运筹学课件4.8 中国邮递员问题

合集下载

运筹学课件4.8 中国邮递员问题

运筹学课件4.8 中国邮递员问题
第六节 中国邮递员问题

哥尼斯堡七桥问题与欧拉图 中国邮递员问题 求解中国邮递员问题的奇偶点图作业法 奇偶点图作业法的改进方法
一、哥尼斯堡七桥问题与欧拉图

哥尼斯堡七桥问题 欧拉图与一笔画问题
A
A C B 哥尼斯堡七桥问题 C D
D
B
二、中国邮递员问题

1962年,管梅谷先生提出 中国邮递员问题 若图中无奇点,欧拉圈即为所求 若图中有奇点,则奇点必为偶数,在奇点间加边 (重复走),使其变为偶数而成欧拉图。 中国邮递员问题是要求所加边的权之和最小。
三、求解中国邮递员问题的奇偶点图作业法


在奇点间加边,构造初始可行方案。 寻找改进可行方案:在两奇点间检查所有链,若 某链的长度小于已加重复边的长度,则在该链的 每边加上重复边,去掉原重复边。 重复以上步骤,直到任意两奇点间加重复边的链 是最短的为止。
求解中国邮递员问题:例子
v2
1 2 3 6
v3
4 2
5 1 2 2
v1
v6
v4
3
v5
例子的初始可行解
v2
1 2 3 6
v3
v4
4 2 3
5 1 2 2
5
v1
v6
2
v5
例子的修正解
v2
1 1 2 3 6
v3
v4
4 2 3
5 1 2 2 2
v1
v6
v5Leabharlann 四、奇偶点作业法的改进方法
奇偶点作业法的瓶颈是需检查太多的链 可以首先求出任意一对奇点之间的最短路, 从中选出总路长最小的组合方案。 也可以由奇点构成偶图,求最小匹配得到 最优解。

邮递员问题

邮递员问题

邮递员问题简介邮递员问题(Travelling Salesman Problem,TSP)是一个著名的组合优化问题,被称为计算机科学中的经典问题之一。

该问题起源于邮递员在一天内送货的最短路径问题。

邮递员需要从一个起点出发,经过所有的目标点,最后回到起点。

问题的目标是找到一条最短的路径,使得所有目标点都被访问,同时回到起点。

TSP问题涉及到组合爆炸,通常在计算上是NP难的。

问题描述给定一个有向图和一个起点,邮递员需要从起点出发经过所有的节点,最后回到起点。

每条边的权重表示从一个节点到另一个节点的距离。

找到一条最短路径,使得所有的节点都被访问且回到起点。

解决方法1. 枚举法枚举法是最简单的解决TSP问题的方法。

它通过遍历所有可能的路径,计算每条路径的总长度,并返回最短路径的长度和路径本身。

然而,由于TSP问题是NP难的,当图的规模增加时,枚举法的计算复杂度呈指数增长,很难在合理的时间内求解。

2. 动态规划法动态规划法是解决TSP问题的常用方法之一。

该方法通过将问题划分为子问题,并使用递归的方式求解。

具体而言,我们可以定义一个状态数组dp,其中dp[S][i]表示从起点到节点i,经过节点集合S中的所有节点,最后回到起点的最短路径长度。

那么,我们可以使用如下的递推关系来计算dp数组:dp[S][i] = min(dp[S-{i}][j] + dis(j, i)),其中j∈S,j≠i通过不断更新dp数组,最终可以得到从起点出发经过所有节点并回到起点的最短路径长度。

3. 遗传算法遗传算法是一种启发式优化算法,被广泛应用于解决TSP问题。

它模拟生物进化的过程,通过基因交叉、变异等操作,生成新的个体,并通过评估函数对个体进行选择。

遗传算法的优点是能够在较短的时间内找到接近最优解的解,但不能保证找到全局最优解。

4. 改进算法针对TSP问题,还有一些改进的算法,如蚁群算法、模拟退火算法、禁忌搜索等。

这些算法在不同的问题实例上可能会有更好的表现。

运筹学 中国邮递员问题

运筹学 中国邮递员问题

§4.中国邮递员问题(Chinese Postman Problem)1.问题的提出例5. 一个邮递员从邮局出发投递信件, 然后再返回邮局, 如果他必须至少一次地走过他负责投递范围内的每条街道, 街道路线如下图所示, 问选择怎样的路线才能使所走的路为最短?5 6 78问题的图论表述:在赋权G=[V, E]上找一条经每条边至少一次的权最小的圈。

1960年山东师范学院管梅谷教授首先提出此问题,并设计了一个“奇偶点表上作业法”,后来发现此法不是多项式算法,1973年,Edmonds和Johnson给出一个多项式算法。

2.哥尼斯堡七桥问题18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如下图所示。

城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。

3.Euler圈Euler圈:经图G的每条边的简单圈Euler图:具有Euler圈的图Euler图非Euler图下面讨论的图G允许有重边,且重边被认为是有区别的边。

伪Euler 圈:经图G 的每条边至少一次的圈点v 的次:与点V 关联的边的数目奇(偶)点:该点的次为奇(偶)数命题1:G 的奇点个数为偶数命题2:G 中有伪Euler 圈 ⇔ G 无奇点中国邮递员问题可表述为:在图G 中找一条权最小的伪Euler 圈。

对于邮递员来说,有些街道可能会重复走,原问题便转化为尽可能少走重复的 街道。

我们将这些重复的边组成的集合称可行集,即找最小的可行集。

命题3:E *是最小可行集 ⇔ωωμμμ()()()()*()*()e e e E E E e E E ≤∑∑∀μ∈∩∈∩\初等圈重复的边 非重复的边4.算法思路由命题1,简单图G 的奇点个数为偶数,可设为v 1 , v 2 , …, v 2k , 对每个1≤ i ≤k, 找v 2i − 1 至v 2i 的链p i ,将p i 的边重复一次。

中国邮递员问题 ppt课件

中国邮递员问题 ppt课件

中国邮递员问题
管梅谷教授首先提出的方法是奇偶点图上作业 法(1962年)
Edmonds,Johnson(1973年)给出有效算法。
复杂度为 O(|V(G)|2|E(G)|)
中国邮递员问题
中国邮递员问题
解决这样的问题,可以采用奇偶 点图上作业法:如果在配送范围 内,街道中没有奇点,那么他就 可以从配送中心出发,走过每条 街道一次,且仅一次,最后回到 配送中心,这样他所走的路程也 就是最短的路程。
原来的问题可以叙述为在一个有奇点的图中, 要求增加一些重复边,使新图不含奇点,并且 重复边的总权为最小。
我们把使新图不含奇点而增加的重复边简称为 可行(重复边)方案,使总权最小的可行方案 为最优方案。
现在的问题是第一个可行方案如何确定? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案? 若不是最优方案,如何调整这个方案?
Fleury算法的复杂度是 O(| E(G)|2)
中国邮递员问题
求欧拉回路的算法(回路算法)
算法思想: 首先得到一个回路C1, 再在剩
下的图G- C1中求一条与C1有公共顶点的
回路C2, 则C1与 C2构成一个更长的回路,
继续下去可得到含所有边恰好一次的回
路. 回路算法的复杂度是
O(|
E(G) |)
这个问题就是一笔画问题。
中国邮递员问题
管梅谷教授。
上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。

中国邮递员问题

中国邮递员问题

中国邮递员问题第一篇:中国邮递员问题运筹学第六组运筹学个人心得之中国邮递员问题我们第六组做的第二次案例就是中国邮递员问题,这个问题是运筹学中的经典命题。

这个案例讲的是:在中国的六个县城,每个县城都有一个县局,县局下面设立若干个邮政所,每天邮递员的任务就是从县局出发,依次到每一个邮政所送邮件,要求每个邮政所都必须去,而且只能去一次。

这就涉及到一个路线的规划问题,怎么走才能使得邮递员走的路最少,而且能够完成任务。

在做题之前考虑了很久,真不知道从何着手,国为以前确实没有接触过这个类型的题,没有一个能够行得通的办法。

后来,我们选定了一个代表性的区域,来尝试求解,国为第六个区域的变量最多,所以就选择这个区域作为突破口。

只要第六个区域求解成功,其它五个区域便迎刃而解了。

首先,我们画了一个由第六区域的十七个点所组成的17*17矩阵,一一对应设定变量,在去除对角线的17个变量之后,我们得到272个变量。

这是一个非常庞大的变量群体,若按传统的线性规划方法求解,求解过程将会变得异常艰辛,而且以前的模板,求解工具都不能求解这么多变量。

所以我们一度陷入混乱,求解工作停滞不前。

后来老师在对这价目案例作初步的讲解的时候,提出了用运输模型来对这个问题进行求解,此话一出,真是如醍醐灌顶,酣畅极了,眼前简直豁然一亮,真想“拍案而起”。

若用运输模型求解,这个问题将会变得非常简单。

一方面由于每行的出发点只能有一个,而每列的终点也只能有一个,这样看来,邮运筹学第六组递员总是变成了一个产销平衡的运输问题,产量和销量都有是1。

这样我们就完成了求解工作,在第一次求解得出结论后,我们画了一个路线图,发现有几个两点循环,没有形成一条大通路,于是我们重新加入了两点循环约束,进行二次求解;在第二次求解完成后,我们又重新画了路线图,结果发现有四点循环于是我们又加入四点循环约束,进行第三次求解,在得到第三次求解的结果后,我们又画出了路线图,这次刚好形成了一个完整的通路,保证了邮递员每点都走到且行走的路线最合理。

关于中国邮递员问题和欧拉图应用

关于中国邮递员问题和欧拉图应用
完整的算法流程如下:
1如果G的基图连通且所有顶点的入、出度均不为0,转2,否则返回无解并结束;
2计算所有顶点v的d’(v)值;
3构造网络N;
4在网络N中求最小费用最大流;
5对N中每一条流量f(u,v)的边(u,v),在图G中增加f(u,v)次得到G’;
6在G’中求欧拉回路,即为所求的最优路线。
NPC问题:
if(in[i] +1 == out[i]) ...{
spos = i;
break;
}
}
}
else ...{
for(i=0;i<30;i++) ...{
if(f[i] != -1) ...{
spos = i;
break;
}
}
}
for(i=0;i<30;i++) sort(words[i].begin(), words[i].end());
如果部分街道能够双向通行,部分街道只能单向通行。这个问题已被证明是NPC的。[5]
--------------------------------------------------------------------------------
[1]大城市邮政投递问题及其算法研讨
[2]忽略有向图所有边的方向,得到的无向图称为该有向图的基图。
step = 0;
memset(vis, 0, sizeof(vis));
find_euler(spos);
//memset(vis, 0, sizeof(vis));
for(i=step-1;i>0;i--) ...{
spos = seq[i];
string snext;

中国邮路问题及解决方案

中国邮路问题及解决方案

中国邮路问题及解决方案中国邮递员问题一个邮递员送信,要走完他负责投递的全部街道(所有街道都是双向通行的且每条街道可以经过不止一次),完成任务后回到邮局,应按怎样的路线走,他所走的路程才会最短呢?解决方案1、图论建模由于街道是双向通行的,我们可以把它看成是赋权无向连通图,将路口模型为点,街道模型为边,街道的长度就是每条边的权值,问题转化为在图中求一条回路,使得回路的总权值最小。

1.1 最理想的情况若图中有欧拉回路,因为欧拉回路通过所有的边,因此任何一个欧拉回路即为此问题的解。

1.2 若G只有两个奇点Vi,Vj则有从Vi 到Vj 的欧拉迹,从Vj 回到Vi 则必须重复一些边,使重复边的总长度最小,转化为求从Vi 到Vj 的最短路径。

算法:1) 找出奇点Vi,Vj 之间的最短路径P;2) 令G' = G + P ;3) G'为欧拉图,G'的欧拉回路即为最优邮路。

1.3 一般情况,奇点数大于2 的时,邮路必须重复更多的边。

Edmonds算法(匈牙利算法)思想:步骤:1) 求出G所有奇点之间的最短路径和距离;2) 以G的所有奇点为结点(必为偶数),以他们之间的最短距离为节点之间边的权值,得到一个完全图G1;3) 将M中的匹配边( Vi ,Vj )写成Vi 与Vj 之间的最短路径经过的所有边集合Eij ;4) 令G' = G U { Eij | (Vi,Vj) 属于M},则G'是欧拉图,求出最优邮路。

2、具体模块实现2.1 最短路径用Dijkstra 算法计算Dijkstra 算法是一种最短路径算法,用于计算一个节点到其它所有节点的最短路径。

2.1.1 算法思想:按路径长度递增次序产生最短路径算法:把V 分成两组:1) S:已求出最短路径的顶点的集合2) V-S=T:尚未确定最短路径的顶点集合将T 中顶点按最短路径递增的次序加入到S 中,保证:1) 从源点V0到S 中各顶点的最短路径长度都不大于从V0到T中任何顶点的最短路径长度2) 每个顶点对应一个距离值S 中顶点:从V0到此顶点的最短路径长度T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度2.1.2 求最短路径步骤1)初始时令S={V0},T={ 其余顶点},T 中顶点对应的距离值若存在<V0,Vi> ,d(V0,Vi) 为<V0,Vi>弧上的权值;若不存在<V0,Vi> ,d(V0,Vi) 为∝2)从T 中选取一个其距离值为最小的顶点W且不在S中,加入S3) 对S 中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi 的距离值缩短,则修改此距离值;重复上述步骤2、3,直到S 中包含所有顶点,即W=Vi为2.2 图的连通性测试检测用户输入的图是否是连通图,不是的话没办法求解,提醒用户重新输入。

中国邮递员问题

中国邮递员问题

管梅谷
管梅谷教授。 上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。
求解。
推广的中国邮递员问题: 混合图的中国邮递员问题,有各种限制 的中国邮递员问题,动态网络的中国邮 递员问题。 其他相关问题-旅行售货员(TSP)问题, 灾清巡视路线。

谢谢!
v1 2 5 v2 5 9 v3 v4 图2 3 v8
4
3
v7
6
v9 4 4 4
v6
4
v5

这样就得到初始方案.在这个图中,没有奇点, 故称它为欧拉图。对应于这个可行方案,重复 边总权为51。
思考



这样的可行方案是不是只有一种呢? 在确定一个可行方案后,怎么判断这个方案是 否为最优方案? 若不是最优方案,如何调整这个方案?

欧拉图及求欧拉回路的算法
欧拉行迹—含所有边恰好一次的行迹 欧拉回路—含所有边恰好一次的回路 欧拉图—存在欧拉回路的图

设G是连通图, 下列命题等价: (1) G是欧拉图. (2) 每个顶点的度数都是偶数. (3) G是两两无公共边的圈的并.
欧拉图及求欧拉回路的算法
求欧拉回路的算法(Fleury算法,1921年) 算法思想: “过河拆桥,尽量不走独木桥”. 即若已选定迹 Wi v0e1v1e2 eivi , 从 G Wi 中选 取下一条边 ei 1 使得ei 1 与 vi 相关联, 且ei 1 不是 G Wi 的桥, 除非无边可选.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(重复走),使其变为偶数而成欧拉图。 中国邮递员问题是要求所加边的权之和最小。
三、求解中国邮递员问题的奇偶点图作业法
在奇点间加边,构造初始可行方案。 寻找改进可行方案:在两奇点间检查所有链,若
某链的长度小于已加重复边的长度,则在该链的 每边加上重复边,去掉原重复边。 重复以上步骤,直到任意两奇点间加重复边的链 是最短的为止。
从中选出总路长最小的组合方案。 也可以由奇点构成偶图,求最小匹配得到
最优解。
一个四奇点的例子
v2
3 v3 2
4
4
v1
3 2 23
v6
4
v4 5
v5
习题
P.267,习题9 P.268,习题10:图9-10(A)、(B)
求解中国邮递员问题:例子
v2
1 2
v3 4
5 1
v1
3 22v6Βιβλιοθήκη 6 v4 3 2v5
例子的初始可行解
v2
5
1 2
v3 4
5 1
v1
3 22
v6
6 v4 3 2
2
v5
例子的修正解
v2
1
1 2
v3 4
5 1
v1
3 22
v6
6 v4 3 2
2
v5
四、奇偶点作业法的改进方法
奇偶点作业法的瓶颈是需检查太多的链 可以首先求出任意一对奇点之间的最短路,
第六节 中国邮递员问题
哥尼斯堡七桥问题与欧拉图 中国邮递员问题 求解中国邮递员问题的奇偶点图作业法 奇偶点图作业法的改进方法
一、哥尼斯堡七桥问题与欧拉图
哥尼斯堡七桥问题
欧拉图与一笔画问题
A
A
C
D
C
D
B B
哥尼斯堡七桥问题
二、中国邮递员问题
1962年,管梅谷先生提出 中国邮递员问题 若图中无奇点,欧拉圈即为所求 若图中有奇点,则奇点必为偶数,在奇点间加边
相关文档
最新文档