(优选)中国邮递员问题
中国邮递员问题小论文

中国邮递员问题摘要:一名邮递员带着要分发的邮件从邮局出发,经过要分发的每个街道,送完邮件后又返回邮局.如果他必须至少一次走过他管辖范围内的每一条街道,如何选择投递路线,使邮递员走尽可能少的路程.这个问题是由我国数学家管梅谷先生(山东师范大学数学系教授)在1962年首次提出的,因此在国际上称之为中国邮递员问题本文主要介绍了中国邮递员问题的基本分析、求解中国邮递员问题的方法以及有关欧拉回路的算法实现。
关键词:中国邮递员欧拉图欧拉回路一、中国邮递员问题的分析中国投递员问题是1960年我们从生产实际中提出的一个数学问题,它是从下述实际问题中抽象出来的:“一个投递员应该怎么选择一条线路,才能既把所有由他负责的信件都送到,而所走的路程又最短”。
在我们开始研究中国投递员问题以前,国外有人研究过所谓旅行售货员的问题,即:“一个售货员要到n个城市去售货,问他应该选择怎样的一条线路,才能既走遍所有城市,并且走的路程最短”。
这是一个著名的难题.当n较大时,即使使用大型电子计算机,也很难解决。
投递员面临的问题显然可以归纳为旅行售货员问题,事实上,只要把投递员必须送的每一个地点看成是一个城市就行了.但是一般来说,投递员每次要到约二、三百个地点送信,如果归纳为旅行售货员问题来解决,将是一个规模很大的问题,是无法解决的.但是,在仔细分析了投递员面临的问题后,我们发现这个问题具有一定的特点,即需要送信的地点一般都是比较密集的排列在街道上的,因此,实际上,我们称这个问题为“最短投递线路问题”,1965年后国外称之为“中国投递员问题”(这个问题是我国数学家管梅谷先生在20世纪60年代提出来的)用图论的语言来描述就是在一个带权图G中,能否找到一条回路C,使C包含G的每条边至少一次且C的长度最短?如若他所管辖的街道构成一欧拉回路,则这欧拉回路便是所求路径。
如若不然,即存在度数为奇数的顶点,必然有些街道需要多走至少一遍,这时用中国邮路问题算法可求出最短路径。
运筹学 中国邮递员问题

§4.中国邮递员问题(Chinese Postman Problem)1.问题的提出例5. 一个邮递员从邮局出发投递信件, 然后再返回邮局, 如果他必须至少一次地走过他负责投递范围内的每条街道, 街道路线如下图所示, 问选择怎样的路线才能使所走的路为最短?5 6 78问题的图论表述:在赋权G=[V, E]上找一条经每条边至少一次的权最小的圈。
1960年山东师范学院管梅谷教授首先提出此问题,并设计了一个“奇偶点表上作业法”,后来发现此法不是多项式算法,1973年,Edmonds和Johnson给出一个多项式算法。
2.哥尼斯堡七桥问题18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如下图所示。
城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。
3.Euler圈Euler圈:经图G的每条边的简单圈Euler图:具有Euler圈的图Euler图非Euler图下面讨论的图G允许有重边,且重边被认为是有区别的边。
伪Euler 圈:经图G 的每条边至少一次的圈点v 的次:与点V 关联的边的数目奇(偶)点:该点的次为奇(偶)数命题1:G 的奇点个数为偶数命题2:G 中有伪Euler 圈 ⇔ G 无奇点中国邮递员问题可表述为:在图G 中找一条权最小的伪Euler 圈。
对于邮递员来说,有些街道可能会重复走,原问题便转化为尽可能少走重复的 街道。
我们将这些重复的边组成的集合称可行集,即找最小的可行集。
命题3:E *是最小可行集 ⇔ωωμμμ()()()()*()*()e e e E E E e E E ≤∑∑∀μ∈∩∈∩\初等圈重复的边 非重复的边4.算法思路由命题1,简单图G 的奇点个数为偶数,可设为v 1 , v 2 , …, v 2k , 对每个1≤ i ≤k, 找v 2i − 1 至v 2i 的链p i ,将p i 的边重复一次。
中国邮递员问题 ppt课件

中国邮递员问题
管梅谷教授首先提出的方法是奇偶点图上作业 法(1962年)
Edmonds,Johnson(1973年)给出有效算法。
复杂度为 O(|V(G)|2|E(G)|)
中国邮递员问题
中国邮递员问题
解决这样的问题,可以采用奇偶 点图上作业法:如果在配送范围 内,街道中没有奇点,那么他就 可以从配送中心出发,走过每条 街道一次,且仅一次,最后回到 配送中心,这样他所走的路程也 就是最短的路程。
原来的问题可以叙述为在一个有奇点的图中, 要求增加一些重复边,使新图不含奇点,并且 重复边的总权为最小。
我们把使新图不含奇点而增加的重复边简称为 可行(重复边)方案,使总权最小的可行方案 为最优方案。
现在的问题是第一个可行方案如何确定? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案? 若不是最优方案,如何调整这个方案?
Fleury算法的复杂度是 O(| E(G)|2)
中国邮递员问题
求欧拉回路的算法(回路算法)
算法思想: 首先得到一个回路C1, 再在剩
下的图G- C1中求一条与C1有公共顶点的
回路C2, 则C1与 C2构成一个更长的回路,
继续下去可得到含所有边恰好一次的回
路. 回路算法的复杂度是
O(|
E(G) |)
这个问题就是一笔画问题。
中国邮递员问题
管梅谷教授。
上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。
1非结构化面试问题(精)

1 问题一:“请你自我介绍一下”,你为什么加入中国邮政?| 思路: 1、这是面试的必考题目。
2、介绍内容要与个人简历相一致。
3、表述方式上尽量口语化。
4、要切中要害,不谈无关、无用的内容。
5、条理要清晰,层次要分明。
6、事先最好以文字的形式写好背熟。
回答:尊敬的领导你们好!中国邮政具有百年的历史,邮政品牌具有极大的竞争力因为我的母亲也在邮政部门工作,从小我就对邮政怀有特殊的感情,绿色的制服、穿绿衣的邮递员、绿色的邮筒、绿色门面的邮局、不管是在家乡,还是在外求学见到他们都倍感亲切,邮政能为员工提供良好的发展的机会,能给我一个施展才华的平台,能够很好的锻炼我的能力。
本人性格开朗,,热爱微笑,善于交际,工作中,认真负责,诚实守信,绝不逃避责任,我相信,这一切将成为我在邮政工作中最大的财富.。
在大学的学习中,我学习了本专业及相关专业的实际知识,并以优异的成绩完成了相关的课程,取得了英语四级及机算机二级证书。
为以后的实践任务打下了坚实的基础,从报刊上了解到,邮政已进行了公司化改革,现已到了超常规发展时期,实现了从传统邮政到现代邮政的飞跃,这是一支富有活力的队伍.我非常渴望能够在为其中的一员。
? 题二:“谈谈你的缺点” 思路: 1不宜说自己没缺点。
2、不宜把那些明显的优点说成缺点。
3、不宜说出严重影响所应聘工作的缺点。
4、不宜说出令人不放心、不舒服的缺 5?可以说出一些对于所应聘工作“无关紧要”的缺点,甚至是一些表面上看是缺点,从工作的角度看却是优点的缺点。
? 回答:我觉得我的缺点就是超爱笑,所以有时候给别人感觉就是我不太正经,其实这只是我排解压力的一中方式而已,压力太大的时候我就喜欢笑,这样我会轻松点。
我刚刚毕业,可能缺乏实践经验,社会阅历也较浅, ? 问题三:“你为什么选择我们邮政?”? 思路:?1、面试官试图从中了解你求职的动机、愿望以及对此项工作的态度。
?2、?建议从行业、企业和岗位这三个角度来回答。
运筹学 中国邮递员问题

§4.中国邮递员问题(Chinese Postman Problem)1.问题的提出例5. 一个邮递员从邮局出发投递信件, 然后再返回邮局, 如果他必须至少一次地走过他负责投递范围内的每条街道, 街道路线如下图所示, 问选择怎样的路线才能使所走的路为最短?5 6 78问题的图论表述:在赋权G=[V, E]上找一条经每条边至少一次的权最小的圈。
1960年山东师范学院管梅谷教授首先提出此问题,并设计了一个“奇偶点表上作业法”,后来发现此法不是多项式算法,1973年,Edmonds和Johnson给出一个多项式算法。
2.哥尼斯堡七桥问题18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如下图所示。
城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。
3.Euler圈Euler圈:经图G的每条边的简单圈Euler图:具有Euler圈的图Euler图非Euler图下面讨论的图G允许有重边,且重边被认为是有区别的边。
伪Euler 圈:经图G 的每条边至少一次的圈点v 的次:与点V 关联的边的数目奇(偶)点:该点的次为奇(偶)数命题1:G 的奇点个数为偶数命题2:G 中有伪Euler 圈 ⇔ G 无奇点中国邮递员问题可表述为:在图G 中找一条权最小的伪Euler 圈。
对于邮递员来说,有些街道可能会重复走,原问题便转化为尽可能少走重复的 街道。
我们将这些重复的边组成的集合称可行集,即找最小的可行集。
命题3:E *是最小可行集 ⇔ωωμμμ()()()()*()*()e e e E E E e E E ≤∑∑∀μ∈∩∈∩\初等圈重复的边 非重复的边4.算法思路由命题1,简单图G 的奇点个数为偶数,可设为v 1 , v 2 , …, v 2k , 对每个1≤ i ≤k, 找v 2i − 1 至v 2i 的链p i ,将p i 的边重复一次。
01-中国邮递员问题

欧拉图及判定定理
顶点可能重复
一进一出
经过一次 且不重复
偶点
如果一个连通图有欧拉环游,即从某个顶点出发,经过该图所有边一次,且不 重复,最后回到出发点,则对中间经过的任一顶点都是一进一出,而出发点开始出 去最后又进来,也是一进一出。注意有的顶点可能有若干次一进一出。不论如何, 都意味着该图的每个顶点都应该是偶点(即进出总共偶数条边)。
中国邮递员问题
厦门大学数学科学学院 金贤安
引言
中 国 邮 递 员 问 题 是 由 山 东 师 范 大 学 管 梅 谷 同 志 1960年首先提出的。
这是数学中为数不多的几个以“中国”命名的问题 或定理之一。
该问题涉及著名的的哥尼斯堡(Königsberg) 七桥问题。
七桥问题是图论和拓扑学的起源。
以交叉路口为顶点,街道为边,街道的长度为边的权得 到 一赋权图,我们称之为街道图。 不妨设邮局在一条街道上。 若街道图是欧拉图,有欧拉环游,无需重复走街道,沿 着 一个欧拉环游作为投递路线即可。
中国邮递员问题
若街道图不是欧拉图,则有些街道需要重复 走,那么中国邮递员问题就变为:重复走哪 些街道,使总路程最短?
给定一个连通图,我们称经过图的所有边一次且只有一次 的走法为一个欧拉通路。
如果进一步该走法还回到出发点,则称之为欧拉环游(回 路)。
具有欧拉环游的图称之为欧拉图。
C
哥尼斯堡问题即图3是否是欧拉图的问题。
A
B
D
图3 七桥问题对应图
欧拉图及判定定理
一笔画问题:什么样的图形可以一笔画成,笔不离纸,而 且每条线都只画一次不准重复?
(1) 在最优方案中,对街道图的任意一边,所添加的平行边的次数不会超过1。 事实上,若在某可行方案中,对街道图的某边,所添加的平行边的次数 大于等于2,那么在该方案中去掉该边2次,将得到一个新的更优的可行 方案,矛盾。
中国邮递员问题小论文

中国邮递员问题摘要:一名邮递员带着要分发的邮件从邮局出发,经过要分发的每个街道,送完邮件后又返回邮局.如果他必须至少一次走过他管辖范围内的每一条街道,如何选择投递路线,使邮递员走尽可能少的路程.这个问题是由我国数学家管梅谷先生(山东师范大学数学系教授)在1962年首次提出的,因此在国际上称之为中国邮递员问题本文主要介绍了中国邮递员问题的基本分析、求解中国邮递员问题的方法以及有关欧拉回路的算法实现。
关键词:中国邮递员欧拉图欧拉回路一、中国邮递员问题的分析中国投递员问题是1960年我们从生产实际中提出的一个数学问题,它是从下述实际问题中抽象出来的:“一个投递员应该怎么选择一条线路,才能既把所有由他负责的信件都送到,而所走的路程又最短”。
在我们开始研究中国投递员问题以前,国外有人研究过所谓旅行售货员的问题,即:“一个售货员要到n个城市去售货,问他应该选择怎样的一条线路,才能既走遍所有城市,并且走的路程最短”。
这是一个著名的难题.当n较大时,即使使用大型电子计算机,也很难解决。
投递员面临的问题显然可以归纳为旅行售货员问题,事实上,只要把投递员必须送的每一个地点看成是一个城市就行了.但是一般来说,投递员每次要到约二、三百个地点送信,如果归纳为旅行售货员问题来解决,将是一个规模很大的问题,是无法解决的.但是,在仔细分析了投递员面临的问题后,我们发现这个问题具有一定的特点,即需要送信的地点一般都是比较密集的排列在街道上的,因此,实际上,我们称这个问题为“最短投递线路问题”,1965年后国外称之为“中国投递员问题”(这个问题是我国数学家管梅谷先生在20世纪60年代提出来的)用图论的语言来描述就是在一个带权图G中,能否找到一条回路C,使C包含G的每条边至少一次且C的长度最短?如若他所管辖的街道构成一欧拉回路,则这欧拉回路便是所求路径。
如若不然,即存在度数为奇数的顶点,必然有些街道需要多走至少一遍,这时用中国邮路问题算法可求出最短路径。
中国邮递员数学问题

中国邮递员数学问题
中国邮递员数学问题是一个著名的数学问题,也称为"中国邮递员问题"。
这个问题源于邮递员在担任邮递员工作时,需要沿着不同的街道进行投递。
邮递员必须走遍每一条街道至少一次,然后回到出发地点。
问题的目标是寻找一条最短的路径,使得邮递员能够满足投递的要求。
具体问题描述如下:给定一个城市的街道网络图,每条街道上都有一个正整数表示街道的长度。
邮递员需要从一个特定地点出发,沿着街道网络进行投递,然后回到出发地点。
要求邮递员经过的路径总长度最短。
这个问题属于旅行商问题的变种,是一个NP-完全问题。
因为问题规模较大,难以找到一个最优解。
因此,通常采用近似算法进行求解,如TSP(Traveling Salesman Problem)等。
邮递员问题在实际中有很多应用,比如快递员的路线规划、物流配送等。
解决这个问题可以提高物流效率,减少成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1 a
b
c
v2
v3
v4
图1
图2
图1和图2当中哪一个图满足:从图中任何一点出 发,途径每条边,最终还能回到出发点?
试想:一个图应该满足什么条件才能达到上面要 求呢?
凡是能一笔画出的图,奇点的个数最多 有两个。始点与终点重合的一笔画问题, 奇点的个数必是0。
奇点:那个点的角度来看,数有多少条线从连接着那 个点,如果连接那个点的线的数量是奇数条,那这个 点就是奇点,反之,就是偶点。
其实可以通过连接匹配的奇点得到!
v1 2
v8 4
v7
5 v2 6
3 v9 4
3 v6
5
4
4
9
4
v3
v4
v5
图2
这样的可行方案是不是只有一种呢? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案?
若不是最优方案,如何调整这个方案?
第二步:调整可行方案
最优方案必须满足以下(1)(2)两个条件:
欧拉于1736年研究并解决了 此问题, 他用点表示岛和陆
地,两点之间的连线表示连 接它们的桥,将河流、小岛 和桥简化为一个网络,把七 桥问题化成判断连通网络能 否一笔画的问题。之后他发 表一篇论文,证明了上述走 法是不可能的。并且给出了 连通网络可一笔画的充要条 件这一著名的结论。
一笔画问题:从某一点开始画画,笔不离纸, 各条线路仅画一次,最后回到原来的出发点。
O(|V (G) |2| E(G) |)
解决这样的问题,可以采用奇偶 点图上作业法:如果在配送范围 内,街道中没有奇点,那么他就 可以从配送中心出发,走过每条 街道一次,且仅一次,最后回到 配送中心,这样他所走的路程也 就是最短的路程。
对于有奇点的街道图,该怎么办呢? 这时就必须在每条街道上重复走一次或多次。
v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9
v4
4 v5
图5
5
(v2,v3,v4,v5,v6,v
7,v8,v9)送货,如 图1所示。
v2 6
5
9 v3
v8 4
3 v9 4
4 4
v4 图1
v7 3
v6 4
v5
显然街区图上有奇点(4个),不满足“一笔画” 的条件,则必然有一些街道要被重复走过(添 加重复边)才能回到原出发点。此时得到的图 就无奇点。
那么该怎样添加重复边,使得图中全为偶点呢?
举例说明
如图所示。
v1 2 v3
5 v5
3
4
26 8
v2
4 v4
4 v6
如果在某条路线中,边[vi,vj]上重复走几次, 我们就在图中vi,vj之间增加几条边,令每条 边的权和原来的权相等,并把所增加的边,称 为重复边,于是这条路线就是相应的新图中的 尤拉图。
原来的问题可以叙述为在一个有奇点的图中, 要求增加一些重复边,使新图不含奇点,并且 重复边的总权为最小。
在一个多重边的连通图中,从某个顶点 出发,经过不同的线路,又回到原出发 点,这样的线路必是尤拉图e2 eivi
ei1
ei1
vi
G Wi
ei1
O(| E(G) |2)
O(| E(G) |)
一个邮递员送信,要走完他负责投递的 全部街道,投完后回到邮局,应该怎样 走,使所走的路程最短?
(1)在最优方案中,图的每一边最多有一条
重复边 (2)在最优方案中,图中每个圈上的重复边的
总权不大于该圈总权的一半。
v1 2 v8 4 v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9 v4
4 v5
图3
v1 2 v8 4 v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9 v4
4 v5
图4
v1
2
v8
4
我们把使新图不含奇点而增加的重复边简称为 可行(重复边)方案,使总权最小的可行方案 为最优方案。
现在的问题是第一个可行方案如何确定? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案? 若不是最优方案,如何调整这个方案?
举个例子
车辆从某配送中心 (v1)出发,给街道
v1 2
边上的超市
这个问题是我国管梅谷同志1960年首先 求出来的,因此在国际上通称为中国邮 递员问题。在物流活动中,经常会遇到 这样的问题,如:每天在大街小巷行驶 的垃圾车、洒水车、各售货点的送货车 等都需要解决一个行走的最短路程问题。
这个问题就是一笔画问题。
管梅谷教授。
上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。
(优选)中国邮递员问题
七桥问题与一笔画 中国邮递员问题 欧拉图及求欧拉回路的算法 求解中国邮递员问题的算法
18世纪著名古典数学问 题之一。在哥尼斯堡的 一个公园里,有七座桥 将普雷格尔河中两个岛 以及岛与河岸连接起来 (如图)。问是否可能从 这四块陆地中任一块出 发,恰好通过每座桥一 次,再回到起点?