人教版高一必修一数学教案

合集下载

人教版高一数学教案_高一数学教案【精选4篇】

人教版高一数学教案_高一数学教案【精选4篇】

人教版高一数学教案_高一数学教案【精选4篇】高一数学教案篇一学习是一个潜移默化、厚积薄发的过程。

编辑老师编辑了高一数学教案:数列,希望对您有所帮助!1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的。

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项。

2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。

3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。

在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。

函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。

由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法――递推公式法。

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。

高一数学必修一教案(精选10篇)

高一数学必修一教案(精选10篇)

高一数学必修一教案(精选10篇)第一篇:数学初识教学目标:•了解数学的起源和发展历程;•掌握数学基本概念和术语;•培养对数学的兴趣和好奇心。

教学内容:•数学的定义和分类;•数学的起源和发展;•数学的基本概念和术语。

教学重点和难点:•掌握数学的基本概念和术语;•了解数学的起源和发展历程。

教学方法:•课堂讲解结合小组讨论;•配合多媒体教学工具展示数学的发展历程;•指导学生进行实际例子分析。

教学过程:1.导入:通过提问引起学生的兴趣,如“你们对数学有什么认识吗?”2.课堂讲解:介绍数学的定义和分类,并与学生进行互动讨论。

3.小组活动:分成小组,让学生在小组内讨论并展示自己对数学起源和发展的了解。

4.多媒体展示:使用多媒体教学工具展示数学的发展历程,以图表和视频的形式呈现。

5.实例分析:指导学生通过实际例子来理解数学的基本概念和术语。

6.总结:通过课堂总结,巩固学生对数学的认识和理解。

第二篇:函数与方程教学目标:•掌握函数和方程的基本概念;•理解函数与方程之间的关系;•学会用函数解决实际问题。

教学内容:•函数的定义和性质;•方程的定义和性质;•函数与方程之间的关系;•使用函数解决实际问题。

教学重点和难点:•函数与方程之间的关系;•使用函数解决实际问题。

教学方法:•课堂讲解结合实例演练;•小组合作学习;•独立解决实际问题。

教学过程:1.导入:回顾上节课的内容,引出本节课的主题。

2.课堂讲解:介绍函数和方程的基本概念,并与学生进行互动讨论。

3.实例演练:通过具体的函数和方程实例,让学生理解函数与方程之间的关系。

4.小组合作学习:分成小组,让学生在小组内解决一系列与函数和方程相关的问题。

5.独立解决实际问题:指导学生通过函数解决实际问题,提高实际应用能力。

6.总结:通过课堂总结,巩固学生对函数和方程的理解。

第三篇:三角函数初步教学目标:•掌握三角函数的基本概念和性质;•学会计算三角函数的值;•熟练应用三角函数解决实际问题。

新人教版高中数学必修一全套教案

新人教版高中数学必修一全套教案

b. {(x,y) ∣ x+y=6 ,x、 y∈ N}用列举法表示为
.
c. 用列举法表示下列集合 , 并说明是有限集还是无限集 ?
(1){x ∣ x 为不大于 20 的质数 }; (2){100
以下的 ,9 与 12 的公倍数 };
(3){(x,y)
∣ x+y=5,xy=6};
d. 用描述法表示下列集合 , 并说明是有限集还是无限集 ?
1. 1. 2 集 合间的基 本关系 (1 课时 )
教学目标: 1. 理解子集、真子集概念;
2. 会判断和证明两个集合包含关系;
3. 理解“ ”、“ ”的含义; 4. 会判断简单集合的相等关系;
5. 渗透问题相对的观点。
教学重点: 子集的概念、真子集的概念
教学难点: 元素与子集、属于与包含间区别、描述法给定集合的运算
, 以提供某种规律 ,
例 1.用列举法表示下列集合: (1) 小于 5 的正奇数组成的集合; (2) 能被 3 整除而且大于 4 小于 15 的自然数组成的集合; (3) 从 51 到 100 的所有整数的集合; (4) 小于 10 的所有自然数组成的集合;
(5) 方程 x 2 x 的所有实数根组成的集合;
②若 a Ν ,b Ν , 则 a+b 的最小值是 2 ④ x 2+4=4x 的解集可表示为 {2,2}
其中正确命题的个数是 ( )
A .0
B
.1
C
.2
D
.3
( IV )课时小 结
1. 集 合的含 义;
2. 集合元素的三个特征中,确定性可用于判定某些对象是否是给定集合的元素,互异性可用于简化集
合的表示,无序性可用于判定集合的关系。

新人教版高一数学必修一教案(实用13篇)

新人教版高一数学必修一教案(实用13篇)

新人教版高一数学必修一教案(实用13篇)高一数学必修二教案(1)理解函数的概念;。

(2)了解区间的概念;。

2、目标解析。

(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。

【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。

要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。

【教学过程】。

问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。

问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t 按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。

问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。

设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。

高一数学必修一第三章教案细胞膜、细胞壁、细胞核、细胞质均不是细胞器。

一、细胞器之间分工。

1.线粒体:细胞进行有氧呼吸的主要场所。

双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。

2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。

3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。

分为光面内质网和粗面内质网(上有核糖体附着)。

人教版高一数学必修一教案(优秀4篇)

人教版高一数学必修一教案(优秀4篇)

人教版高一数学必修一教案(优秀4篇)人教版高一数学必修一教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。

二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B 读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。

人教版高中数学必修1全册教案

人教版高中数学必修1全册教案

人教版高中数学必修1全册教案一、教学目标本教案旨在帮助学生:1. 掌握高中数学的基本概念和基本工具;2. 培养数学思维和解决问题的能力;3. 培养学生合作研究和自主研究的能力;4. 提高学生对数学的兴趣和研究动机。

二、教学内容本教案涵盖了人教版高中数学必修1全册的所有内容,包括但不限于以下几个单元:1. 数与式2. 二次函数与一元二次方程3. 三角函数与解三角形4. 平面坐标系与参数方程5. 二次函数与简单二次方程6. 平面向量初步三、教学方法针对不同的教学内容,本教案采用了多种教学方法,如:1. 讲授法:通过教师的讲解、示范和解释,帮助学生理解数学的概念和原理;2. 实践法:通过实际的例题、练和探究活动,培养学生解决问题的能力;3. 小组合作研究:组织学生进行小组合作研究,提高学生的交流和合作能力;4. 自主研究:引导学生进行自主研究,培养学生的自主研究和自我管理能力;四、教学评估本教案采用多种形式的教学评估方式,如:1. 课堂练:通过课堂上的小测验和练,检验学生对知识的掌握情况;2. 作业布置:通过作业的批改和评价,评估学生的研究效果;3. 期中考试:通过期中考试,评估学生对整个教学内容的掌握情况;4. 期末考试:通过期末考试,评估学生对整个学期的研究效果。

五、教学资源本教案所需的教学资源包括但不限于以下几个方面:1. 课本和教辅材料:学生使用的教科书和相关教辅材料;2. 多媒体设备:投影仪、电脑等多媒体设备;3. 实验器材:实验课时所需的实验器材;4. 额外参考资料:学生自主研究时所需的额外参考资料。

以上是本教案的主要内容和要点,请根据需要进行调整和补充。

教师在教学过程中应根据学生的实际情况和学习进度,灵活运用教学方法和评估方式,以达到最佳的教学效果。

人教版高中数学必修1教案

人教版高中数学必修1教案

人教版高中数学必修1教案课程名称:高中数学必修1课时:第一课时教学内容:集合与逻辑教学目标:1. 掌握集合与元素的概念,能正确描述给定集合的特征;2. 理解集合的相等与包含关系,并能运用相关概念进行简单的集合运算;3. 熟练掌握逻辑联结词的含义,能正确运用逻辑联结词构建简单的命题;4. 能够根据已知信息推出结论,培养逻辑思维能力。

教学重点与难点:1. 集合的概念与运算规则;2. 逻辑联结词的含义与运用。

教学准备:1. 教材《高中数学必修1》;2. 课件;3. 讲义。

教学过程:一、导入(5分钟)教师引入集合与逻辑的概念,通过一个实际生活中的例子来引发学生对集合与逻辑的思考。

二、学习内容讲解(15分钟)1. 集合的概念与表示方法;2. 集合的分类与相等关系;3. 集合的运算规则;4. 逻辑联结词的含义与运用。

三、案例分析与讨论(15分钟)教师给出一些集合与逻辑的案例题目,让学生分组讨论并解答,引导学生通过实例加深对集合与逻辑知识的理解。

四、练习与巩固(10分钟)教师布置相关练习题,让学生独立完成并交流答案,巩固所学知识。

五、课堂总结(5分钟)教师对本节课的内容进行总结,强调要复习巩固所学知识,培养逻辑思维能力。

六、作业布置(5分钟)布置相关作业,要求学生认真复习本节课所学内容,做好相关题目。

教师反思:通过这节课的教学,我发现学生对于集合与逻辑的概念不够清晰,需要加强实例引导与案例分析,以提高学生的学习效果。

下节课我将更加注重实例的应用和练习题的设计,帮助学生更好地掌握相关知识。

人教高中必修1数学教学教案5篇

人教高中必修1数学教学教案5篇

人教高中必修1数学教学教案5篇在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)中国的小河流;(3)非负奇数;(4)方程的解;(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belongto)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作:aA例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A4A,等等。

6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。

7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1.用"∈"或""符号填空:(1)8N;(2)0N;(3)-3Z;(4)Q;(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标:
(1)了解集合、元素的概念,体会集合中元素的三个特征;
(2)理解元素与集合的"属于"和"不属于"关系;
(3)掌握常用数集及其记法;
教学重点:掌握集合的基本概念;
教学难点:元素与集合的关系;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流;
(3)非负奇数;
(4)方程的解;
(5)某校2007级新生;
(6)血压很高的人;
(7)的数学家;
(8)平面直角坐标系内所有第三象限的点
(9)全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

5.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belongto)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作:aA
例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A 4A,等等。

6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。

7.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
(二)例题讲解:
例1.用"∈"或""符号填空:
(1)8N;(2)0N;
(3)-3Z;(4)Q;
(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。

例2.已知集合P的元素为,若3∈P且-1P,求实数m的值。

(三)课堂练习:
课本P5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。

作业布置:
1.习题1.1,第1-2题;
2.预习集合的表示方法。

相关文档
最新文档