因式分解公式法

合集下载

公式法因式分解

公式法因式分解

公式法因式分解公式法因式分解是一种有效的数学方法,它可以帮助我们快速找出复杂的表达式的因式分解结果。

它的基本原理是,通过运用因式的定义和性质,将一个复杂的表达式分解成若干个简单的因式,从而得到它的因式分解式。

因式分解是一个十分复杂的概念,它涉及到多个关键概念,如因式、因数、展开式、积式、系数、系数和系数等。

因式分解的过程可以概括为:①将一个表达式分为因式;②将这些因式各自因数分解;③用展开式、积式等简单形式重新构造出因式分解式。

公式法因式分解的基本思想是,将一个复杂的多项式以特定的形式分解成若干个因式,从而使其因式分解式更加清晰明了。

例如,将多项式2x2+7x+6分解成因式,可以先将其分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),再重新构造出它的因式分解式:2x2+7x+6=(2x+3)(x+2),这样就得到了它的因式分解式了。

公式法因式分解的步骤如下:①根据多项式的式子把它分解成若干个简单的因式;②把每个因式因数分解;③用展开式、积式等形式重新构造出因式分解式。

本文将从实例出发,重点介绍公式法因式分解的实践方法。

首先,根据多项式的式子把它分解成若干个简单的因式。

需要特别注意的是,分解时一定要满足因式分解的特殊性质,即每个因式至少有一个非零系数。

例如:将多项式2x2+7x+6分解成展开式2x2+7x+3x+3,再进行因式分解:2x2+3x+3=(2x+3)(x+1),即可满足因式分解的特殊性质。

其次,要把每个因式的因数分解出来,以便重新构造出因式分解式。

这一部分最重要的是,要能够分解出每一组因式的因数,具体的方法是,把因式的项的系数分别乘起来,得到它的常数项,再根据它的单项式把它分解出对应的因数,就可以得到完整的因式分解式了。

最后,要把因式按照正确的形式重新构造出因式分解式。

首先,要根据因式分解的特殊性质重新排列因式,使每个因式的非零系数在因式分解式的头部;其次,要把多项式的最高次数项保留,其他项按降幂排序;最后,要对除系数外的各项因数进行乘积运算,把它们组合成因式分解式。

因式分解的公式大全,因式分解万能公式法的应用

因式分解的公式大全,因式分解万能公式法的应用

因式分解的公式大全,因式分解万能公式法的应用因式分解的公式大全?因式分解公式:平方差公式:(a+b)(a-b)=a²-b²完全平方公式:(a±b)²=a²±2ab+b²把式子倒过来: (a+b)(a-b)=a²-b² a²±2ab+b²= (a±b)²就变成了因式分解,因为这个原因,我们把用利用平方差公式和完全平方公式进行因式分解的方式称之为公式法。

例子:1、25-16x²=5²-(4x)²=(5+4x)(5-4x)2、p4-1 =(p²+1)(p²-1) =(p²+1)(p+1)(p-1)3、x²+14x+49 =x²+2·7·x+7² =(x+7)²4、(m-2n)²-2(2n-m)(m+n)+(m+n)² =(m-2n)²+2(m-2n)²(m+n)+(m+n)² =[(m-2n)+(m+n)]² =(2m-n)²因式分解万能公式法?1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

《公式法》因式分解

《公式法》因式分解
《公式法》因式分解
汇报人: 2023-12-26
目录
• 公式法因式分解简介 • 公式法因式分解的基本步骤 • 公式法因式分解的常见类型 • 公式法因式分解的实例解析 • 公式法因式分解的注意事项
01
公式法因式分解简介
因式分解的定义
01
02
03
因式分解的定义
将一个多项式表示为几个 整式的积的形式,这种变 形叫做把这个多项式因式 分解,也叫做分解因式。
在化简过程中,需要注意消除项和合 并同类项。
简化多项式可以使其更容易理解和计 算。
03
公式法因式分解的常见类型
二次多项式的因式分解
01
02
03
04
总结词
利用完全平方公式和平方差公 式进行因式分解
公式法
$ax^2+2abx+b^2=(ax+b) ^2$
公式法
$ax^2-b^2=(ax+b)(ax-b)$
二次多项式的实例解析
总结词
二次多项式是多项式中最简单的一类, 其因式分解方法相对固定,公式法是其 中最常用的方法之一。
VS
详细描述
对于形如ax^2+bx+c的二次多项式,我 们可以使用公式法进行因式分解。首先计 算判别式b^2-4ac的值,然后根据判别式 的值选择合适的公式进行因式分解。当判 别式大于0时,二次多项式有两个实根, 可以使用公式法分解为两个一次多项式的 乘积;当判别式等于0时,二次多项式有 一个重根,可以分解为一个一次多项式的 平方;当判别式小于0时,二次多项式没 有实根,无法使用公式法进行因式分解。
因式分解的步骤
提取公因式、公式法、十 字相乘法、分组分解法等 。
因式分解的作用

因式分解公式法

因式分解公式法

因式分解公式法14.3因式分解(公式法)知识点一:因式分解的概念因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

1.因式分解的对象是多项式;2.因式分解的结果一定是整式乘积的形式;3.分解因式,必须进行到每一个因式都不能再分解为止;4.公式中的字母可以表示单项式,也可以表示多项式;5.结果如有相同因式,应写成幕的形式;6.题目中没有指定数的范围,一般指在有理数范围内分解;知识点二:基本公式2 2 2 21、(a+b)(a -b) = a -b ---- a -b =(a+b)(a -b);2、(a ± b)2 = a 2土 2ab+b2--- a 2土2ab+b2=(a ± b)2;3、(a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2);2 23 3 3 3 2 2、4、(a -b)(a +ab+b ) = a -b --- a -b =(a-b)(a +ab+b ).2 2 2 25、a +b +c +2ab+2bc+2ca=(a+b+c);3.3 3 2.2 26、a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca);知识点三:方法及典型例题一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。

例1、分解因式:2 2(1) X -9 ;(2) 9x -6x+1。

二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。

例2、分解因式:5 3 3 5 3 2 2 3(1) X y -x y ;(2) 4x y+4x y +xy。

三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、分解因式:2 2 2 2 4(1)4x -25y ; (2)4x -12xy +9y .四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止?例4、分解因式:4 4 4 2 2 4(1)x -81y ; (2)16x -72x y +81y .五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。

因式分解的公式法

因式分解的公式法

因式分解的公式法
因式分解是将一个多项式表达式写成若干个因式相乘的形式。

有以下几种常用的公式法进行因式分解:
1. 公因式提取法:
当多项式的每一项都有一个公因子时,可以将这个公因子提
取出来。

例如:2x + 4y = 2(x + 2y)
2. 完全平方公式:
当一个二次多项式是一个完全平方时,可以使用完全平方公
式进行因式分解。

例如:x^2 + 2xy + y^2 = (x + y)^2
3. 差平方公式:
当一个二次多项式可以表示为两个项的差的平方时,可以使
用差平方公式进行因式分解。

例如:x^2 - y^2 = (x + y)(x - y)
4. 因式定理:
当一个多项式可以被一个因式整除时,可以使用因式定理进
行因式分解。

例如:x^2 - 4 = (x + 2)(x - 2)
5. 一般情况下,可以使用试除法、短除法等方法进行因式分解。

以上是一些常用的公式法进行因式分解的方法,具体的应用需要根据多项式的形式和特点来选择相应的方法进行因式分解。

公式法因式分解

公式法因式分解
平方差公式:
即两数和与这两数差的积等于这两个 数的平方差.
两数和(差)的平方公式:
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
语言表述:两数和(差)的平方,等于它们 的平方和加上(减去)它们乘积的两倍。
公式的结构特征:
(1)公式左边是两数和(差)的平方;
(2)公式右边是二次三项式,它是左边两数的平方 和加上(减去)左边两数积的两倍。
正方形空地,则这块空地的边长为多少米?
问题二:把一个边长a=6.6厘米的正方形零件的四角均切去 一个边长b=1.7厘米的小正方形,则剩余面积是多少?
把下列多项式分解因式
5a2 25a
3a2 9ab
解原式=-( 5a2 25a ) 解原式= 3a(a-3b)
=-5a(a-5)
25 x2 16 y2
动手做一做,看谁算得快。
把下列各式因式分解
① 9x2 4y2
9x2 4y2
(3x 2y)(3x 2y) (3x 2y)(3x 2y)
(2y 3x)(2y x)
② 9x2 12 xy 4 y2 9x2 12 xy 4 y2
(3x 2y)2
(3x 2y)2
小游戏
__ x2 ___ xy __ y2
游戏规则:一名同学说出两边的两个平方 数,另一个同学迅速说出中间的数字。
本节所学知识你掌握了吗,练一 练就知道了,思考后认真填写。

x2

1
(x
1)(x
1

4
2
2
② m2 mn _0_._2_5_n_ 2= (m 0.5n)2

因式解法公式法公式

因式解法公式法公式

因式解法公式法公式
一、因式分解的概念
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

例如:x^2-4=(x + 2)(x- 2)。

二、公式法因式分解的公式
1. 平方差公式
- 公式:a^2-b^2=(a + b)(a - b)
- 适用条件:多项式是两项式,并且这两项都能写成平方的形式,而且符号相反。

- 示例:
- 分解因式9x^2-16y^2,这里a = 3x,b=4y,根据平方差公式可得9x^2-16y^2=(3x + 4y)(3x-4y)。

2. 完全平方公式
- 完全平方和公式:a^2+2ab + b^2=(a + b)^2
- 完全平方差公式:a^2-2ab + b^2=(a - b)^2
- 适用条件:
- 对于a^2+2ab + b^2=(a + b)^2,多项式是三项式,其中两项能写成平方的形式(a^2和b^2),另一项是这两个数乘积的2倍(2ab)。

- 对于a^2-2ab + b^2=(a - b)^2同理。

- 示例:
- 分解因式x^2+6x + 9,这里a=x,b = 3,因为x^2+6x+9=x^2+2×3x + 3^2,根据完全平方和公式可得x^2+6x + 9=(x + 3)^2。

- 分解因式4x^2-20x+25,这里a = 2x,b=5,因为4x^2-20x +
25=(2x)^2-2×5×2x+5^2,根据完全平方差公式可得4x^2-20x + 25=(2x - 5)^2。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一:因式分解的概念
因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

4、(a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).
5、a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
6、a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);知识点三:方法及典型例题一、直接用公式:当所给的多用公式法分解因式。

例1、分解因式:
1)x2-9;
:当所
分解因式:
1)x5y3-x3y5;
:当
,转换为
分解因式:
2-25y2;
:通过方式的形式,然后利公式
再分解为止.
例4、分解因式:
(1)x4-81y4;
五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。

例5、 分解因式:
(1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y).
2、下列多项式中,能用公式法进行因式分解的是( )
(A)22x y + (B)222x xy y -+ (C)222x xy y +- (D)22x xy y ++
3、 41x -的结果为( )
A.22(1)(1)x x -+BD.3(1)(1)x x -+
4、代数式42819x x --,,
A.3x - B.(3
x +11、把下列各式分解因式.
(1)249x -; (2)4
220.01625m n -.
12、把下列各式分解因式.
(1)2816a a ++;
(2)2(2)6(2)9a b a b ++++;(3)
2
21222
x xy y ++; (4)2244mn m n ---.
13、已知11
28
a b ab -==,,求22332a b ab a b -++的值.
14、把下列各式分解因式.
2、若9x 2-m x y +16y 2是一个完全平方式,则m=( )
A 、12
B 、24
C 、±12
D 、±24
3、若-b ax x -+221分解成)7)(4(2
1
+--x x ,则a 、b 的值为( )
A 、3或28
B 、3和-
4、下列变形是因式分解的
A 、x 2+x -1=(x +1)(x -
C 、x 4-1=(x 2+1)(x +1
-k x 4=(9+ 4x 2
)(
1 B 、4
91a 2+3
2
ab +b 2
4x 2+12x y -9y 2
y 9-,
3, B 、4
a+
A 、a 2-2ab +b 2
9、下列分解因式错误的是
A 、4x 2-12x y+9y 2=(2x +3y )
2
C 、5x 2
-125y 4
=5(x -y 2
)(x +y 2
) D 、-81x 2
+y 2
=-(9x -y )(9x +y ) 10、下列分解因式正确的是( )
A 、(x -3)2
-y 2
=x 2
-6x +9-y 2
, B 、a 2
-9b 2
=(a+9b )(a -9b ) C 、4x 6-1=(2x 3+1)(2x 3-1), D 、2x y -x 2-y 2=(x -y )2
18、x (x +y)(x -y)-y(y+x )(y -x )=(x -y)( )。

19、观察下列各式:x 2-1=(x +1)(x -1),(x 3-1)=(x -1)(x 2+x +1),
x 4-1=(x -1)(x 3+ x 2+1+x ),根据前面的规律可得x n
-1= 。

20、请写出一个三项式,使
写的三项式是 。


三、把下列各式因式分解
21、16 x 2-b 2 22
12x 2+36
2a -b=3,求-8a 2
x +y=
2
1,x y=83,求
x 2+y 2+2x -6y+10=
a x 2+
b x +1
a 、
b 之间的30、观察下列等式
12-02=1 22-12=3
(1) 根据以上计算,你发
律。

(2)用因式分解的知识证明你发现的规律。

31、已知矩形的周长为28cm,两边长为x、y,且x、y满足x2(x+y)-y2(x+y)=0,求该矩形的面积。

相关文档
最新文档