大学物理习题选编及答案(主编:陈晓)_中国水利水电出版社(下)
大学物理练习册(下)答案解析

练习一1、C ,2、C ,3、C ,4、D,5、()j y a qy2/322042+πε, (j 为y 方向单位矢量), 2/a ± ,6、()30220824R qdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 7、解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L , 它在P 点的场强: ()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.8、解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220RQR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R Q E E x π==,θθεθd cos 2cos d d 202R Q E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R Q R Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以 j R Q j E i E E y x202επ-=+=练习二1、D ,2、C ,3、A ,4、C,5、不变、变,6、-3σ / (2ε0) ,-σ / (2ε0), 3σ / (2ε0)7、解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示. 按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧) (2)过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有 ()022εεkSbxdx kSS E E x==+'⎰xS P SEESSEd x b E 'd qR O xyθd θθPLdd q x (L+d -x )d ExO得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x = 6、解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体密度为-ρ的同样大小的球体,求出电场2E,并令任意点的场强为此二者的叠加,即可得 210E E E +=在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小.ρε302113414d d d E S E S π⋅=π⋅=⋅⎰ 有 E 1O’=E 1P =d E 013ερ= 方向分别如图所示. 在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S '可求得P 点场强E 2P()032223/)(4)(24d ερ-π=π⋅='⋅⎰'r d E S E S203212dr E P ερ-= (1) 求O '点的场强'O E. 由图(a)、(b)可得 E O ’ = E 1O’ =03ερd, 方向如图(c)所示.(2) 设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r则3ερr E PO =, 03ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.练习三1、D ,2、B ,3、C,4、C,5、q / (6πε0R )6、负,增加7、解:由高斯定理可得场强分布为:E =-σ / ε0 (-a <x <a ) E = 0 (-∞<x <-a ,a <x <+∞=E 1P ρ PE 2P E P 图(d) O O ' P E 1O’ ρ 图(a) O ρO ' d E O’=E 1 图(c)O P E 2P -ρ O 'r E 2O’=0图(b)E 1P由此可求电势分布:在-∞<x ≤-a 区间⎰⎰⎰---+==000/d d 0d aa xxx x x E U εσ0/εσa -=在-a ≤x ≤a 区间 00d d εσεσxx x E U x x =-==⎰⎰ 在a ≤x <∞区间 0000d d 0d εσεσax x x E U a a x x =-+==⎰⎰⎰8、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=', 该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2) 整个细线所受电场力为: ()l r r lq x x q F l r r +π=π=⎰+00024d 400ελελ 方向沿x 正方向.电荷元在球面电荷电场中具有电势能: d W = (q λd x ) / (4πε0 x ) 整个线电荷在电场中具有电势能: ⎪⎪⎭⎫ ⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ练习四1、D ,2、D ,3、B ,4、C ,5、U C C C C C q U C C C C C 21212221211)(,)(+-=+-,6、r εεσσ0,, 7、解:金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8、解:令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ∵ AB AC U U =,即-a +a O x UO R x r 0 r 0+ld xx∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV练习五1、πR 2c2、 5.00×10-5 T , 3、20d 4a lI πμ , 平行z 轴负向 ; 4、)11(4120R R I -μ,垂直纸面向外 ,2/122210)11(4R R I+μ ,12arctg R R +π21,5、)3231(40ππμ-+R I , 6、C, 7、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l R II d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R I R I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y∴ i B51037.6-⨯= T8、解:(1) 对r ~r +d r 段,电荷 d q = λ d r ,旋转形成圆电流.则 r dq I d 22d π=π=λωω 它在O 点的磁感强度rrr IB d 42d d 000π==λωμμ⎰⎰+π==b a a r r B B d 4d 000λωμa ba +π=ln 40λωμ 方向垂直纸面向内. r r I r p m d 21d d 22λω=π=⎰⎰+==ba am m r r p p d 21d 2λω 6/])[(33a b a -+=λω 方向垂直纸面向内.练习六1、B2、)2(120I I -μ3、320μI , 4、Rihπμ20,5、)2/(210R rI πμ ,0 6、解:取同轴闭合圆环r l π2= )(b r a <<则 ⎰π=⋅lr B l B 2d2222)(a b Ia r I ππππ--=∑∴ )(2)(22220a b r a r I B --=πμ 7、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RIRd 2020⎰π=μπ=40I μ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+IμOarbd r ω1、A ,2、B ,3、)/(cos 2eB m θv π, )/(sin eB m θv ,4、alB 2,5、铁磁质,顺磁质,抗磁质,6、 0.226 T ,300 A/m7、解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l IA J 8、解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210=21021060cos 22dxx I I dl x I I dF ⋅==πμπμ ab I I dxx I I F ba ln 60cos 22100210πμπμ=⋅=⎰1、D ,2、C ,3、A ,4、0.40 V , 0.5 m 2/s ,5、 5×10-4 Wb ,6、解:2IB xμπ=ln 22d adIl Id a ldx x dμμππ++Φ=⋅=⎰0l n c o s 2N I l d d a Nt dt dμωεωπΦ+=-=- 7、解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.练习九1、28/104.0s m ⨯顺时针 2、 πBnR 2 ,O 3、dtdBR221π, 4、等于零,不等于零;不等于零,等于零 5、RBfr 22π6、解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ 7、解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=t abd d 2ΦεtB R B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →练习十1、C ,2、C ,3、0,4、 垂直纸面向里 , 垂直OP 连线向下 ,5、(4)(2)(1) 5、解:圆柱形电容器电容 12ln 2R R lC πε=12ln 2R R lUCU q πε== 1212ln ln 22R R r U R R r lU S q D εππε===∴ 12ln R R r ktDj ε=∂∂=6、如图10-17图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ练习十一1、A2、 B3、B ,4、D ,5、2π (n -1) e / λ , 4×103 ;6、解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm7、解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,则应有 r 2-r 1=k λ所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处练习十二1、A ,2、 C ,3、C ,4、 1.40 ,5、0.6mm 。
大学物理习题选编及答案(主编:陈晓)_中国水利水电出版社(上)【38页】

质点运动学1一、选择题1、 分别以r、s 、 和a 表示质点运动的位矢、路程、速度和加速度,下列表述中正确的是A 、r rB 、 dt ds dt r dC 、dt d aD 、 dtdr [ B ] 2、 一质点沿Y 轴运动,其运动学方程为324t t y , 0 t 时质点位于坐标原点,当质点返回原点时,其速度和加速度分别为 A 、116 s m ,216 s mB 、116 s m ,216 s mC 、116 s m ,216 s mD 、116 s m ,216 s m [ C ]3、已知质点的运动方程为: cos cos 2Bt At x , sin sin 2Bt At y ,式中 、、B A 均为恒量,且0 A ,0 B ,则质点的运动为:A .一般曲线运动;B .圆周运动;C .椭圆运动;D .直线运动; ( D )[分析] 质点的运动方程为 22cos cos sin sin x At Bt y At Bt由此可知tan xy, 即 x y tan 由于 恒量,所以上述轨道方程为直线方程。
又sin cos Bt A v Bt A v y x 22恒量恒量sin cos B a B a yx 22由于0 A ,0 B ,显然v 与a 同号,故质点作匀加速直线运动。
4、质点在平面内运动,位矢为)(t r,若保持0 dtdr,则质点的运动是A 、匀速直线运动B 、 变速直线运动C 、圆周运动D 、匀速曲线运动 [ C ]二、填空题5、一质点沿直线运动,其运动学方程为26t t x ,则t 由0至4s 的时间间隔内,质点的位移大小为 8 m ,在t 由0到4s 的时间间隔内质点走过的路程为 10 m 。
6、质点的运动方程为j t t i t t r )3121()21(32 ,当s t 2 时,其加速度 a4r i j v v v。
7、质点以加速度t k a 2 作直线运动,式中k 为常数,设初速度为0 ,则质点速度 与时间t 的函数关系是20111kt v v 2。
华北水利水电学院.大学物理.下.部分习题练习答案及课件

3 8.31 ( 294 293) 0.856m/s 0.029
5-17
p
2 p1
T3
(1) E 0
m p1 ( 2) Q C P (T2 T1 ) T2 T1 M m CV (T3 T2 ) o V1 2V1 M 5 3 (2 p1V1 p1V1 ) (4 p1V1 2 p1V1 ) 2 2 11 p1V1 5.6 10 2 J 2
0
四、循环过程及其效率:
循环过程的特征:内能不发生变化。 E 0
热机的效率定义为: W Q1 Q2 Q2 1 Q1 Q1 Q1
(1) 式中Q1为系统从高温热源吸收的总热量; Q2为 系统向低温热源放出的总热量。 (2) 不同的热机效率不同,但对任何热机,其效率 必定是 < 1。 致冷机的致冷系数定义为: Q2 Q2 Q1 Q2 W
o
V
5-13
等压过程对外作功最多。 等压过程内能增加最多。
等压过程吸收热量最多。
5-14
800 1 20% 1000
o V W Q1 400J
1
2V1
V
5-15
设气体的质量为m m 3 1 2 RT mv M 2 2
M v2 ΔT 6.42K 3R
T T0 ΔT
5-9
P 2mv cos45 i
NΔPi 2 Nmv cos 450 p 2.33103 Pa S S
5-10 分布在 0→vp 速率区间内的分子数占总分子数 的比率 v> vp 的分子数为:
vp
N f (v)dv
p
v> vp 分子的速率之和为: v vNf (v)dv
大学物理习题选编(主编:陈晓)(下)

振动习题一、选择题1、 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(π+=t A y ω.则与之对应的振动曲线是 [ B ]2、 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为A 、T /12B 、T /8.C 、T /6.D 、T /4 [ C ] 3、 将两个振动方向,振幅,周期都相同的简谐振动合成后,若合振幅和分振动的振幅相同,则这两个分振动的位相差是: A 、6π; B 、3π; C 、2π; D 、23π [ D ]二、填空题4、 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为 0 ,速度为 3π cm/s .5、 一简谐振动的旋转矢量如图所示,振幅矢量长2cm ,则该简谐振动的初相为 π/4 .振动方程为x=2cos(πt+π/4) cm .6、 一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为x=0.04cos(πt+π/2) m 。
三、计算题7、 质量为2 kg 的质点,按方程)]6/(5sin[2.0π-=t x 沿着x 轴振动.求: (1) t = 0时,作用于质点的力的大小;(2) 作用于质点的力的最大值和此时质点的位置.t-解:(1))65cos(π-==t dt dx v )65sin(5π--==t dt dv aN t ma F 5)65sin(520=-⨯==∴π(2)N F10max=m x 2.0±=∴8、 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:(1) T=8s )/(42s rad T ππω==∴ 设振动方程为)4cos(ψπ+=A xt=0时,5cos 0-==ψA x①t=2时,5)2cos(0=+=πψA x ② 由①②得,1=ψtg ,考虑到00>vπψ43-=∴ 代入①得,cm A 25=)434cos(25ππ-=∴t x (cm)(2))434sin(245πππ--==t dt dx vππ45222450=⨯=v (cm/s)波动习题1一、选择题1、 一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y ,则该波在t = 0.5 s 时刻的波形图是 [ B ]m )-m )2、 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则A 、波的频率为a .B 、波的传播速度为 b/a .C 、波长为 π / b .D 、波的周期为2π / a . [ D ] 3、 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为A 、])/(cos[0φω+-=u x t Ay . B 、)]/([cos u x t A y +=ω. C 、})]/([cos{0φω+-=u x t A y . D 、})]/([cos{0φω++=u x t A y . [ D ] 二、填空题4、 A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ____1/2____________m .5、 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为 π.6、 请按频率递增的顺序,写出比可见光频率高的电磁波谱的名称___紫外线_______ ;_______X 射线___; ___γ射线______ . 三、计算题7、 图为t = T / 4 时一平面简谐波的波形曲线,求其波的表达式。
大学物理课后习题答案(高教版 共三册)(2020年7月整理).pdf

直的平面上有一点 P,它到板的距离为 x 。求 P 点的磁感应强度的大小。
解: 取如图坐标系,在电流平板上取一条形平面,其在 P 点产生的磁场为
dB = 0dI =
0
I0 2a
dy
,
dB
的方向垂直
r
。
2r 2 x2 + y 2
由于电流平板相对 x 轴对称,所以在 P 点的总磁感应强度 B
x 轴的分量: Bx = dBx = 0 ;
B = 0 I (3 + 2 ) 4 2a b
6、如图,流出纸面的电流为 2I,流进纸面的电流为 I, 请写出每一个线圈中的环路公式。 解:根据线圈的绕向和线圈中电流和的方向是否满足右 手螺旋定则来判断。
L1
2I
L3
I L2
L4
所以由磁场中的安培环路定理有:
(A) H • dl = −2I
(B) H • dl = −I
解: 因为截流圆线圈轴线上的磁场
B=
0 IR2
3
2(R2 + x2 ) 2
而 I = 2R 2 = R
B
=
Bx
=
0 R 3
2(R2
+
x
2
)
3 2
,B
的方向与 x
轴的正方向一致。
x
o
R
ω
14、设氢原子基态的电子轨道半径为 a0,求由于电子的轨道运动(如图)在原子核处(圆心处)
产生的磁感强度的大小和方向. 解:①电子绕原子核运动的向心力是库仑力提供的.
值不为零。
18、如图所示,一无限长载流平板宽度为 a,线电流密
度(即沿 x 方向单位长度上的电流)为 ,求与平板共面且
大学物理下练习题参考解答

故高斯面上, E 不一定为零。
∫∫ ∑ 由(C)不能肯定
E ⋅= dS
S
1 ε0
qi ≠ 0 ,所以高斯面内不一定有电荷。
i
∑ ∫∫ 高斯面内有净电荷,即
qi ≠ 0 ,通过高斯面的电通量
E ⋅ dS ≠ 0 。
S
i
高斯定理是静电场的基本规律,仅适用于任意的静电场。
故只有(D)正确。
将缺口圆环看成是从一个电荷线密度为 λ 的均匀带电圆环上割去长度为 d 的一小
弧(缺口)而成。设缺口圆环、缺口在圆心产生的场强分别为 E 、 E′ ,由对称性得
E + E′ = 0 ,即 E = −E′
∵ d R ,小弧可近似为带电量为 λd 的点电荷,
∴ E=
qd
,方向从缺口中心指向圆心 o 点
Ey
= 2 π / 2 − Q cosθ dθ 0 2π 2ε0 R2
= − Q π 2ε0R2
E= −
Q
j
π 2ε0R2
3.解:电荷分布如图所示,由电荷分布的对称性知,圆心处的场强沿 x 轴负向。
取电荷元 dq ,= dq λ= dl λ0 cosφ Rdφ
y
dq 在 o 点产生的场= 强 dE
R2 )3/ 2
i
∫∫ ∑ 5.解:由高斯定理
E
⋅
dS
=1
S
ε0 i
qi ,知
∫∫ ∑ (A)说明: E ⋅ dS = 0 ⇒ S
qi = 0 ,并不能说面内必无电荷,
i
∑ ∫∫ (B)说明: qi = 0 ⇒
E ⋅ dS = 0 ,但高斯面上的场强由空间所有电荷产生,
大学物理下复习题(附答案)word版本

大学物理下复习题(附答案)大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。
()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。
()错电荷电量是量子化的。
()对物体所带电量可以连续地取任意值。
()错物体所带电量只能是电子电量的整数倍。
()对库仑定律只适用于真空中的点电荷。
()对电场线稀疏处的电场强度小。
()对电场线稀疏处的电场强度大。
()错静电场是有源场。
()对静电场是无源场。
()错静电场力是保守力。
()对静电场力是非保守力。
()错静电场是保守力场。
()对静电场是非保守力场。
()错电势是矢量。
()错电势是标量。
()对等势面上的电势一定相等。
()对沿着电场线的方向电势降落。
()对沿着电场线的方向电势升高。
()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。
()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。
()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。
()错电荷在电场中某点受到电场力很大,该点场强E一定很大。
()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。
()对在以点电荷为中心,r为半径的球面上,场强E处处相等。
()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。
()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。
()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。
()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。
()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。
对导体达到静电平衡时,导体内部的场强处处为零。
()对第一章填空题已一个电子所带的电量的绝对值。
1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。
8.85*10-12真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。
大学物理习题集加答案解析

大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动习题一、选择题 )4/3cos(π+=t A y ω.则与之对应的振动曲线是B ]一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 A 、T /12B 、T /8.C 、T /6.D 、T /4 [ C ]将两个振动方向,振幅,周期都相同的简谐振动合成后,若合振幅和分振动的振幅相同,则这两个分振动的位相差是: A 、6π; B 、3π; C 、2π; D 、23π [ D ]二、填空题一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为 0 ,速度为 3π cm/s .t一简谐振动的旋转矢量如图所示,振幅矢量长2cm ,则该简谐振动的初相为 π/4 .振动方程为x=2cos(πt+π/4) cm .-一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为 x=0.04cos(πt+π/2) m 。
三、计算题质量为2 kg 的质点,按方程)]6/(5sin[2.0π-=t x 沿着x 轴振动.求: (1) t = 0时,作用于质点的力的大小; (2) 作用于质点的力的最大值和此时质点的位置.解:(1))65cos(π-==t dt dx v )65s i n (5π--==t dt dv aN t ma F 5)65sin(520=-⨯==∴π(2)N F10max=m x 2.0±=∴一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;ABvx(2) 质点在A 点处的速率. 解:(1) T=8s )/(42s rad T ππω==∴ 设振动方程为)4cos(ψπ+=A xt=0时,5cos 0-==ψA x①t=2时,5)2cos(0=+=πψA x ② 由①②得,1=ψtg ,考虑到00>vπψ43-=∴ 代入①得,cm A 25=)434c o s (25ππ-=∴t x (cm)(2))434sin(245πππ--==t dt dx vππ45222450=⨯=v (cm/s)波动习题1 一、选择题一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y ,则该波在t = 0.5 s 时刻的波形图是 [ B ]m )-m )已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 A 、波的频率为a . B 、波的传播速度为 b/a .C 、波长为 π / b .D 、波的周期为2π / a . [ D ]如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为 A 、])/(cos[0φω+-=u x t A y . B 、)]/([cos u x t A y +=ω. C 、})]/([cos{0φω+-=u x t A y .D 、})]/([cos{0φω++=u x t A y . [ D ] 二、填空题A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ____1/2____________m .已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为 π.请按频率递增的顺序,写出比可见光频率高的电磁波谱的名称___紫外线_______ ;_______X 射线___; ___γ射线______ . 三、计算题图为t = T / 4 时一平面简谐波的波形曲线,求其波的表达式。
解:3304==μλT πππω16543302T 2=⨯== ])360(165cos[1.0y ψπ+-=xts T t 33014==0]3601165cos[1.00=+⨯=ψπy0〉V-πψ=∴])360(165cos[1.0y ππ+-=xt 一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式. 解:设])(cos[y ψυω+-=xt Am X 24.0651.022=⇒=⨯=⨯=λπλπΔλπΔψ s m T /84.024.0272=⨯===πλωλυt=1时,346521πππφ=+=t=0时,ππππφ637340-=-= 即3π 所以]3)84.0(7cos[1.0y ππ+-=x t波动习题2 一、选择题A B C 、它从相邻的一段质元获得能量其能量逐渐增大。
D 、它把自己的能量传给相邻的一段质元,其能量逐渐减小。
[ D ]图中画出一向右传播的简谐波在t 时刻的波形图,反射面为波密介质,波由P 点反射,则反射波在t 时刻的波形图为[ B ]二、填空题在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16则这两列波的振幅之比是 A 1 / A 2 = 4/1 。
如图所示,在平面波传播方向上有一障碍物AB ,根据惠更斯原理,定性地绘出波绕过障碍物传播的情况.三、计算题在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π-π-=x t y .若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式. 解:30.01cos(4)2y t =-π入入射波在反射端:10.01cos(4)2y t =-π反反射波在反射端:0.01cos[4(5)]20.01cos[4]2y t x t x ππππ=+--=++反反射波波动方程:A如图所示,原点O 是波源,振动方向垂直于纸面,波长是λ .AB 为波的反射平面,反射时无相位突变π.O 点位于A 点的正上方,h AO =.Ox 轴平行于AB .求Ox 轴上干涉加强点的坐标(限于x ≥ 0). 解:2122())2r r x k ππϕπλλ∆=-==加强2212h x k k λλ=-火车A 以20m ·s -1的速度向前行驶,A 车的司机听到本车的汽笛频率为120Hz ,另一火车B ,以25m ·s -1的速度向A 迎面驶来,问B 车司机听到A 车汽笛的频率是多少?(设空气中声速为340 m ·s -1) 解:13402512013734020o s s u V Hz u V νν++==⨯=--光的干涉 一、选择题有下列说法:其中正确的是A 、从一个单色光源所发射的同一波面上任意选取的两点光源均为相干光源;B 、从同一单色光源所发射的任意两束光,可视为两相干光束;C 、只要是频率相同的两独立光源都可视为相干光源;D 、两相干光源发出的光波在空间任意位置相遇都以产生干涉现象。
[ A ] 折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(1)与(2)的光程差是 A 、2n 2eB 、2n 2e-λC 、2n 2e-λD 、2n 2e-λ/2n 2 [ A ]用两根直径分别为d 1和d 2的细金属丝将两块平板玻璃垫起来。
形成一个空气劈。
如果将两金属丝拉近,这时:A 、条纹宽度变宽,两金属丝间的条纹数变少;B 、条纹宽度不变,两金属丝间的条纹数变少;C 、条纹宽度变窄,两金属丝间的条纹数不变;D 、条纹宽度不变,两金属丝间的条纹数不变。
[ C ] 二、填空题如图所示,双缝干涉实验装置中两个缝用厚度均为e ,折射率分别为n 1和n 2的透明介质膜覆盖( n 1 > n 2 ),波长为λ的平行单色光照射双缝,双缝间距为d ,在屏幕中央O 处(S 1O = S 2O ),两束相干光的位相差122()n n e πφλ∆=-用波长为λ的平行单色光垂直照射折射率为n 的劈尖薄膜,形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=arcsin()2nlλ由两块玻璃片组成空气劈形膜,当波长为λ的单色平行光垂直入射时,测得相邻明条纹的距离为L 1。
在相同的条件下,当玻璃间注满某种透明液体时,测得两相邻明条纹的距离为L 2。
则此液体的折射率为12L L 。
已知在迈克尔逊干涉仪中使用波长为λ的单色光,在干涉仪的可动反射镜移动一距离d 过程中,干涉条纹将移动2dλ条。
三、计算题在杨氏双缝干涉实验中,用波长为5.0×10-7m 的单色光照射到间距为d =0.5mm 的双缝上,屏到双缝中心的距离D=1.0m 。
求:(1)屏上中央明纹两侧第10级明纹中心之间的距离; (2)条纹宽度;(3)用一云母片(n=1.58)遮盖其中一缝,中央明纹移到原来第8级明纹中心处,云母处的厚度是多少? 解:(1) 10102200.02D Dx k x x m ddλλ=∆=== (2)0.001Dl m dλ∆==(3)68(1)8 6.9101n e e m n λλ--===⨯- 白光垂直照射到空气中一厚度为 400nm 的肥皂膜上,设肥皂膜的折射率为n =1.33,试问该膜的正面呈什么颜色,背面又呈什么颜色? 解:21064211222nd nd k nm k k λδλλ=+==--正面:= 210642122nd nd k nm k kλλδλ=+==背面:=(2+) 4007601,2128()2,709()3,425()4()nm k k nm k nm k λλλ-=======可见光波长范围:正面:红外红光紫光,紫外1,1064()2,532()3,355()k k nm k nm λλλ======背面:红外黄光紫外光的衍射 一、选择题根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面元发出的子波各自传到P 点的 A 、振动振幅之和B 、光强之和C 、振动振幅之和的平方D 、振动的相干叠加 [ D ]波长λ=5000Å的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹中心之间的距离为d =12mm ,则凸透镜的焦距f 为 A 、20mB 、1mC 、0.5mD 、0.2m [ B ]在单缝夫琅和费衍射实验装置中,S 为单缝,L 为透镜,屏幕放在L 的焦面处的,当把单缝S 垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样A 、向上平移B 、向下平移C 、不动D 、条纹间距变大 [ C ] 已知光栅常数为(a+b )=6.00×10-4cm ,透光孔a =1.5×10-4cm 。