h,其中h为圆柱体的高度。
三、圆锥体的定义和性质圆锥体是由一个圆锥面和一个平面封闭的几何体。
圆锥体的底面是一个圆,其顶点与底面圆的中心相连。
以下是圆锥体的一些性质:1. 所有生成圆锥体的平行直线都与底面圆相交。
2. 圆锥体的侧面积等于底面周长乘以母线长。
3. 圆锥体的体积等于底面积乘以高度除以3。
四、圆锥体的公式1. 底面积公式:圆锥体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆锥体的侧面积等于底面周长乘以母线长除以2。
公式表示为:侧面积= πrl/2,其中r为底面圆的半径,l为母线长。
3. 全面积公式:圆锥体的全面积等于底面积加上侧面积。
公式表示为:全面积= πr(r+l),其中r为底面圆的半径,l为母线长。
4. 体积公式:圆锥体的体积等于底面积乘以高度除以3。
六年级数学下册圆柱与圆锥知识点总结(全面)

圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
B、不沿着高展开,展开图形是平行四边形或不规则图形。
C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
圆柱和圆锥的知识点归纳

圆柱和圆锥的知识点归纳圆柱和圆锥是几何学中重要的几何体,它们的形状和性质在我们日常生活和工作中都有广泛的应用。
本文将对圆柱和圆锥的知识点进行归纳和概述。
一、圆柱的概念与性质圆柱是由一个圆在平行于其所在平面的平面上作直线运动而生成的几何体。
圆柱的形状特点是上下底面均为同心圆,且其侧面由平行于底面的直线段组成。
1. 底面与高度:圆柱的底面是一个圆,圆柱的高度是连接底面圆心的直线段。
底面和高度决定了圆柱的大小和形状。
2. 侧面与母线:圆柱的侧面是由底面圆上的点沿着底面的圆弧上升或下降所得到的轨迹线。
连接两个底面圆心的直线称为圆柱的母线,且与侧面平行。
3. 表面积和体积:圆柱的表面积等于两个底面的周长和侧面的面积之和。
圆柱的体积等于底面的面积乘以高度。
二、圆锥的概念与性质圆锥是由一个圆在平行于其所在平面且以一点为中心的射线上作直线运动而生成的几何体。
圆锥的形状特点是一个底面为圆的尖锐或钝角三维图形。
1. 底面与高度:圆锥的底面是一个圆,圆锥的高度是连接底面圆心和尖点的直线段。
底面和高度决定了圆锥的大小和形状。
2. 侧面与母线:圆锥的侧面是由底面圆上的点沿着射线上升或下降所得到的轨迹线。
连接底面圆心和尖点的直线称为圆锥的母线,且与侧面相交于一点。
3. 表面积和体积:圆锥的表面积等于底面的面积和与底面相交的侧面的面积之和。
圆锥的体积等于底面的面积乘以高度再除以3。
三、圆柱和圆锥的应用圆柱和圆锥在日常生活和工作中都有广泛的应用,以下列举几个常见的应用场景:1. 圆柱:饮水机、水管、葱、铅笔、调酒器等均采用了圆柱体的形状。
此外,圆柱的性质使得它在数学和物理中也有重要的应用,如圆柱体积公式在计算液体容量和体积问题中的应用。
2. 圆锥:喇叭、冰淇淋圆锥、圆锥形山顶等都是圆锥体的应用。
在工程和建筑领域,常常使用圆锥体来设计锥形物体以提高流体的效率和流动性。
四、圆柱和圆锥的相关定理在研究圆柱和圆锥的性质时,我们还需要了解一些相关的定理,它们对于解决具体问题具有指导作用。
圆柱和圆锥知识点归纳总结

圆柱和圆锥知识点归纳总结一、圆柱1.定义及性质圆柱是由一个平行于底面的曲线(母线)围绕着一个平行于母线的轴旋转而成的立体图形。
圆柱具有以下性质:a.圆柱的底面是一个圆,轴与底面圆相交于圆心。
b.圆柱的侧面是一个长方形,其面积等于底面圆的周长乘以母线的长度。
c.圆柱的体积等于底面圆的面积乘以母线的长度。
2.圆柱的表面积和体积计算公式a. 表面积计算公式:S = 2πr² + 2πrh,其中r为底面圆半径,h为母线的长度。
b.体积计算公式:V=πr²h,其中r为底面圆半径,h为母线的长度。
3.圆柱的投影a.圆柱的平行截面是一个与底面圆相似的圆。
b.圆柱的垂直截面是一个矩形。
4.圆柱的应用a.圆柱广泛应用于日常生活中的容器,如杯子、筒子、桶等。
b.圆柱也是建筑中常用的结构形式,如圆柱形的支柱、柱子等。
二、圆锥1.定义及性质圆锥是由一个平行于底面的点(顶点)与一个与底面相交的曲线(母线)围成的立体图形。
圆锥具有以下性质:a.圆锥的底面是一个圆,顶点与底面圆的圆心相重。
b.圆锥的侧面是一个三角形,其面积等于底面圆的周长乘以母线的长度的一半。
c.圆锥的体积等于底面圆的面积乘以母线的长度的一半。
2.圆锥的表面积和体积计算公式a. 表面积计算公式:S = πr² + πrl,其中r为底面圆半径,l为母线的长度。
b.体积计算公式:V=1/3πr²h,其中r为底面圆半径,h为母线的长度。
3.圆锥的投影a.圆锥的平行截面是与底面圆相似的圆。
b.圆锥的垂直截面是一个等腰三角形。
4.圆锥的应用a.圆锥广泛应用于日常生活中的容器,如冰淇淋蛋筒。
b.圆锥也是建筑中常用的结构形式,如锥形的尖塔、圆锥形的钟楼等。
总结:圆柱和圆锥是几何学中重要的几何体,具有许多相似的性质和计算公式。
它们在日常生活和建筑中有着广泛的应用,对于理解立体几何形状和计算体积、表面积都具有重要意义。
深入学习和理解圆柱和圆锥的知识,有助于解决实际问题和提升数学能力。
圆柱和圆锥知识点总结

圆柱和圆锥知识点总结一、圆柱的定义和性质1.定义:圆柱是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆柱由两个平行的底面、两个底面之间的侧面和两个底面的圆所组成。
3.特点:(1)底面积相等:圆柱的两个底面积相等。
(2)高度:圆柱的高度是连接两个底面的垂直线段。
(3)侧面积:圆柱的侧面积等于底面周长乘以高度。
(4)体积:圆柱的体积等于底面积乘以高度。
(5)闭曲面:圆柱的底面和侧面构成闭合的曲面。
4.圆柱的投影:圆柱的投影形态为一个矩形。
二、圆锥的定义和性质1.定义:圆锥是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆锥由一个底面、一个尖顶和底面与尖顶之间的侧面组成。
3.特点:(1)底面:圆锥的底面是一个圆。
(2)高度:圆锥的高度是连接底面和尖顶的垂直线段。
(3)侧面:圆锥的侧面是由底面上任意一点到尖顶的直线构成。
(4)侧面积:圆锥的侧面积等于圆周长乘以半斜高。
(5)体积:圆锥的体积等于底面面积乘以高度再除以3(6)闭曲面:圆锥的底面和侧面构成闭合的曲面。
4.圆锥的投影:圆锥的投影形态为一个三角形。
三、圆柱和圆锥的应用1.圆柱的应用:圆柱广泛应用于各个领域,如:(1)建筑:柱子、立柱、柱圈等结构都是圆柱体的应用。
(2)机械:轴、销、滚筒等都是圆柱体的应用。
(3)制造:瓶子、罐子、圆筒形容器等都是圆柱体的应用。
(4)数学:柱体的几何性质是数学中的重要内容,如计算底面积、侧面积、体积等。
(5)其他:圆柱的轴对称性质也常用于解决几何问题。
2.圆锥的应用:圆锥也有广泛的应用,如:(1)建筑:塔、锥形屋顶、圆锥形尖塔等都是圆锥体的应用。
(2)环境工程:漏斗、喷泉、喷水池等都是圆锥体的应用。
(3)制造:圆锥形工件的制造是机械加工中常见的任务。
(4)数学:圆锥的几何性质也是数学中的重要内容,如计算底面积、侧面积、体积等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱和圆锥有关知识点
( 3)圆锥的侧面沿着一条母线展开后是一个扇
一、圆柱和圆锥各部分的名称以及特征
1、圆柱
(1)认识圆柱各部分的名
称:上下两个圆面叫做底
面,
圆柱的周围叫侧面,
圆柱两个底面之间的距离叫做高。
(2)圆柱的特征:
圆柱的上下底面是两个圆,它们是完全相同
的;圆柱的侧面是曲面;圆柱的高有无数条,高
的长度都相等。
(3)沿高剪开:圆柱的侧面展开后是长方形(当
圆柱底面周长与高相等时,展开后是正方形)。
这个长方形的长就是圆柱底面的周长,宽就
是圆柱的高。
2.圆锥
( 1)认识圆锥各部分的名称:
下面一个圆面叫做底面,它周围叫侧面,从圆锥
的顶点到底面圆心的距离叫做高。
(2)圆锥的特征
圆锥的底面都是一个圆。
圆锥的侧面是曲面。
一
个圆锥只有一条高。
形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。
(如下图所示)
二、基本公式
1、圆的知识
圆的周长 =直径×π =半径× 2×π
C=π d =2 π r
逆推公式有:
直径 =圆的周长÷π
d = C ÷π
半径 =圆的周长÷π÷ 2
r = C ÷π÷ 2
圆的面积 =半径的平方×π
=(直径÷ 2)2×π
=(圆的周长÷π÷ 2)2×π
S=π r 2
=( d÷ 2)2×π
=( C÷π÷ 2)2×π
2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,
得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。
圆柱的侧面积 =底面周长×高
=直径×π×高
=半径× 2×π×高
S 侧=C h=π d h=2 πr h
逆推公式有:
圆柱的高 =圆柱的侧面积÷底面周长
=圆柱的侧面积÷(π×高)
=圆柱的侧面积÷(半径×2×π)
h=S 侧÷ C
圆柱的底面周长 =圆柱的侧面积÷高
C =S 侧÷ h 5、等底等高情况下,圆柱体积是圆锥体积的 3倍。
1 等底等高的情况下,圆锥体积是圆柱体积的
(2)圆柱的表面积
=圆柱的侧面积+圆柱的底面积×2 S 表=S 侧 +2S底等底等高的情况下,圆锥体积比圆柱体积少
3
2
3
(3)圆柱的体积 =底面积×高
V 柱=S h=πr 2 h
逆推公式有:
圆柱的高 =圆柱的体积÷底面积
h=V柱÷ S
圆柱的底面积 =圆柱的体积÷高
h=V柱÷ S
3 ( 1 )如果圆柱的侧面展开是一个正方形,
那么这个圆柱的高和底面周长相等。
( 2 )半个圆柱的表面积
=侧面积÷ 2 +一个底面积+直径×高
1
(3) 4
圆柱的表面积
=侧面积÷ 4+半个底面积+直径×高
等底等高的情况下,圆柱体积比圆锥体积多2倍
6、等体积等高的圆柱和圆锥,圆锥底面积是
圆柱底面积的 3倍;
等体积等底面积的圆柱
和圆锥,圆锥的高是圆柱
高的 3倍。
7、圆柱的横切:切成 n 段,需要 n-1 次,增加 2 ×( n-1 )个底面积
8、圆柱的纵切:切 1次,增加 2个长方形,长方形的长是底面的直径,宽是圆柱的高
9、圆锥的纵切:切 1次,增加 2个三角形,三角形的底是圆锥的直径,
三角形的高是圆锥的高
10、把一个正方体削成一个最大的圆柱(或圆锥),正方体的棱长就是圆柱(或圆锥)的底
面直径和高。
4、圆锥的体积 =底面积×高×
V 锥= 1
Sh
3 逆推公式有:1
3
11、①熔铸(或铸成),体积不变。
②注水问题:上升的(或下降 ) 的水的体积
等于放入的的物体的体积。
( 完全浸没)
圆锥的高 =圆锥的体积× 3÷底面积h=V锥× 3÷S
圆锥的底面积 =圆锥的体积× 3÷高
S= V 锥× 3 ÷h 12.一个圆柱的侧面展开图是一个正方形,
说明底面周长和高的比是 1∶ 1,
半径和高的比是 1∶2π,
直径和高的比是 1∶π
13、当侧面积一定时,越是细、长的圆柱体积越小,越是粗、矮的圆柱体积越大。