表面活性剂的应用原理
表面活性剂应用原理

表面活性剂应用原理
表面活性剂是一类具有特殊化学结构的物质,可以降低液
体表面的表面张力,改变液体的表面性质。
它们由亲水性
头基和疏水性尾基组成,头基与水相亲,尾基与水相疏。
表面活性剂在应用中起到以下几个主要作用:
1. 降低表面张力:表面活性剂的主要作用是降低液体表面
的表面张力,使液体更容易湿润固体表面。
这使得液体能
够更好地渗透到固体表面,提高液体在固体上的均匀分布,加速液体的扩散和传输。
2. 分散和乳化:表面活性剂可以将不溶于水的物质分散到
水中,形成胶体溶液。
通过调节表面活性剂的浓度和类型,可以控制胶体的稳定性。
此外,表面活性剂还可以将油和
水两种不相溶的液体乳化,形成稳定的乳液。
3. 稳定泡沫和乳液:表面活性剂能够在液体表面形成薄膜,并降低气体和液体之间的界面张力,从而形成稳定的泡沫。
这是因为表面活性剂的分子在液体表面排列成膜状结构,
使得气泡表面的液体分子排列有序。
类似地,表面活性剂
也可以在油水界面形成薄膜,稳定乳液的形成。
4. 渗透和浸润:表面活性剂能够改变固体表面的润湿性,
使液体更容易渗透到固体内部。
这对于清洗和去污非常有用,因为液体能够更好地与污垢接触并渗透到其内部,从
而使清洁效果更好。
总之,表面活性剂通过调节液体表面的性质,改变液体与
固体、液体与液体之间的相互作用,实现了许多应用,包括清洁剂、洗涤剂、乳化剂、润滑剂等。
表面活性剂的作用原理

01.
02.
03.
表面活性剂的分 子结构:具有亲 水基团和亲油基 团
吸附作用原理: 亲水基团与水分 子结合,亲油基 团与油分子结合
吸附效果:降低 液体表面张力, 提高液体的润湿 性和渗透性
应用领域:洗涤 剂、乳化剂、分 散剂等
表面活性剂的吸附作用:表面活性剂分子在固体表面形成单分子层,降低表 面张力
润湿温度:温度 越高,表面活性 剂的润湿速率越 快
润湿环境:不同 的润湿环境,如 空气、水、油等, 对润湿速率的影 响不同
01
02
03
04
表面活性剂的分 子结构:亲水基 团和亲油基团
乳化作用的原理: 表面活性剂的亲 水基团与水分子 结合,亲油基团 与油分子结合, 形成乳状液
乳化剂的选择: 根据油和:乳化剂的乳化 能力会影响乳状液的稳定性
04
乳化剂的乳化温度:乳化剂的乳化 温度会影响乳状液的稳定性
06
01
降低界面张力:表面活性剂能够降低 油水界面张力,使油水混合更加容易。
02
形成胶团:表面活性剂在油水界面上 形成胶团,将油滴包裹起来,使其分 散在水中。
03
乳化稳定性:表面活性剂的乳化作用 能够提高乳状液的稳定性,使油滴在 水中保持均匀分布。
01 表面活性剂降低表面张
力,使液体更容易铺展 在固体表面
03 液体在固体表面形成薄
层,增加液体与固体的 接触面积
表面活性剂形成胶团, 02
吸附在固体表面,降低 表面能
液体在固体表面形成均 04
匀的薄膜,提高润湿效 果
接触角:液体与 固体表面之间的 夹角
润湿角:液体与 固体表面之间的 夹角,表示液体 在固体表面的润 湿程度
表面活性剂应用原理

表面活性剂应用原理表面活性剂是一类化学物质,具有分子结构中同时存在亲水性和亲油性的特点。
它们在水和油之间起到界面活性的作用,可以降低液体表面张力,使液体能够更好地湿润固体表面。
表面活性剂的应用原理主要包括以下几个方面:1. 降低表面张力:表面活性剂分子结构中的亲水基团与亲油基团相互作用,形成分子在界面上的吸附层。
这一吸附层能够降低液体的表面张力,使液体更容易湿润固体表面,提高液体的渗透性和扩展性。
2. 分散和乳化作用:表面活性剂能够在液体中形成胶束结构,将油滴或固体微粒分散在水相中,形成分散体系。
这种分散作用可以使油、脂、颜料等不溶于水的物质均匀分散在水中,提高它们的溶解度和可操作性。
3. 渗透和浸润作用:表面活性剂能够改善液体与固体的接触性能,使液体更容易渗透进入固体内部。
这种渗透作用可以提高液体在固体上的浸润性,使液体能够更好地与固体接触和反应,提高工艺效率。
4. 乳化稳定作用:表面活性剂能够使油水两相形成均匀的乳状液体,称为乳化作用。
乳化剂通过在油水界面上形成吸附层,阻止油滴的聚集和沉淀,从而保持乳状液体的稳定性。
5. 胶束增溶作用:表面活性剂能够在溶液中形成胶束结构,将水溶性和油溶性物质同时溶解在溶液中。
这种胶束增溶作用可以提高溶液的溶解度和稳定性,扩大溶液的应用范围。
总之,表面活性剂应用原理主要包括降低表面张力、分散和乳化作用、渗透和浸润作用、乳化稳定作用以及胶束增溶作用等。
这些作用使得表面活性剂在各个领域中具有广泛的应用,如洗涤剂、乳化剂、润滑剂、抗静电剂、泡沫剂等。
表面活性剂的应用原理论文

表面活性剂的应用原理引言表面活性剂是一类重要的化学物质,它们具有改善液体界面性质的能力。
表面活性剂在许多领域有广泛的应用,包括洗涤剂、乳化剂、润滑剂等。
本文将介绍表面活性剂的应用原理,并讨论其在不同领域的具体应用。
表面活性剂的定义表面活性剂是指在其溶液中能够降低表面张力、提高界面吸附量的化学物质。
表面活性剂通常由两部分组成,一部分亲水性较强,另一部分亲油性较强。
这种特性使得表面活性剂在液体界面上形成一个稳定的动态界面。
表面活性剂的应用原理表面活性剂的应用原理主要是通过其分子结构的特性实现的。
在水溶液中,表面活性剂的分子朝向界面,使得亲水基团朝向水相,亲油基团朝向油相。
这种吸附作用导致界面张力的降低,从而改善了液体界面的性质。
此外,表面活性剂还能够形成胶束结构,进一步降低溶液的表面张力。
表面活性剂的应用原理可以总结为以下几点: - 降低表面张力:表面活性剂的亲水基团与水分子形成氢键,从而降低液体的表面张力。
这使得液体能够更容易湿润物体表面。
- 乳化作用:表面活性剂的亲油基团与油脂形成相互作用力,使油和水能够混合在一起形成乳状液。
这一特性在食品工业和化妆品工业中有重要应用。
- 渗透作用:表面活性剂能够渗透入液滴或气泡中,从而改变其形状和稳定性。
这种作用在制备泡沫材料和液滴微胶囊等方面有广泛的应用。
表面活性剂的应用领域洗涤剂•表面活性剂在洗涤剂中的应用是最常见的。
它们能够降低水的表面张力,使污垢更容易溶解和分散在水中,从而提高洗涤效果。
•表面活性剂还能够与油脂结合形成胶束,将污垢包裹在内,防止其重新附着在衣物上。
乳化剂•表面活性剂在乳化剂中的应用是制备乳状液的重要手段。
例如,在食品工业中,乳化剂用于制作乳酪、酱油和蛋黄酱等。
•表面活性剂能够使水和油相互混合在一起,形成稳定的乳状液。
这使得乳状液能够长时间保持均匀状态。
润滑剂•表面活性剂在润滑剂中的应用是用于降低摩擦和磨损。
它们能够在摩擦表面形成一层薄膜,减少互相接触的表面间的摩擦。
表面活性剂的应用原理

表面活性剂的应用原理什么是表面活性剂?表面活性剂(Surfactant)是一类具有降低液体表面张力和增加液体浸润性质的化学物质。
它们由一对亲水性(亲水)和疏水性(疏水)基团组成,能够在各种界面上降低能量和张力。
表面活性剂的分类表面活性剂可以分为阳离子表面活性剂、阴离子表面活性剂、非离子表面活性剂和温和离子表面活性剂。
阳离子表面活性剂(Cationic Surfactant)阳离子表面活性剂在水中的溶解度较低,但在有机溶剂中具有很好的溶解度。
它们能够与阴离子、蛋白质和表面电荷带正电的固体颗粒发生静电吸附,从而改变表面性质。
阴离子表面活性剂(Anionic Surfactant)阴离子表面活性剂是在水中最常见的表面活性剂。
它们能够在水中形成胶束,通过负离子与阳离子和不极性分子发生相互作用。
阴离子表面活性剂具有良好的去污能力和起泡性。
非离子表面活性剂(Nonionic Surfactant)非离子表面活性剂不带电荷,不与离子交换,具有良好的溶解性,可与水和有机物质混溶。
非离子表面活性剂适用于对阴离子表面活性剂敏感的应用,如染料、植物营养剂和油漆。
温和离子表面活性剂(Amphoteric Surfactant)温和离子表面活性剂可以带正离子或负离子电荷,具有广泛的PH稳定性。
它们既具有阳离子表面活性剂的去污性能,又具有阴离子表面活性剂的起泡性能。
表面活性剂的应用原理表面活性剂的应用原理主要涉及其在液体或固体表面降低表面张力的能力。
以下是表面活性剂的几个主要应用原理:1. 降低表面张力表面活性剂可以吸附在液体表面上,与表面的分子发生相互作用,降低液体的表面张力。
在水中,表面活性剂的亲水基团与水分子形成氢键,疏水基团分散在液体中,形成胶束结构。
这种胶束结构能够扩大液体表面积,并降低表面张力。
2. 增加液体浸润性质表面活性剂能降低液体与固体接触角,使液体能更好地与固体表面接触和浸润。
这种能力使得表面活性剂在清洁剂、浸润剂和乳化剂中得到广泛应用。
表面活性剂分散的应用原理

表面活性剂分散的应用原理1. 什么是表面活性剂表面活性剂(Surface Active Agent)是一种能够降低液体表面张力并在液体中形成胶体的化学物质。
表面活性剂分子由亲水性(水溶性)头基和疏水性(水不溶性)尾基组成,使其能够同时与水分子和油分子相互作用。
这种特殊结构赋予了表面活性剂分散的能力,使其在许多领域中有广泛的应用。
2. 表面活性剂分散的原理表面活性剂分散是指将固体颗粒分散在液体中,使其能够均匀分布并保持稳定的过程。
其原理主要包括以下几个方面:2.1 界面活性表面活性剂具有两性电离特性,即亲水基团与疏水基团的共存。
亲水基团与水分子相互作用,疏水基团与颗粒表面油分子相互作用。
这种特性使得表面活性剂能够在液相和颗粒表面之间建立起界面,形成胶体分散体系。
2.2 分散能力表面活性剂分子在液相中聚集成胶束结构,胶束的亲水头基朝外与水分子相互作用,疏水尾基朝内与颗粒表面的油分子相互作用。
由于表面活性剂分子在胶束中的作用,使得固体颗粒沉积减少,分散效果显著。
2.3 稳定性表面活性剂分散后的胶束结构能够有效阻止颗粒间的聚集和沉淀,保持分散体系的稳定性。
胶束的疏水尾基屏蔽了颗粒之间的相互作用力,使其难以聚集。
此外,亲水头基与水分子形成了水和胶束之间的强相互作用力,也有助于分散体系的稳定。
3. 表面活性剂分散的应用表面活性剂分散在许多领域中都有重要的应用。
以下是一些常见的应用领域及其原理:3.1 化妆品表面活性剂在化妆品中的应用主要是为了使油和水混合均匀。
例如,在乳液中,表面活性剂能够使水和油相互分散,形成稳定的乳液体系。
这样可以使乳液更容易涂抹,并且在皮肤上形成保护膜,提供保湿效果。
3.2 洗涤剂洗涤剂是表面活性剂应用最广泛的领域之一。
表面活性剂能够降低水的表面张力,使其更容易与油污相互作用,并使其分散在水中。
此外,表面活性剂还能够在水中形成泡沫,增加洗涤剂的清洁能力。
3.3 农药表面活性剂在农药中的应用主要是为了提高农药的分散性和吸附性。
表面活性剂的化学原理

表面活性剂的化学原理表面活性剂是一类广泛应用于日常生活和工业生产中的化学物质。
它们具有降低液体表面张力和增强液体与固体或气体的相互作用能力的特性。
本文将介绍表面活性剂的化学原理,包括其结构、作用机制和应用领域。
一、表面活性剂的结构表面活性剂分为两个部分:亲水基团和疏水基团。
亲水基团是具有亲水性的部分,通常是由含氧、氮或硫等原子组成的极性基团。
疏水基团是具有疏水性的部分,通常是由长链烷基或芳香基等非极性基团组成。
这种结构使得表面活性剂既能与水相互作用,又能与油脂等疏水物质相互作用。
二、表面活性剂的作用机制表面活性剂在液体表面形成一个分子层,称为吸附层。
吸附层的形成是由于表面活性剂分子的亲水基团与水分子形成氢键,同时疏水基团与空气或油脂分子相互作用。
这种吸附层能够降低液体表面的张力,使液体更容易湿润固体表面。
表面活性剂还能够形成胶束结构。
当表面活性剂的浓度超过临界胶束浓度时,表面活性剂分子会自组装形成胶束。
胶束是由亲水基团朝向水相,疏水基团朝向内部形成的微小球状结构。
胶束能够包裹住油脂等疏水物质,使其分散在水相中,从而实现乳化、分散和溶解等作用。
三、表面活性剂的应用领域1. 清洁剂:表面活性剂是清洁剂中的主要成分,能够降低水的表面张力,使水更容易湿润和渗透,从而提高清洁效果。
例如,洗衣液、洗洁精等清洁剂中都含有表面活性剂。
2. 个人护理产品:表面活性剂能够使洗发水、沐浴露等个人护理产品产生丰富的泡沫,提供良好的清洁和洗净效果。
3. 化妆品:表面活性剂在化妆品中起到乳化、分散和稳定等作用。
例如,乳液、面霜和化妆品中的乳化剂和分散剂都是表面活性剂。
4. 农药和农业助剂:表面活性剂可以提高农药的润湿性和渗透性,增强其吸附和渗透作用,提高农药的效果。
5. 石油和化工工业:表面活性剂在石油开采、油田注水、油水分离等过程中起到重要作用。
此外,表面活性剂还广泛应用于润滑剂、防锈剂、乳化剂等领域。
总结:表面活性剂是一类具有降低液体表面张力和增强液体与固体或气体相互作用能力的化学物质。
表面活性剂的应用及其原理

表面活性剂的应用及其原理1. 概述表面活性剂是一种具有特殊化学结构的化合物,可以降低液体表面的张力,提高液体的湿润性。
它们广泛应用于多个领域,包括洗涤剂、化妆品、农药、纺织、石油等。
2. 表面活性剂的分类表面活性剂根据其离子性质可被分为离子性表面活性剂和非离子性表面活性剂。
具体分类如下:2.1 离子性表面活性剂离子性表面活性剂可分为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和缔合表面活性剂。
•阴离子表面活性剂:如硫酸十二烷基醚钠(SDS)、烷基苯磺酸钠(LAS)等。
常用于洗涤剂和清洁剂中。
•阳离子表面活性剂:如十六烷基三甲基溴化铵(CTAB)等。
常用于柔软剂和润滑剂中。
•非离子表面活性剂:如辛醇聚醚(Triton X-100)、脂肪醇聚氧乙烯醚(Tween)等。
常用于乳化剂和润湿剂中。
•缔合表面活性剂:如磺酸嵌段聚醚盐(SPSA)等。
常用于油田碳酸盐岩酸化工艺中。
2.2 非离子性表面活性剂非离子性表面活性剂主要由氧化物、聚合物等组成。
常用于乳化剂、分散剂和稳定剂中,如十六烷基酚聚氧乙烯醚(Triton X-405)等。
3. 表面活性剂的应用3.1 洗涤剂和清洁剂•表面活性剂作为洗涤剂和清洁剂的核心成分,能够有效地去除污渍和油脂。
例如,阴离子表面活性剂常用于洗衣液和洗洁精中,可以改善洗涤的效果。
•在清洁剂中,非离子表面活性剂常用于玻璃清洁剂、家具清洁剂等中,可以提高清洁效果。
3.2 化妆品•表面活性剂在化妆品中的应用广泛,可以用作乳化剂、稳定剂和润湿剂等。
例如,非离子表面活性剂常用于乳液、面霜等产品中,可以增加产品的稳定性和延展性。
•阳离子表面活性剂可以用于染发剂和护发素中,可以使染发剂更好地渗透和染色,并使护发素更好地附着在头发上。
3.3 农药•表面活性剂在农药中的应用主要是作为增效剂和消泡剂。
例如,非离子表面活性剂可以提高农药对作物的附着性和渗透性,提高农药的效果。
•缔合表面活性剂可用于制备微乳液农药,提高农药的溶解度和吸附性,减少环境污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章表面活性剂在叶面肥中的应用
由于作物叶片最外侧的蜡质层具有疏水性,不利于喷施液在叶表的铺展与附着,喷施液难以润湿叶面;且蜡质层一般非常粗糙,而且分布不均匀,致使喷施液于叶片界面的接触角进一步增大,导致喷施液在叶面上形成易滚落的水珠,喷施液对叶面的润湿性更差,而喷施液在作物叶面的润湿是养分向叶片内部渗透的重要前提,可见,叶面蜡质层是影响叶面养分吸收的关键因素之一,极大地影响了叶面施肥的效果,因此必须克服蜡质层造成的施肥的障碍,减少喷施液于作物叶片之间的界面接触角,使喷施液在叶面上得以铺展、润湿,才可以提高养分的吸收率及叶面施肥的效果。
人们在进行叶面施肥的研究中,发现在喷施液内加入一定量的表面活性剂后可以明显改变喷施液的表面性质,降低喷施液的表面张力,增加喷施液在叶面的润湿作用;另外,表面活性剂还具有保湿、黏着、助渗的作用,因而极大地促进了养分的叶面吸收效果。
正因如此,表面活性剂成为叶面肥中不可缺的重要组分之一。
第一节表面活性剂的应用原理
一、概述
表面活性剂是一类重要的精细化学品,其应用单位几乎涵盖了精细化工的所有领域,与人们日常生活密不可分,在工、农业各个领域中也有重要的作用。
自19世纪发现磺化油的表面活性以后,人们已经成功研制出大量的表面活性剂。
表面活性物质的生产。
最初是以动、植物油脂作原料制肥皂。
目前表面活性剂的种类繁多,有进口的,也有国产的,常见种类有吐温-20、吐温-40、吐温-80、土耳其黄油、山梨醇、十二烷基苯磺酸钠、曲拉通等。
除了用化学方法合成的表面活性剂外,还有用为微生物发酵的方法生产无毒、对环境无污染的生物表面活性剂。
随着对表面活性剂研究的深入,表面活性剂的作用也引起了国内外学者的重视。
大多数表面活性剂用于纤维工业,其次就是洗涤工业。
随着农业科学技术的迅猛发展,表面活性剂在农业生产上液逐渐得到广泛的应用。
农工业中对表面活性剂的应用主要是作为农药的助剂,种类有渗透剂、黏着剂、分散湿润剂、展着剂和增效剂等,它的作用是可使农药稀释液稳定,溶液雾滴小,药业能均匀地与叶面接触,增加吸附,减少药业被雨水冲刷,延长药液在叶面的湿润时间,增加叶面对药液的吸收。
对充分发挥农药效果起重要的作用。
研究表明,表面活性剂作为农药、除草剂、生长调节剂和叶面肥等的助剂,之所以能够提高药效和养分的活性,其作用大致有以下几方面:①降低溶液的表面张力,增加溶液与叶表皮的亲和力,从而增加吸收量;②提高溶液中有效成分在水中的溶解度,促进有效成分的叶面吸收和在植物体内的运输;③起叶面湿润作用,延长溶液在叶面的附着时间,房主液滴迅速干燥,从而延长叶面吸收时间;④改变叶表面的结构,表面活性剂与植物叶表皮作用,引起植物叶片的生理生化变化,促进溶液中有效成分进入植物体内而发挥作用。
由于其具有良好的叶面润湿作用,目前表面活性剂已成为农药、叶面施肥中不可缺少的重要组成成分,对提高农药的药效和养分的叶面吸收效率具有明显的促进效果,表面活性剂的使用已经成为农药和叶面肥研制与应用中的一项关键技术。
但是不同的表面活性剂对不同药肥液的效果是不同的,因而在使用前必须了解表面活性剂的特性,以选择和利用适当的表面活性剂,才能收到好的效果。
二、表面活性剂的类型及其作用原理
(一)表面活性剂的类型及特性
表面活性剂是指一类在低浓度下即可明显地降低水和其他液体系表面张力或界面张力
的物质,部分表面活性剂还具有保湿、助渗的作用,由疏水亲油的非极性基和亲水疏油的极性基组成,属于一种两亲性(亲油和亲水)分子,具有在溶液表面产生定向吸附的特性,可以改变溶液的表面活性性质,如降低溶液表面张力、改变固体表面润湿性、增加溶质的水溶性等。
从理论上来说,可作为表面活性剂的化合物多得不可胜数,品种众多,但到目前为止也没有一个统一的分类方法。
根据需要可以从不同的角度将表面活性剂进行分类,如可按照表面活性剂离子类型、亲水基和疏水基的种类、结构的特殊性分类等。
在表面活性剂研究与应用过程中最常用的分类方法是按照其离子类型分类,即按表面活性剂分子结构中带电性的特征划分。
大多数表面活性剂是水溶性的,根据它们在说溶液中能否解离,可以将其分为离子型表面活性剂和非离子型表面活性剂。
非离子型表面活性剂在水中不能解离产生任何形式的离子,而离子型表面活性剂在水溶液中能够发生电离,产生带有正、负电荷的离子。
根据解离后所带电荷的类型,又将离子型表面活性剂分为阴离子型、阳离子型和两性离子型3大类。
非离子型表面活性剂极性基不带电荷,主要有聚氧乙烯类化合物,多元醇类化合物、亚砜化合物、氧化胺等。
阴离子型表面活性剂极性基带负电,主要有羧酸盐、磺酸盐、硫酸酯盐等,其中R为烷基,M主要为碱金属和胺离子。
如十二烷基磺酸钠,即属于这类表面活性剂。
阳离子型表面活性剂极性基带有正电,主要有季铵盐、烷基吡啶盐、铵盐等,其中A 主要为卤素和酸根离子。
如苄基三甲氯化铵在水中电离产生季铵阳离子,因此,其属于阳离子型表面活性剂。
两性表面活性剂分子中带有两个亲水集团,一个带有正电,一个带有负电。
其中带有正电的集团主要是氨基和季胺基,带有负电的集团则主要是羧基和磺酸基,如甜菜碱,其分子式为RN+(CH3)2CH2OO-。
这类表面活性剂在水中的离子性质通常与溶液的pH有关。
阴、阳离子型表面活性剂由于受溶液pH、无机盐类等因素的影响较大,从而造成对无机养分叶面吸收效果的促进效果不太稳定,在叶面肥配制中尽可能少使用,尤其是在高浓度无机养分类叶面肥的配制中受到很大限制;两性离子表面活性剂具有低毒及良好的生物降解特性,且与其他表面活性剂有良好的配伍性,一般可产生协同增效作用;而非离子型表面活性剂在营养液中稳定性高,不受无机盐类以及溶液pH的影响,一般无毒,且与其他表面活性剂的相溶性也叫较好。
另外,两性离子表面活性剂与非离子型表面活性剂还具有很好的抗硬水能力,因此,这两类表明活性剂在叶面肥中的应用非常广泛。
在自然界中,物质与气体、液体和固体三种状态存在,此物质三相必然会发生两两接触而形成接触面,通常把固-气或液-气两相之间的接触面称为固体或液体的表面,而液-液、固-固或固-液之间的接触面称为界面。
由于两相接触面上的分子与其本相内部的分子所处的状态不同,因而物质的表面或界面与其本相具有不同的表现,如在没有外力的影响或影响不大时,液体总是趋向于称为球状,液体的这种表面现象的成因主要是由于表面张力和表面自由能的作用。
在体积一定的各种形状中,球形的表面和表面自由能均最小,可见液体具有自动减少表面积而降低表面自由能的趋势。
表面张力现象和表面自由能不仅存在于液体表面,它存在于一切不同相的接触面(界面)。
表面活性剂的基本功能主要有两个:一是在物质表界面上吸附,形成吸附膜(一般单分子膜);二是在溶液内部自聚,形成多种类型的妃子有序组合体。
表面活性剂的这两种功能作用的直接结果是降低了物质表界面张力,改变了体系表界面的化学性质,表面活性剂特殊作用的产生主要依赖于这两个基本功能,从这两个功能出发,衍生出表面活性剂的其他多种应用功能,从而使表面活性剂具有起泡、消泡、乳化、分散、絮凝、润湿、铺展、渗透、润滑、抗静电以及杀菌等功能。
因此,在叶面喷施液中加入表面活性剂可以有效地降低其表
面张力,是指趋近于叶片表面临界表面张力值,改善喷施液在作物叶面的铺展以及养分的渗透性,甚至可以通过改变叶片蜡质层的性能,提高叶片表面能,增加喷施液的润湿性。
因此,表面活性剂的施用在叶面肥中不可或缺,是叶面肥研制与应用中的一项关键技术。
表面活性剂良好的表面活性性质甚至能降低作物害虫虫体表面活性,破坏其表面蜡质层,提高农药使用使用效果,因为也可以利用高浓度化肥的渗透作用杀死害虫,这种方法可以减少农药用量,而且无公害、成本低,具有良好的应用前景。