高中数学竞赛讲义_平面几何
2023年数学名师叶中豪整理高中数学竞赛平面几何讲义完整版

高中平面几何叶中豪学习要点几何问题的转化圆幂与根轴P’tolemy定理及应用几何变换及相似理论位似及其应用完全四边形与Miquel点垂足三角形与等角共轭反演与配极, 调和四边形射影几何复数法及重心坐标方法例题和习题1. 四边形ABCD中, AB=BC, DE⊥AB, CD⊥BC, EF⊥BC, 且。
求证:2EF=DE+DC。
(10081902.gsp)2. 已知相交两圆O和O'交于A.B两点, 且O'恰在圆O上, P为圆O的AO'B弧段上任意一点。
∠APB的平分线交圆O'于Q点。
求证: PQ2=PA×PB。
(10092401-1.gsp)3. 设三角形ABC的Fermat点为R, 连结AR, BR, CR, 三角形ABR, BCR, ACR的九点圆心分别为D, E, F, 则三角形DEF为正三角形。
(10082602.gsp)4. 在△ABC中, 已知∠A的内角平分线和外角平分线分别交外接圆于D.E, 点A关于D.E的对称点分别为F、G, △ADG和△AEF的外接圆交于A和另一点P。
求证: AP//BC。
(10092102.gsp)5. 圆O1和圆O2相交于A.B两点, P是直线AB上一点, 过P作两圆作切线, 分别切圆O1和圆O2于点C.D, 又两圆的一条外公切线分别切圆O1和圆O2于点E, F。
求证: AB.CE、DF共点。
(10092201.gsp)6. 四边形ABCD中, M是AB边中点, 且MC=MD, 过C.D分别作BC.AD的垂线, 两条垂线交于P点, 再作PQ⊥AB于Q。
求证: ∠PQC=∠PQD。
(10081601-26.gsp)7. 已知RT△ABD∽RT△ADC, M是BC中点, AD与BC交于E, 自C作AM垂线交AD于F。
求证: DE=EF。
(10083001.gsp)8. 在△ABC中, AB=AC, D为BC边的中点, E是△ABC外一点, 满足CE⊥AB,BE=BD。
【北师大附中】2020-2021学年高中数学竞赛课程讲义高二平面几何(一)---三角法

平面几何(一)---三角法一、知识点拨三角法是平面几何的基本而又重要的方法之一. 熟练掌握和运用公式是用三角法解决平面几何问题的基础.较常用的有:1.正余弦定理;2.积化和差、和差化积公式;3.三倍角公式;4.其他.二、例题选讲例1(四边形的余弦定理)设凸四边形ABCD 对角线交于点P ,θ=∠APB ,求证:BDAC CD AB BC AD ⋅--+=2cos 2222θ图1例2 如图2,在△ABC 中,︒=∠︒=∠60,40ABC BAC ,D 和E 分别是边AC 和AB 上点,使得︒=∠︒=∠70,40BCE CBD ,F 是直线BD 与CE 的交点. 求证:直线AF 和直线BC 垂直.图2例3 如图3,O 是△ABC 内一点,满足α=∠=∠=∠=∠ACO CBO CAO BAO .求证:△ABC 三边长成等比数列.图3例4 如图4,凸四边形ABFD中,AB+BF=AD+DF.延长AB与DF相交于点C,延长AD 与BF相交于点E.求证:AC+CF=AE+EF.图4例5 如图5,给定凸四边形ABCD ,︒<∠+∠180D B ,2=AC ,DA 与DC 是△ABC 外接圆O 的切线,E 是圆O 的AB 上一点,满足:23=AB AE ,13-=EC BC ,ECA ECB ∠=∠21,求BD .图5例6 证明Morley 定理:如图6,设△ABC 内有三点D,E,F ,ABC FBA DBC ∠=∠=∠31,BAC EAC FAB ∠=∠=∠31,ACB DCB ECA ∠=∠=∠31,则△DEF 是正三角形.图6例7 如图7,已知O,I分别是△ABC的外心和内心,BC=a,CA=b,AB=c. 问当且仅当a,b,c 满足什么条件时,有OI⊥IB?证明你的结论.(若O,I重合时,也算成立.)图7例8 已知锐角△ABC,CD是高,点M是AB中点. 过点M的直线分别交射线CA,CB于点K,L,且CK=CL. 求证:若△CKL的外心为点S,则SD=SM.图8三、课后练习1. 在锐角△ABC 中,∠ACB =2∠ABC ,点D 是BC 边上一点,使得2∠BAD =∠ABC . 求证:AC AB BD 111+=.2. 设a,b,c为△ABC的三条边,a≤b≤c,R和r分别是△ABC的外接圆半径和内切圆半径. 令f=a+b-2R-2r,试用角C的大小来判定f的符号.。
高二数学竞赛班二试平面几何讲义.第七讲-----三角形的五心(一)7

高二数学竞赛班二试平面几何讲义第七讲三角形的五心(一)班级姓名一、知识要点:1.三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.2.外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.3.重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.4.蒙日定理(根心定理):平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行。
注:在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。
另一角度也可以称两不同心圆的等幂点的轨迹为根轴,或者称作等幂轴。
(1)平面上任意两圆的根轴垂直于它们的连心线;(2)若两圆相交,则两圆的根轴为公共弦所在的直线;(3)若两圆相切,则两圆的根轴为它们的内公切线;5.莱莫恩(Lemoine)定理:过△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB所在直线交于P、Q、R,则P、Q、R三点共线。
直线PQR称为△ABC的莱莫恩线。
证明:由弦切角定理可以得到:sin∠ACR=sin∠ABC ,sin∠BCR=sin∠BACsin∠BAP=sin∠BCA,sin∠CAP=sin∠ABCsin∠CBQ=sin∠BAC sin∠ABQ=sin∠BCA所以,我们可以得到:(sin∠ACR/sin∠BCR)*(sin∠BAP/sin∠CAP)*(sin∠CBQ/sin∠ABQ)=1,这是角元形式的梅涅劳斯定理,所以,由此,得到△ABC被直线PQR所截,即P、Q、R共线。
二、例题精析:例1.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△APS,△BQP,△CSQ的外心为顶点的三角形与△ABC相似.(B·波拉索洛夫《中学数学奥林匹克》)AB C KP O OO .. ..S123例2. AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和.(第26届莫斯科数学奥林匹克)例3. △ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心. 证明OE 丄CD . (加拿大数学奥林匹克训练题)AA 'F F 'G EE 'D 'C 'PCBDABC DE FOKG例4. (2003年联赛)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B , 所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ= ∠PBC . 求证:∠DBQ=∠P AC .三、精选习题:1.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)2.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)OQ CDBAP3..AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.5.如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE=∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等.ABCE MNF四、拓展提高:6.在ΔABC 中,∠BAC=60︒,AB >AC ,点O 为ΔABC 的外心,两条高BE 、CF 的交于点H ,点M 、N 分别在线段BH 与HF 上,且满足BM=CN . 求MH +HNOH 的值.7.(2004年联赛)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K .已知25BC =,20BD =,7BE =,求AK 的长.高二数学竞赛班二试平面几何讲义第七讲 三角形的五心(一)例1. 分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外 心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K )BABCK PO O O ....S123=21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .另法:△APS ,△BQP ,△CSQ 的外接圆交于一点(密克点) 例2. 分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′.易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △P AD +S △PCF . 例3. 分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设 CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证:DG :GK =31DC :(3121-)DC =2:1.∴DG :GK =DE :EF ⇒GE ∥MF . ∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心. 易证OE 丄CD .例4. 分析:由∠PBC=∠CDB ,若∠DBQ=∠P AC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立. 而要证∆BDQ ∽∆DAQ , 只要证BD AD =DQAQ 即可. 证明:连AB .∵ ∆PBC ∽∆PDB ,∴ BD BC =PD PB ,同理,AD AC =PD P A .A A 'FF 'G EE 'D 'C 'PCBDABCDE FOKG OQ CDBAP∵ P A=PB ,∴ BD AD =BCAC .∵ ∠BAC=∠PBC=∠DAQ ,∠ABC=∠ADQ . ∴ ∆ABC ∽∆ADQ . ∴ BC AC =DQ AQ .∴ BD AD =DQ AQ . ∵ ∠DAQ=∠PBC=∠BDQ . ∴ ∆ADQ ∽∆DBQ .∴ ∠DBQ=∠ADQ=∠P AC .证毕.4.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF . (1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF =2222221c b a -+,BE =2222221b a c -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c . 故有△∽△′. (2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(a CF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43. ∴22a CF =43⇒3a 2=4CF 2=2a 2+b 2-c 2 ⇒a 2+c 2=2b 2.结论:O 为外心,G 为重心,则a 2,b 2,c 2成等差数列⇔OG BG ⊥ 5.证明:连MN ,则由FM ⊥AM ,FN ⊥AN 知A 、M 、F 、N 四点共圆,且该圆的直径为AF .又∠AMN=∠AFN ,但∠F AN=∠MAD ,故∠MAD +∠AMN=∠F AN +∠AFN=90︒.∴MN ⊥AD ,且由正弦定理知,AMNMN=AF sin A .∴S AMDN =12 AD ·MN=12 AD ·AF sin A .连BD ,由∠ADB=∠ACF ,∠DAB=∠CAF ,得⊿ABD ∽⊿AFC . ∴ AD ∶AB=AC ∶AF ,即AD ·AF=AB ·AC . ∴ S AMDN =12 AD ·AF sin A=12 AB ·AC sin A=S ABC .6.解:记∠ACB=α,连OB 、OC ,则∠BOC=∠BHC=120︒,∴ B 、O 、H 、C 四点共圆.设此圆的半径为R ', 则2R '=BC sin120︒ =BCsin60︒=2R .HM +NH=(BH -BM )+(CN -CH )=BH -CH . 在ΔBCH 中,∠CBH=90︒-α. ∠HCB=90︒-(120︒-α)=α-30︒,∴HM +NH=BH -CH=2R (sin(α-30︒)-sin(90︒-α))=2R (sin αcos30︒-cos αsin30︒-cos α)=2 3 R sin(α-60︒).在ΔOCH 中,OH=2R sin ∠HCO=2R sin(α-30︒-30︒)=2R sin(α-60︒). ∴MH +HNOH = 3 .法2:由托勒密定理,OH BC OB HC OC BH ⋅+⋅=⋅7.在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.解:∵ BC=25,BD=20,BE=7, ∴ CE=24,CD=15.∵ AC ·BD=CE ·AB ,⇒ AC=65AB , ①24252015CD GHP∵BD⊥AC,CE⊥AB,⇒B、E、D、C共圆,⇒AC(AC-15)=AB(AB-7),⇒65AB(65AB-15)=AB(AB-18),∴AB=25,AC=30.⇒AE=18,AD=15.∴DE=12AC=15.延长AH交BC于P,则AP⊥BC.∴AP·BC=AC·BD,⇒AP=24.连DF,则DF⊥AB,∵AD=DC,DF⊥AB.⇒AF=12AE=9.∵D、E、F、G共圆,⇒∠AFG=∠ADE=∠ABC,⇒∆AFG∽∆ABC,∴AKAP=AFAB,⇒AK=9⨯2425=21625.法2:由托勒密定理,算15DE=11。
高一全国高中数学联赛辅导课件----平面几何的几个重要定理

平面几何──平面几何的几个重要定理
引入
梅涅劳斯定 理
托勒密定 理
塞瓦定理
课外思考
1
平面几何──平面几何的几个重要定理
平面几何是培养严密推理能力的很好数学分支, 且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、 向量法等许多证法, 这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题. 平面几何的知识竞赛要求:三角形的边角不等关系;面积 及等积变换;三角形的心(内心、外心、垂心、重心)及其性 质; 四个重要定理;几个重要的极值:到三角形三顶点距离之 和最小的点--费马点,到三角形三顶点距离的平方和最小的点 --重心,三角形内到三边距离之积最大的点-----重心;简单的 等周问题: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 2
12
思考(1999 年全国联赛第二试试题) 如 图, 在四 边形 A B C D 中 , 对角 线 A C 平 分 B A D ,在 C D 上取一点 E , B E 与 AC 相交于点 F,延长 D F 交 B C 于 G ,求证: G A C E A C .
证明:如图,直线 BD 交 AC 于 H,对 B C D 用 塞 瓦 定 理 ,
CG BH DE 有: 1因 A H 是 B A D 的 平 分 , GB HD BC 由角平分 定理,可得 BH HD 的 平 行 交 AE的 延 于 J CG CI DE AD CI AB AD : , 1 GB AB EC CJ AB AD CJ 而 : C I C J 又 C I // A B , C J // A D ACI BAC DAC ACJ A C I A C J IA C J A C G A C E A C
高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:APAB+AQ AC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知 AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DCAQ =EC AE =BC AN ,有AQ =BC AN DC ·. (3)对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN=90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ).于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NCME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O与BC 、CA 、AB图6AN CDEB MAGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB .(提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°) 3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k ) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)O图107. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG .(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.A BGCD FE图1ABCDPO 图2设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.A图3BPQDHC A EDCB图4解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交 于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有 3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ',E A NCD B FM 12345图6(1)(2)图8ABCA'B'C'c a b a'c'b'ABCa bb c∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=aa '=DB b '. 故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.) 6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.F DAEC图10图11(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。
高中数学竞赛教案讲义(16)平面几何

第十六章 平面几何一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。
塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。
角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。
斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2•+AC 2•-BP •PC.西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。
西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。
九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。
平面几何的26个定理

高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。
AB AE AC ADBC ED AC AD==⇒又4. 西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。
若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。
5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。
证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,,OY ,OM ,SM ,MT 。
∴AM/CM=AD/BC∵AS=1/2AD,BT=1/2BC ∴AM/CM=AS/CT又∵∠A=∠C ∴△AMS∽△CMT∴∠MSX=∠MTY∴∠OMX+∠OSX=180°∴O,S ,X ,M同理,O ,T ,∴∠MTY=∠MOY,∠MSX=∠MOX∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF 过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB-=-。
个人精心 高中数学联赛竞赛平面几何四大定理 及考纲

1、数学竞赛考纲二试1、平面几何基本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理梅涅劳斯定塞瓦定托勒密定西姆松定几个重要的极值:到三角形三顶点距离之和最小的-费马。
到三角形三顶点距离平方和最小的-重。
三角形内到三边距离之积最大的-重心几何不等式简单等周问。
了解下述定理在周长一定边形的集合中,边形的面积最大在周长一定简单闭曲的集合中,圆的面积最大在面积一定边形的集合中,边形的周长最小在面积一定的简单闭曲线的集合中,圆的周长最小几何中的运动:反射、平移、旋转复方法向方法平凸凸及应用、代在一试大纲的基础上另外要求的内容周期函数与周期,绝对的函数的图像三倍角公,三角形的一些简单的恒等式,三角不等式第二数学归纳递,一阶、二阶递归特征方法函迭,次迭代,简单的函数方程个变元的平均不等式柯西不等排序不等及应用复数的指数形式,欧拉公式棣莫佛定,单位根,单位根的应用圆排列,有重复的排列与组合,简单的组合恒等式一次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理简单的初等数论问题,除初中大纲中所包括的内容外,还应包无穷递降同,几里得除法,非负最小完全剩余类高斯函费马小定欧拉函孙子定,格点其性质、立体几多面角,多面角的性质。
三面角、直三面角的基本性质正多面体,欧拉定理体积证法截面,会作截面、表面展开图、平面解析几直线法式,直线极坐标方,直线束及其应用二元一次不等式表示的区域三角形面积公圆锥曲线的切线和法线圆的幂和根轴。
.梅涅劳斯定理托勒密定极端原理。
集合的划分。
覆盖。
容斥原理。
5 、其它抽屉原理赛瓦定理及其逆定理。
西姆松定理)。
理西姆松线的存在性及性质( 平面几何一、梅涅劳斯定理1.数学家梅涅劳斯首先证明的。
它)定理(简称梅氏定理)是由古希腊梅涅劳斯(Menelaus点,那么E、D、、BC、CA或其延长线交于FABC指出:如果一条直线与△的三边AB所在直AB、CA、Z分别在△ABC的BC(CE/EA)=1(AF/FB)×(BD/DC)×。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何一、常用定理(仅给出定理,证明请读者完成)梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。
塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。
角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。
斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。
西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。
九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。
蒙日定理 三条根轴交于一点或互相平行。
(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.21GH OG = 二、方法与例题1.同一法。
即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。
例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。
[证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以CQ AC QP AP =1,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有222sin sin ABP AP B AP AB ∠=∠,②Q BP BQ QP 202sin 20sin ∠=,③.70sin 30sin 00AC AB =④ 由②,③,④得2211QP AP QP AP =。
又因为P 1,P 2同在线段AQ 上,所以P 1,P 2重合,又BP 与CP 仅有一个交点,所以P 1,P 2即为P ,所以A ,P ,Q 共线。
2.面积法。
例2 见图16-1,◇ABCD 中,E ,F 分别是CD ,BC 上的点,且BE=DF ,BE 交DF 于P ,求证:AP 为∠BPD 的平分线。
[证明] 设A 点到BE ,DF 距离分别为h 1,h 2,则,21,2121h DF S h BE S ADF ABE ⨯=⨯=∆∆ 又因为21=∆ABE S S ◇ABCD =S ΔADF ,又BE=DF 。
所以h 1=h 2,所以PA 为∠BPD 的平分线。
3.几何变换。
例3 (蝴蝶定理)见图16-2,AB 是⊙O 的一条弦,M 为AB 中点,CD ,EF 为过M 的任意弦,CF ,DE 分别交AB 于P ,Q 。
求证:PM=MQ 。
[证明] 由题设OM ⊥AB 。
不妨设BD AF ≤。
作D 关于直线OM 的对称点'D 。
连结F D DD M D PD ',',',',则.'.'D M Q P M DDM M D ∠=∠=要证PM=MQ ,只需证MDQ M PD ∠=∠',又∠MDQ=∠PFM ,所以只需证F ,P ,M ,'D 共圆。
因为∠'PFD =1800-'MDD =1800-∠D MD '=1800-∠'PMD 。
(因为'DD ⊥OM 。
AB//'DD ) 所以F ,P ,M ,'D 四点共圆。
所以ΔM PD '≌ΔMDQ 。
所以MP=MQ 。
例4 平面上每一点都以红、蓝两色之一染色,证明:存在这样的两个相似三角形,它们的相似比为1995,而且每个三角形三个顶点同色。
[证明] 在平面上作两个同心圆,半径分别为1和1995,因为小圆上每一点都染以红、蓝两色之一,所以小圆上必有五个点同色,设此五点为A ,B ,C ,D ,E ,过这两点作半径并将半径延长分别交大圆于A 1,B 1,C 1,D 1,E 1,由抽屉原理知这五点中必有三点同色,不妨设为A 1,B 1,C 1,则ΔABC 与ΔA 1B 1C 1都是顶点同色的三角形,且相似比为1995。
4.三角法。
例5 设AD ,BE 与CF 为ΔABC 的内角平分线,D ,E ,F 在ΔABC 的边上,如果∠EDF=900,求∠BAC 的所有可能的值。
[解] 见图16-3,记∠ADE=α,∠EDC=β, 由题设∠FDA=2π-α,∠BDF=2π-β, 由正弦定理:C DE CE A DE AE sin sin ,2sin sin ==βα, 得2sin sin sin sin A C CE AE ⋅=βα,又由角平分线定理有BC AB EC AE =,又A BC C AB sin sin =,所以A C A C sin sin 2sin sin sin sin =⋅βα, 化简得2cos 2sin sin A =αβ,同理2cos 2sin sin A ADF BDF =∠∠,即.2cos 2cos cos A =αβ 所以αβαβcos cos sin sin =,所以sin βcos α-cos βsin α=sin(β-α)=0. 又-π<β-α<π,所以β=α。
所以212cos =A ,所以A=32π。
5.向量法。
例6 设P 是ΔABC 所在平面上的一点,G 是ΔABC 的重心,求证:PA+PB+PC>3PG.[证明] 因为+++=+++++=++3,又G 为ΔABC 重心,所以.0=++(事实上设AG 交BC 于E ,则+==2,所以0=++) 所以3=++,所以.||3||||||||=++≥++ 又因为,,不全共线,上式“=”不能成立,所以PA+PB+PC>3PG 。
6.解析法。
例7 H 是ΔABC 的垂心,P 是任意一点,HL ⊥PA ,交PA 于L ,交BC 于X ,HM ⊥PB ,交PB 于M ,交CA 于Y ,HN ⊥PC 交PC 于N ,交AB 于Z ,求证:X ,Y ,Z 三点共线。
[解] 以H 为原点,取不与条件中任何直线垂直的两条直线为x 轴和y 轴,建立直角坐标系,用(x k ,y k )表示点k 对应的坐标,则直线PA 的斜率为A P A P x x y y --,直线HL 斜率为P A A P y y x x --,直线HL 的方程为x(x P -x A )+y(y P -y A )=0.又直线HA 的斜率为A A x y ,所以直线BC 的斜率为AA y x -,直线BC 的方程为xx A +yy A =x A xB +y A y B ,②又点C 在直线BC 上,所以x C x A +y C y A =x A x B +y A y B .同理可得x B x C +y B y C =x A x B +y A y B =x A x C +y A y C .又因为X 是BC 与HL 的交点,所以点X 坐标满足①式和②式,所以点X 坐标满足xx P +yy P =x A x B +y A y B .④同理点Y 坐标满足xx P +yy P =x B x C +y B y C .⑤点Z 坐标满足xx P +yy P =x C x A +y C y A . 由③知④,⑤,⑥表示同一直线方程,故X ,Y ,Z 三点共线。
7.四点共圆。
例8 见图16-5,直线l 与⊙O 相离,P 为l 上任意一点,PA ,PB 为圆的两条切线,A ,B 为切点,求证:直线AB 过定点。
[证明] 过O 作OC ⊥l 于C ,连结OA ,OB ,BC ,OP ,设OP 交AB 于M ,则OP ⊥AB ,又因为OA ⊥PA ,OB ⊥PB ,OC ⊥PC 。
所以A ,B ,C 都在以OP 为直径的圆上,即O ,A ,P ,C ,B 五点共圆。
AB 与OC 是此圆两条相交弦,设交点为Q ,又因为OP ⊥AB ,OC ⊥CP ,所以P ,M ,Q ,C 四点共圆,所以OM •OP=OQ •OC 。
由射影定理OA 2=OM •OP ,所以OA 2=OQ •OC ,所以OQ=OC OA 2(定值)。
所以Q 为定点,即直线AB 过定点。
三、习题精选1.⊙O 1和⊙O 2分别是ΔABC 的边AB ,AC 上的旁切圆,⊙O 1与CB ,CA 的延长线切于E ,G ,⊙O 2与BC ,BA 的延长线切于F ,H ,直线EG 与FH 交于点P ,求证:PA ⊥BC 。
2.设⊙O 的外切四边形ABCD 的对角线AC ,BD 的中点分别为E ,F ,求证:E ,O ,F 三点共线。
3.已知两小圆⊙O 1与⊙O 2相外切且都与大圆⊙O 相内切,AB 是⊙O 1与⊙O 2的一条外公切线,A ,B 在⊙O 上,CD 是⊙O 1与⊙O 2的内公切线,⊙O 1与⊙O 2相切于点P ,且P ,C 在直线AB 的同一侧,求证:P 是ΔABC 的内心。