傅立叶变换在图像处理中的作用

合集下载

傅里叶变换的五种应用场景

傅里叶变换的五种应用场景

傅里叶变换的五种应用场景傅里叶变换是一种重要的数学工具,在信号处理、图像处理、通信系统、物理学等领域都有广泛的应用。

本文将深入探讨傅里叶变换的五种应用场景,并分享对这些应用的观点和理解。

一、信号处理傅里叶变换在信号处理领域中扮演着不可或缺的角色。

信号可以是时间域中的连续信号也可以是离散信号,通过傅里叶变换可以将这些信号从时间域转化为频率域。

在频率域中,我们可以更清晰地观察信号的周期性和频谱特征。

这对于音频处理、图像处理、视频处理等都非常有用。

傅里叶变换的应用使得我们能够分析信号的频率成分、滤波去噪,甚至进行信号的压缩与解压缩。

二、图像处理图像处理是另一个广泛应用傅里叶变换的领域。

通过将图像进行傅里叶变换,我们可以将图像从空间域转换到频率域。

在频率域中,我们可以观察到图像中不同频率的成分,并对图像进行频率滤波、图像增强以及减少噪声的操作。

傅里叶变换的应用还包括图像压缩和图像恢复等方面。

例如,在JPEG图像压缩中,傅里叶变换被用来将图像编码成频域数据,从而实现图像的压缩。

三、通信系统在通信系统中,傅里叶变换起着至关重要的作用。

通过将信号进行傅里叶变换,我们可以将信号转换到频率域,进而对信号进行调制、解调、频谱分析等。

例如,正交频分多路复用技术(OFDM)是一种常用于现代通信系统中的调制技术。

OFDM基于傅里叶变换将高速数据流分成多个低速子流,并在不同频率上进行传输。

傅里叶变换的应用使得OFDM技术能够高效地利用频谱资源和抵御多径干扰。

四、物理学在物理学中,傅里叶变换也是一种应用广泛的数学工具。

不同物理现象可以通过傅里叶变换转换到频率域进行分析。

例如,在声学领域中,通过对声音信号进行傅里叶变换,我们可以观察到声音的频谱成分,从而对声音进行分析和处理。

在量子力学领域,傅里叶变换也被广泛应用于波函数的分析和计算。

五、其他领域除了上述提到的领域,傅里叶变换还在其他各个科学领域有着重要的应用。

例如,在生物医学领域中,傅里叶变换被用于对生物信号(如心电图、脑电图)进行频谱分析与滤波处理,以便提取有价值的信息。

傅里叶变换小波变换应用场景

傅里叶变换小波变换应用场景

傅里叶变换小波变换应用场景
傅里叶变换和小波变换是数字信号处理领域中常用的数学工具,它们在不同的应用场景中发挥着重要的作用。

一、傅里叶变换的应用场景
1. 信号处理:傅里叶变换可以将时域信号转换为频域信号,从而分析信号的频率成分和谱密度。

它在音频、视频、图像等信号处理中得到广泛应用,比如音频的频谱分析、图像的频域滤波等。

2. 通信系统:傅里叶变换可以将时域信号转换为频域信号,使信号能够更好地传输和处理。

在调制解调、频谱分析、通信信号的滤波等方面都有重要作用。

3. 图像处理:傅里叶变换可以将图像从空域转换到频域,从而实现图像的频域滤波、频谱分析和图像增强等操作。

傅里叶变换在图像压缩、图像识别和图像恢复等方面也得到了广泛应用。

二、小波变换的应用场景
1. 信号处理:小波变换具有时频局部化的特点,可以在时域和频域上同时分析信号,适用于非平稳信号的分析。

小波变换在音频去噪、语音识别、振动信号分析等方面有重要应用。

2. 图像处理:小波变换可以提取图像的纹理特征、边缘信息和细节信息,从而实现图像的去噪、边缘检测、图像压缩等操作。

小波变换在图像处理和计算机视觉领域中广泛应用。

3. 生物医学信号处理:小波变换可以有效地分析和处理生物医学信号,如脑电图(EEG)、心电图(ECG)、血压信号等。

小波变换在生物医学信号的特征提取、异常检测和疾病诊断等方面具有重要应用。

傅里叶变换和小波变换在信号处理、通信系统、图像处理和生物医学信号处理等领域中都有广泛的应用。

它们在不同应用场景中发挥着关键的作用,为我们理解和处理复杂的信号提供了有力的工具。

傅里叶变换在数字图像处理中的应用课件

傅里叶变换在数字图像处理中的应用课件

• 由欧拉公 式
f (t)
F (n1 )e jn1t
• 其中 n
F (0) a0
F (n1 )
1 2
(an
jbn )
引入了负频率
F (n1 )
1 2
(an
jbn )
10
非周期信号的频谱分析
当周期信号的周期T1无限大时,就演变成 了非周期信号的单脉冲信号
T1
频率也变成连续变量
1
2
T1
0 d
n1
11
非周期函数傅立叶变换分析式
F (w) f (t )e jwt dt f(t) Nhomakorabea1
2
F ().e jtd
频谱演变的定性观察
1
2
T1
F (n1)
-T/2
T/2
F (n1) 1
F (n1 )
-T/2
T/2
1
2
2
13
三.从物理意义来讨论FT
(a) F(ω)是一个密度函数的概念 (b) F(ω)是一个连续谱 (c) F(ω)包含了从零到无限高
傅里叶变换
连续时间信号 的傅里叶变换
号周 期 性 信
信非 号周
期 性
离散时间信号 的傅里叶变换
号周 期 性 信
信非 号周


连续函数的 傅立叶变换
一、三角函数的傅里叶级数:
f1(t) a0 (an cos n1t bn sin n1t) n1
直流 分量
基波分量 n =1
谐波分量 n>1
N 1
j 2 mn
X (m) x(n)e N , m 0,1, 2,3, 4,...N 1

傅里叶定律应用实例

傅里叶定律应用实例

傅里叶定律应用实例傅里叶定律是一种将任意周期性函数分解为一组正弦或余弦函数的方法。

它有非常广泛的应用,例如在信号处理、图像处理、量子力学、声音波谱分析等领域。

1. 信号处理和音频压缩傅里叶定律可以用于压缩音频或其他信号。

通过将信号分解为一组正弦或余弦函数的和,可以找到一个足够小的子集来代表原始信号。

这使得信号的存储空间更小,并且可以更快地传输。

现代音频压缩算法如MP3就使用了傅里叶变换来分解音频信号。

2. 图像处理在图像处理中,傅里叶变换可以用来分析和处理图像。

通过将图像分解为其频率成分,可以实现许多图像处理操作,例如去噪、过滤、锐化和边缘检测。

傅里叶变换还可以用于图像压缩,通常与离散余弦变换(DCT)结合使用。

3. 量子力学傅里叶变换在量子力学中也有广泛的应用。

傅里叶变换可以用于将一个波函数从空间域转换为能量域,这对于解决一些量子力学问题非常有用。

傅里叶变换还可以用于分析和处理量子力学中的能级和自旋。

4. 声音波谱分析傅里叶变换可以用于分析声音波形成分的频率。

在声音波形中,每个频率成分可以表示为正弦或余弦波的组合。

通过使用傅里叶变换,可以将波形转换为频域,以便更好地理解声音的波形结构。

除了上述应用,傅里叶定律还有其他一些重要的作用。

下面进一步探讨一下它在不同领域的应用:5. 数字信号处理傅里叶变换在数字信号处理中扮演着非常重要的角色。

通过将信号从时域转换为频域,可以更好地理解信号的性质和特征。

可以使用傅里叶变换来从一个信号中分离出特定的频率成分,以便更好地对信号进行分析。

6. 机器学习在机器学习中,傅里叶变换可以用来处理图像和声音等数据。

可以使用傅里叶变换将图像从空间域转换为频域,以便更好地识别图像中的模式和特征。

同样地,傅里叶变换也可以用来处理声音数据,以便更好地识别声音信号中的模式和特征。

7. 通信系统在通信系统中,傅里叶变换可以用于信号传输和处理。

通过分析信号频率成分,可以更好地理解信号的性质,并且可以更好地设计和优化通信系统。

傅里叶变换的应用

傅里叶变换的应用

傅立叶变换在图像处理中有非常非常的作用。

因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。

印象中,傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;傅立叶变换傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。

连续情况下要求原始信号在一个周期内满足绝对可积条件。

离散情况下,傅里叶变换一定存在。

冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。

棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。

傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。

当我们考虑光时,讨论它的光谱或频率谱。

同样,傅立叶变换使我们能通过频率成分来分析一个函数。

傅立叶变换有很多优良的性质。

比如线性,对称性(可以用在计算信号的傅里叶变换里面);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。

这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。

(图像处理里面这个是个重点)信号在频率域的表现在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。

图像处理中的傅里叶变换

图像处理中的傅里叶变换
性质
FFT是DFT的一种高效实现,它广 泛应用于信号处理、图像处理等 领域。
频域和时域的关系
频域
频域是描述信号频率特性的区域,通过傅里叶变换可以将 时域信号转换为频域信号。在频域中,信号的频率成分可 以被分析和处理。
时域
时域是描述信号时间变化的区域,即信号随时间的变化情 况。在时域中,信号的幅度和时间信息可以被分析和处理。
其中n和k都是整数。
计算公式
X(k) = ∑_{n=0}^{N-1} x(n) * W_N^k * n,其中W_N=exp(-
2πi/N)是N次单位根。
性质
DFT是可逆的,即可以通过DFT 的反变换将频域信号转换回时域
信号。
快速傅里叶变换(FFT)
定义
快速傅里叶变换(FFT)是一种高 效计算DFT的算法,它可以将DFT 的计算复杂度从O(N^2)降低到 O(NlogN)。
通过傅里叶变换,我们可以方便地实现图像的滤波操作,去除噪声或突出某些特 征。同时,傅里叶变换还可以用于图像压缩,通过去除高频成分来减小图像数据 量。此外,傅里叶变换还可以用于图像增强和图像识别,提高图像质量和识别准 确率。
PART 02
傅里叶变换的基本原理
离散傅里叶变换(DFT)
定义
离散傅里叶变换(DFT)是一种 将时域信号转换为频域信号的方 法。它将一个有限长度的离散信 号x(n)转换为一个复数序列X(k),
傅里叶变换的物理意义是将图像中的每个像素点的灰度值表 示为一系列正弦波和余弦波的叠加。这些正弦波和余弦波的 频率和幅度可以通过傅里叶变换得到。
通过傅里叶变换,我们可以将图像中的边缘、纹理等高频成 分和背景、平滑区域等低频成分分离出来,从而更好地理解 和处理图像。

傅里叶变换在图像处理中的应用

傅里叶变换在图像处理中的应用

傅里叶变换在图像处理中的应用摘要傅里叶变换是一种重要的信号分析工具,在平稳信号的分析方面具有十分重要的地位,线性系统中,常利用傅里叶变换进行分析和处理。

本文对傅里叶变换和数字图像处理的相关概念进行了介绍,并主要针对傅里叶变换在数字图像处理中的应用进行分析和研究,对图像处理领域的学习很有帮助。

关键词傅里叶变换;信号分析;平稳信号;数字图像处理前言随着信号处理领域的不断发展,越来越多信号分析工具得到了相关学者的研究。

傅里叶变换于19世纪就已经被研究人员提出,在之后的研究和应用中,傅里叶变换也一直是重要的信号处理工具[1-2]。

信息时代的到来使数字图像处理技术也开始飞速进步,它与信号处理等技术息息相关,因此傅里叶变换在图像处理中也得到了重要的应用[3]。

传统的处理方式往往适合在时域对图像进行处理分析,而与傅里叶变换相结合便使图像处理技术得以在频域进行,傅里叶变换常用于线性系统中的处理,因此,可以很好地和图像处理领域相联系,有效提高数字图像处理的效率和精度[4]。

1 傅里叶变换的概述最早在1807年,法国工程师傅里叶首先提出了有关傅里叶级数这一理论,首次提到可以將一个周期性的信号展开成多个复正弦信号相加的形式,这一理论引起了学者们的注意。

十几年之后,傅里叶正式提出了傅里叶变换的概念。

通过傅里叶变换,我们可以将一个信号由时域转换到频域进行信号处理和分析,并且通过傅里叶变换的提出才加深了人们对于频率这个概念的理解。

因此,在傅里叶变换被提出之后,在信号分析领域提出了从频域进行分析这个新思路,使人们对信号的特性进行了一些新的方面的研究。

很多对信号的处理问题以往通过时域分析很难真的得到充分的解释,傅里叶变换这个思路使很多问题变得显而易见。

对于傅里叶变换之后的研究中,出现了关于傅里叶变换的快速算法,使得傅里叶变换更加具有实际应用价值,也对处理离散的数字信号起了重要的作用。

2 基于傅里叶变换的图像处理在对图像进行处理的过程中,图像中包含许多线性变化的元素,而其中的频率便是十分重要的物理量,而这种包含频率信息的元素正适合应用傅里叶变换进行处理,因此,傅里叶变换在图像处理领域得到了广泛的应用。

fft快速傅里叶变换应用场景

fft快速傅里叶变换应用场景

fft快速傅里叶变换应用场景一、引言傅里叶变换是信号处理中常用的基本工具之一,它可以将时域信号转化为频域信号,从而对信号进行频谱分析。

但是,传统的傅里叶变换算法计算复杂度较高,对于实时性要求较高的应用场景不太适合。

因此,快速傅里叶变换(FFT)应运而生。

本文将介绍FFT快速傅里叶变换在各种应用场景中的具体应用。

二、图像处理1. 图像压缩图像压缩是指通过某种算法将图像数据压缩到更小的存储空间中,以减少存储空间和传输带宽。

FFT快速傅里叶变换可以将图像从时域转化为频域,然后对频域信息进行压缩。

这样做的好处是可以去除一些高频成分和低频成分,从而减少冗余数据。

2. 图像滤波图像滤波是指通过某种算法对图像进行降噪或增强处理。

FFT快速傅里叶变换可以将图像从时域转化为频域,在频域中进行滤波操作。

例如,在高通滤波器中,可以将低频成分滤除,从而增强图像的高频细节。

三、音频处理1. 音频压缩音频压缩是指通过某种算法将音频数据压缩到更小的存储空间中,以减少存储空间和传输带宽。

FFT快速傅里叶变换可以将音频从时域转化为频域,然后对频域信息进行压缩。

这样做的好处是可以去除一些高频成分和低频成分,从而减少冗余数据。

2. 音乐合成音乐合成是指通过某种算法将多个声音信号合并为一个复合声音信号。

FFT快速傅里叶变换可以将多个声音信号从时域转化为频域,在频域中进行加和操作。

这样做的好处是可以避免在时域中信号相加时出现相位问题。

四、通信领域1. 无线电通信在无线电通信中,FFT快速傅里叶变换被广泛应用于OFDM(正交分组多路复用)调制技术中。

OFDM技术利用FFT技术将高速数据流分割成多个低速子载波,在每个子载波上进行调制和解调,从而提高了无线电信号的传输速率和抗干扰能力。

2. 有线通信在有线通信中,FFT快速傅里叶变换被广泛应用于数字信号处理中。

例如,在数字电视中,FFT技术可以将视频和音频数据分离出来,从而实现高清晰度的视频和清晰的声音。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

傅立叶变换在图像处理中的作用
摘要:本文首先简述了傅立叶变换的原理及应用领域,介绍了傅立叶变换在数字图象处理中的重要地位和应用,分析了其变换的数学原理和方法,特别着重的是二维傅立叶变换和FFT(快速傅立叶变换)的原理,然后介绍了Matlab 软件,分析了Matlab 的好处,及其在数字图像处理和傅立叶变换计算上的使用,编出程序实现了其变换功能,给出了应用于图象压缩和图像去噪的实例。

关键词: 图象处理 傅立叶变换 Matlab
正文
傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。

傅立叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。

因此,对涉及数字图像处理的工作者,深入研究和掌握傅立叶变换及其扩展形式的特性,是很有价值得。

把傅立叶变换的理论通其物理解释相结合,将有助于解决大多数图像处理问题。

傅里叶变换可分为连续傅里叶变换、离散傅里叶变换、快速傅里叶变换。

3.1.1 连续傅里叶变换
函数f(x)的傅里叶变换存在的条件是满足狄里赫莱条件,即:
1)具有有限个间断点;
2)具有有限个极值点;
3)绝对可积。

(1)一维连续傅里叶变换及反变换:
单变量连续函数f(x)的傅里叶变换F(u)定义为:
dx e x f u F ux j ⎰
∞∞--=π2)()( 其中12-=j ,x 称为时域变量,u 为频率变量。

当给定F(u),通过傅里叶反变换可以得到f(x)
du e u F x f ux j ⎰∞
∞-=π2)()( (2)二维连续傅里叶变换及反变换:
二维连续函数f(x,y)的傅里叶变换F(u,v) 定义为:
dxdy e y x f v u F vy ux j )(2),(),(+-∞
∞-∞∞-⎰⎰=π
x,y 为时域变量,u,v 为频域变量。

当给定F(u,v),通过傅里叶反变换可以得到f(x,y):
dudv e v u F y x f vy ux j )(2),(),(+∞
∞-∞∞-⎰⎰=π
3.1.2 离散傅里叶变换
连续函数的傅里叶变换是连续波形分析的有力工具,但要把傅里叶变换应用到数字图像处理中,就必须要处理离散数据,而离散傅里叶变换(Discrete Fourier Transform ,DFT )的提出使得这种数学方法能够和计算机技术联系起来。

(1)一维离散傅里叶变换及反变换:
单变量离散函数f(x)(x=0,1,2,…,M-1)的傅里叶变换F(u)定义为:
∑-=-=10/2)(1)(M x M ux j e x f M u F π
u=0,1,2,…,M-1
当给定F(u),通过傅里叶反变换可以得到f(x)
∑-==10/2)(1)(M u M ux j e u F M x f π
x=0,1,2,…,M-1
由欧拉公式 θθθsin cos j e j += 有:
∑-=-=10/)2()(1)(M x M ux j e x f M
u F π )/)2sin(/)2(cos()(110M ux j M ux x f M
M x ππ-+-=∑-= )/2sin /2(cos )(110M ux j M ux x f M M x ππ-=∑-=
(2)二维离散傅里叶变换及反变换:
图像尺寸为M ⨯N 的函数f(x,y)的DFT 为:
)//(21010),(1),(N vy M ux j M x N y e y x f MN v u F +--=-=∑∑=π
其中u=0,1,2,…,M-1, v=0,1,2,…,N-1;u 和v 是频率变量,x 和y 是空间或图像变量。

当给定F(u,v),通过傅里叶反变换可以得到f(x,y):
)//(2101
),(),(N vy M ux j M u N v e v u F y x f +-=-=∑∑=π 其中x=0,1,2,…,M-1, y=0,1,2,…,N-1;u 和v 是频率变量,x 和y 是空间或图像变量。

3.1.3 快速傅里叶变换
快速傅里叶变换(FFT)是计算离散傅里叶变换(DFT)的快速算法。

离散傅里叶变换运算量巨大,计算时间长,即运算时间很长。

而快速傅里叶变换的提出将傅里叶变换的复杂度由降到了,很大程度上减少了计算量。

∑-==1202)(21)(M x ux M W x f M
u F ∑∑-=+-=++=10)12(210)2(2})12(1)2(1{21M x x u M M x x u M W x f M W x f M
令∑-==10)2(1)(M x ux M e W x f M
u F ,∑-=+=10)12(1)(M x ux M o W x f M u F ,u=0,1,2,…,M-1 则[]u M o e W u F u F u F 2)()(21)(+=,[]
u M o e W u F u F M u F 2)()(21)(-=+ 3.2 傅立叶变换在图像处理中的重要作用:
1. 图像增强与图像去噪
绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声;边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;
2. 图像分割之边缘检测
提取图像高频分量
3. 图像特征提取:
形状特征:傅里叶描述子
纹理特征:直接通过傅里叶系数来计算纹理特征
其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性
4. 图像压缩
可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;
3.3 Matlab软件
Matlab是一种科学计算软件,专门以矩阵的形式处理数据。

MA TLAB 将高性能的数值计算和可视化集成在一起,构成了一个方便的、界面友好的用户环境,并提供了大量的内置函数。

从而被广泛地应用于科学计算、控制系统、信息处理、神经网络、图像处理、小波分析等领域的分析、仿真和设计工作,而且利用MA TLAB 产品的开放式结构,可以非常容易地对MATLAB 的功能进行扩充,从而在不断深化对问题认识的同时,不断完善MATLAB 产品以提高产品自身的竞争能力。

MA TLAB中的数字图像是以矩阵形式表示的,这意味着MATLAB 强大的矩阵运算能力用于图像处理非常有利,矩阵运算的语法对MA TLAB中的数字图像同样适用。

MA TLAB图像处理工具箱支持四种图像类型,分别为真彩色图像、索引色图像、灰度图像、二值图像,由于有的函数对图像类型有限制,这四种类型可以用工具箱的类型转换函数相互转换。

MATLAB可操作的图像文件包括BMP、HDF、JPEG、PCX、TIFF、XWD等格式。

3.4 基于Matlab的图像傅里叶变换实例分析
实例1:图像压缩
对一副灰度图像而言,先对行进行DCT变换,然后对列进行DCT变换,其变换结果的能量
将主要集中在左上角的位置,即低频部分。

%DCT
%图像压缩
X=imread('rice.tif');%读取8bit的灰度图像
figure(1);
imshow(X);
%DCT变换
X2=imresize(X,0.0625);%缩小
Y=dct(X2);
%结果输出
figure(2);
mesh(Y);
colormap(jet);
colorbar;
实例2:图像去噪
%图像抑噪
X=imread('rice.tif');
[m,n]=size(X);%读取图像尺寸
Xnoised=imnoise(X,'speckle',0.01);
figure(1);%输出加噪图像
imshow(Xnoised);
Y=dct2(Xnoised);
I=zeros(m,n);
I(1:m/3,1:n/3)=1;%高频屏蔽
Ydct=Y.*I;
Y=uint8(idct2(Ydct));
figure(2);
imshow(Y);
总结
数字图像处理技术是近年来蓬勃发展的一门新兴学科,在数字摄影测量,遥感图像处理,地理信息系统中得到应用广泛。

傅立叶变换是线性系统分析的一个有力工具,它使我们能够定量地分析诸如数字化系统,采样点,电子放大器,卷积滤波器,噪声,显示点等地作用(效应)。

傅立叶变换(FT)是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。

MA TLAB语言简洁,可读性强,工具箱涉及的专业领域广泛且功能强大。

因此,基于Matlab的图像傅里叶变换具有很强的实用性。

参考文献:
【1】吕乃光编著,傅立叶光学,机械工业出版社
【2】陈杨陈荣娟,郭颖挥等编著,MATLAB6.x 图形编程与图像处理,西安电子科技大学出版社
【3】Kenneth R castlman , Digital Image Processing, PRENTtCE HALL
【4】王晓丹,吴崇明编著. 基于MA TLAB的系统分析与设计&#8226;5, 图像处理,西安电子科技大学出版社
【5】William K Pratt , Digital Image Processing
【6】阮秋琦编著,数字图像处理学,电子工业出版社。

相关文档
最新文档