风机、水泵变频器选型原则
水泵选型的基本原则

水泵选型的基本原则
1、总体原则:
遵规守约、注重节能、经济合理、信誉确保。
1.1遵规守约:确保设计、制造、安装、使用符合国家法律、法规和标准的要求,保证水泵的安全可靠;
1.2注重节能:选购水泵时应考虑整个输送系统的效率,采用能实现低廉耗能、低噪声、低污染的技术和新型产品,采取措施努力提高输送系统的效率,缩短成本;
1.3经济合理:选型时,应结合泵的用途、技术条件、产品性能及价格,采取节能的合理方案,达到最佳经济效益;
1.4信誉确保:在水泵选型时,应做好充分的可靠性分析,确保水泵的质量安全,合格的水泵才能满足客户的需要。
2、基本原则:
2.1根据使用环境和应用要求,确定水泵的用途、性能及结构材料;
2.2根据水泵运转所需要的输入功率,结合电力情况,确定水泵的机械性能参数;
2.3根据水泵正常运行所需水量及压力,确定水泵的流量和扬程;
2.5根据较准和相关管路及驱动机构,确定水泵的叶轮结构及其他技术参数;
2.6尽可能选取具有自我保护技术的水泵,以防止安全事故;
2.7综合考虑水泵的性价比及价格,确定水泵的选型。
施耐德风机水泵型变频器选型指南

● 输入电压 0...10 V : 最小负载阻抗 7.62 k ● 输入电流可以在 0 to 20mA之间设置 : 最大负载阻抗 970 ● 采样时间 : 2 ms ± 0,5 ms ● 分辨率 : 10 bits ● 精度 : ± 1 % (Inputs) 温度变化范围 60 °C ● 线性度 :最大值的± 0,2 %
PC Soft调试软件 – 跟ATV21一样
-串行口或者 蓝牙
SoMove Mobile
为手机定制软件 通过蓝牙适配器 复制存储变频器设置
ATV 212 : M1 – 主要特点
目录
> 市场介绍 > 产品 > 技术参数 > 人机界面 > 问答
产品
电机功率: 0.75 到 75 kW
● 240V 和 400V 3 相
● 紧凑型 , 散热器安装
● 12 种尺寸 IP21 + IP55 两个防护等级 22 … 45kW
0.75 … 2.2kW 3 … 5.5kW
7.5 & 11kW
15 … 18,5kW
55 & 75kW
18.5kW 以下,安装尺寸超小
产品
Altivar 212型号参考
ATV212 . . .. .. . .
● 内置 BMS 常用通讯协议
●
Apogee FLN / Metasys N2 / BACnet / Modbus 均可菊花链连
接
●
Lonworks P1 提供选件
● 蓝牙 连接使无需打开柜子就可进行调试
● 新功能
● 风阀控制 ● 消防功能升级
变频器选型原则与步骤详解

变频器选型原则与步骤详解来源:本站人气:1118发布时间:2015-05-29 16:35:00衡量一个通用变频器性能好坏的主要指标有:起动转矩、控制方式、转矩控制精度、速度控制精度、速度控制方式、控制信号种类、频率跳跃功能、载波频率、多段速度设定、通信接口等。
变频器选型的是否正确对于机械设备的电控系统正常运行起着至关重要的作用。
广州仙锯建议大家变频器选型的时候首先要弄清楚机械设备的类型、负载转矩特性、起动转矩、调速范围、静态速度精度和使用环境的要求等现场所需条件,然后才决定选择使用何种控制方式和防护结构的变频器是最合适的。
所谓合适,是在满足机械设备中实际工艺生产的要求和使用场合前提下所说的一个说法,实现变频器的应用最佳性价比。
变频器选型原则具体来讲,低压通用变频器的选择包括低压通用变频器的型式选择和容量选择两个方面,选择变频器的基本原则有两方面:变频器功能特性能保证可靠地实现工艺要求,能获得相对较好的性价比。
为使变频器功能特性能保证可靠地实现工艺要求,在变频器选型时应密切关注以下技术参数:1、根据电机实际工作电流选择变频器电机实际工作电流是变频器选型最关键的因素,变频器在长时间工作时必须满足变频器输出电流大于电机实际工作电流。
切记!!!项目中通常先选电机,再根据电机选变频器。
电机实际工作电流并不是电机铭牌上标注的额定电流,变频器选型时应先熟悉工况,初步估算出电机的工作电流与随时间变化的关系,然后才确定相对应变频器的型号。
1.1一般情况下,变频器拖动恒转矩负载电机,以电机额定电流为依据选择变频器。
1.2一般情况下,变频器拖动风机、泵类负载的电机,以电机额定电流为依据选择变频器。
1.3时常短时间过载运行的电机,需要计算过载周期及过载电流。
变频器拖动这类型负载的电机,要求变频器最大输出电流Imax大于电机峰值电流,且变频器的参数I2t在自身所允许的范围之内,变频器选型时有可能放大一档或几档来才能满足现场需求。
第8章 泵与风机的选型

3、 选择的具体原则
a 满足工作中所需最大流量和扬程。 要求:热电厂中泵是辅机,不应 使主要设备出力受到限制。
(1)选择的泵或风机
b 使泵或风机长期在高效区运行, 工作点尽可能靠近设计点;提高 长期运行经济性,争取系统最优。
(2) 选择的泵或风机
a 结构简单 b 体积小 c 重量轻
允许条件下,尽 可能选择高转速。
——第八章
泵与风机的选型
欢迎学习泵与风机课程
讲演:温 高
第七章
泵与风机的选型
• 第一节 选型的原则 • 第二节 选择泵与风机应具备的已知条件
• 第三节 选型方法
第一节
选 型 原 则
1、 选泵或风机总原则:能使设备在系统中安全、经济 地运行 。 确定型号 台数 规格 转速 配套原动机功率
2 、选择的主要内容
t 273 293
P20 P
101325 Pa
t 273 293
q v 200 q v
引风机
p 200 p 101325 pa t 273 473
P200 P
101325 Pa
t 273 473
计算式各参数的意义:
q v ——使用条件下的流量, m3/s
p a ——使用条件下的气压, Pa
q v 1 . 05 ~ 1 . 10 q v max
H 1 . 10 ~ 1 . 15 H
max
p 1 . 10 ~ 1 . 15 p max
相对湿度50%
测试的误差。
原因:考虑提供参数 运行时设备性能的变化。
3、 性能参数的换算:
若所输送的流体介质不符合设计规范规定时,应进行换算。
变频器选型原则

变频器选型原则具体来讲,低压通用变频器的选择包括低压通用变频器的型式选择和容量选择两个方面,选择变频器的基本原则有两方面:变频器功能特性能保证可靠地实现工艺要求,获得比较好的性价比。
为使变频器功能特性能保证可靠地实现工艺要求,在变频器选型时应密切关注以下技术参数:1、根据电机实际工作电流选择变频器电机实际工作电流是变频器选型最关键的因素,变频器在长时间工作时必须满足变频器输出电流大于电机实际工作电流。
切记!!!项目中通常先选电机,再根据电机选变频器。
电机实际工作电流并不是电机铭牌上标注的额定电流,变频器选型时应先熟悉工况,估算出电机的工作电流随时间变化的关系,才能确定相应的变频器的型号。
1.1 一般情况下,变频器拖动恒转矩负载电机,以电机额定电流为依据选择变频器。
1.2 一般情况下,变频器拖动风机、泵类负载的电机,以电机额定电流为依据选择变频器。
1.3 经常短时过载运行的电机,需要计算过载周期及过载电流。
变频器拖动这类型负载的电机,要求变频器最大输出电流Imax大于电机峰值电流,且变频器的I2t在自身允许范围内,变频器选型时有可能放大一档或几档来才能满足现场需求。
现以10kW、20A额定电流电机举例:假设电机间歇性工作,1秒内过载运行时峰值电流为40A(额定电流2倍),之后结束运行20秒。
此时选型就要用到变频器过载曲线:首先将电机电流随时间变化的曲线出来,其次看变频器的输出电流曲线能否覆盖电机电流曲线(即变频器输出电流超过电机实是否际工作电流),只有变频器输出电流曲线覆盖电机电流曲线的变频器型号才适用于重载负荷的电机。
能对于重载变频器的选型,往往有一些经验数据可以参考。
变频器过载能力西门子产品比较好,一般允许1.6倍短时过载。
不同品牌变频器过载能力可参考该变频器选型样本。
2、变频器选型应充分考虑环境对变频器的影响2.1 温度变频器的影响变频器的使用环境温度一般在-10~40℃,环境温度若高于40℃,每升高1℃,变频器应降额5%使用;环境温度每升10℃,则变频器寿命减半,所以周围环境及变频器散热的问题一定要解决好。
水泵变频器的选型

水泵变频器的选型选型变频器选型时要确定以下几点:1、采用变频的目的;恒压控制或恒流控制等。
2、变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。
3、变频器与负载的匹配问题;1)电压匹配;变频器的额定电压与负载的额定电压相符。
2)电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。
对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。
3)转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。
4、在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。
因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。
5、变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。
6、对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。
控制原理图设计变频器控制原理图设计步骤如下:1、首先确认变频器的安装环境1)工作温度。
变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。
在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。
2)环境温度。
温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。
必要时,必须在箱中增加干燥剂和加热器。
在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。
变频器选型规范办法

变频器选型规范办法变频器的正确选择对于掌握系统的正常运行是特别关键的。
选择变频器时必需要充分了解变频器所驱动的负载特性。
人们在实践中常将生产机械分为三种类型:恒转矩负载、恒功率负载和风机、水泵负载。
恒转矩负载:负载转矩TL与转速n无关,任何转速下TL总保持恒定或基本恒定。
例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。
变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。
假如需要在低速下稳速运行,应当考虑标准异步电动机的散热能力,避免电动机的温升过高。
恒功率负载:机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。
负载的恒功率性质应当是就一定的速度变化范围而言的。
当速度很低时,受机械强度的限制,TL不可能无限增大,在低速下转变为恒转矩性质。
负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。
电动机在恒磁通调速时,最大容许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大容许输出转矩与速度成反比,属于恒功率调速。
假如电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相全都时,即所谓“匹配”的状况下,电动机的容量和变频器的容量均最小。
风机、泵类负载:在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。
随着转速的减小,转速按转速的2次方减小。
这种负载所需的功率与速度的3次方成正比。
当所需风量、流量减小时,利用变频器通过调速的方式来调整风量、流量,可以大幅度地节省电能。
由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。
西门子公司可以供应不同类型的变频器,用户可以依据自己的实际工艺要求和运用场合选择不同类型的变频器。
在选择变频器时因留意以下几点留意事项:1.依据负载特性选择变频器,如负载为恒转矩负载需选择SIEMENSMMV/MDV变频器,如负载为风机、泵类负载应选择SIEMENSECO变频器。
泵与风机的选型

直径较小、运行经济的风机为所决定的风机。
11
选择曲线是用
把在
下,
上工作范围内工况点的
的
D2,
n、
u2以及相应的 qV、 p、 Pgr
的一种曲线,也称同系列通风机的对数坐标图。
选择曲线表示了同系列通风机的主要参数n、D2、u2、qV、p、 及Pgr等之间的关系。图3-17是G-4-13.2(73)型离心通风机的
,等Pgr
在使用时,应先
,然后再查用。
化为
14
2、利用“通风机的性能选择曲线”选择风机 (4)对需要经常调节流量的大型风机,根据负荷变化情况, 通过技术经济分析,合理地选择调节方式。
3、利用无因次性能曲线选择风机 无因次性能曲线代表了相似的同类风机的性能,用之可以实
现不同类型风机的性能比较。因此,利用无因次性能曲线选择风 机,对于确定可用风机的类型比较容易,其方法大致如下:
(三)最大允许切割量和切割高效区
6
• (二)比转数是编制泵与风机系 列的基础。
• 系列是指同类结构泵或风机, 将这些泵与风机的工作范围画 在一张型谱上,供选用。
• (三)用比转数进行泵和风机的 相似设计
• 无论用相似设计,还是速度系 数法设计,都需要利用比转数 选择优良的模型或合理的速度 系数。
23
24
例7-1
25
泵性能指标公式记忆
• 理论转矩记住它 , • 理论流量记得住 , • 功率等于p 乘 q , • 能流方向分得清 , • 计算单位要统一 ,
等于排量乘压差 . 等于排量乘转速 . 也等转矩乘转速 . 乘除效率不含糊 . 角度一律用弧度.
26
选择曲线。
便于选择风机产品(由制造厂提供风机)。 12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风机、水泵变频器选型方法一、首先需要注意,1.罗茨风机及潜水泵及齿轮泵等不是平方转矩的风机水泵类负载,是恒转矩负载,平方转矩类风机水泵负载一般都是针对于离心风机及水泵来的,这种负载在出口关闭情况下出口压力升到额定压力后就不升高了,因为没有流量所以负荷降低。
2.风机水泵类负载一般在设计时是按照最大需量设计的,存在富余功率。
对于这类负载使用变频器按需使用就有节能的空间。
二、正确的把握变频器驱动的机械负载对象的转速——转矩特性,是选择电动机及变频器容量、决定其控制方式的基础。
风机、泵类的负载为平方转矩负载。
随着转速的降低,所需转矩以平方的比例下降,低频时负载电流小,电机过热现象不会发生;但有些负载的惯量大,必须设定长的加速时间,或再启动时的大转矩引起的冲击,因此选型时需考虑裕量;另:当电机以超出基频转速以上的转速运行时,负载所需的动力随转速的提高而急剧增加,易超出电机与变频器的容量,将导致运行中断或电机发热严重。
对于恒转矩负载,要选用G型的变频器;P型变频器适用于普通的风机和离心式水泵等负载。
(罗茨风机、螺杆泵、泥浆泵、往复式柱塞泵等则要用G型)--------------百度文库及工控网、自动化网,总结的选型方法摘抄如下:1) 根据负载特性选择变频器,如负载为恒转矩负载需选变频器,如负载为风机、泵类负载应选择风机、泵类变频器。
因为风机、水泵会随着转速增大力矩。
而刚启动时力矩较小。
2) 选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。
另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。
因此用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。
所以在选择电动机和变频器时,应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。
3) 变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。
所以变频器应放大一、两档选择或在变频器的输出端安装输出电抗器。
4) 对于一些特殊的应用场合,如高环境温度、高开关频率(尤其是在楼宇自控等对噪音限制较高的应用场所使用时需注意)、高海拔此时会引起变频器的降容,变频器需放大一档选择。
5) 当变频器用于控制并联的几台电机时,一定要考虑变高度等,频器到电动机的电缆的长度总和在变频器的容许范围内。
如果超过规定值,要放大一档或两档来选择变频器。
另外在此种情况下,变频器的控制方式只能为V/F 控制方式,并且变频器无法实现电动机的过流、过载保护,此时需在每台电动机侧加熔断器来实现保护。
6) 使用变频器控制高速电机时,由于高速电动机的电抗小,会产生较多的高次谐波。
而这些高次谐波会使变频器的输出电流值增加。
因此,选择用于高速电动机的变频器时,应比普通电动机的变频器稍大一些。
7) 变频器用于变极电动机时,应充分注意选择变频器的容量,使其最大额定电流在变频器的额定输出电流以下。
另外,在运行中进行极数转换时,应先停止电动机工作,否则会造成电动机空转,恶劣时会造成变频器损坏。
8) 驱动防爆电动机时,变频器没有防爆构造,应将变频器设置在危险场所之外。
9) 使用变频器驱动齿轮减速电动机时,使用范围受到齿轮转动部分润滑方式的制约。
润滑油润滑时,在低速范围内没有限制;在超过额定转速以上的高速范围内,有可能发生润滑油用光的危险。
因此,不要超过最高转速容许值。
10) 变频器驱动绕线转子异步电动机时,大多是利用已有的电动机。
绕线电动机与普通的鼠笼电动机相比,绕线电动机绕组的阻抗小。
因此,容易发生由于纹波电流而引起的过电流跳闸现象,所以应选择比通常容量稍大的变频器。
一般绕线电动机多用于飞轮力矩GD2 较大的场合,在设定加减速时间时应多注意。
11) 变频器驱动同步电动机时,与工频电源相比,会降低输出容量10%~20%,变频器的连续输出电流要大于同步电动机额定电流与同步牵入电流的标幺值的乘积12) 对于压缩机、振动机等转矩波动大的负载和油压泵等有峰值负载情况下,如果按照电动机的额定电流或功率值选择变频器的话,有可能发生因峰值电流使过电流保护动作现象。
因此,应了解工频运行情况,选择比其最大电流更大的额定输出电流的变频器。
13) 变频器驱动潜水泵电动机时,因为潜水泵电动机的额定电流比通常电动机的额定电流大, 所以选择变频器时,其额定电流要大于潜水泵电动机的额定电流。
14) 当变频器控制罗茨风机或特种风机时,由于罗茨风机为容积形鼓风机,具有输出风压高的特点。
从电机特性来看,其转矩特性近似为恒转矩特性,其起动电流很大,所以选择变频器时一定要注意变频器的容量是否足够大。
15) 选择变频器时,一定要注意其防护等级是否与现场的情况相匹配。
否则现场的灰尘、水会影响变频器的长久运行。
16) 单相电动机不适用变频器驱动。
17)如果变频器的供电电源是自备电源,最好加上进线电抗器。
18) 电机负载非常轻时,即使电机负载电流在变频器额定电流之内,亦不能使用比电机容量小很多的变频器。
这是因为电机的电抗随电机的容量而不同,即使电机负载相同,电机容量越大其脉动电流值也越大,因而有可能超过变频器的电流容许值。
三、一、引言在工业生产和产品加工制造业中,风机、泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板相关设备的节流损失以及维护、维修费用占到生产成本的7%~25%,是一笔不小的生产费用开支。
随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。
而八十年代初发展起来的变频调速技术,正是顺应了工业生产自动化发展的要求,开创了一个全新的智能电机时代。
一改普通电动机只能以定速方式运行的陈旧模式,使得电动机及其拖动负载在无须任何改动的情况下即可以按照生产工艺要求调整转速输出,从而降低电机功耗达到系统高效运行的目的。
八十年代末,该技术引入我国并得到推广。
现已在电力、冶金、石油、化工、造纸、食品、纺织等多种行业的电机传动设备中得到实际应用。
目前,变频调速技术已经成为现代电力传动技术的一个主要发展方向。
卓越的调速性能、显著的节电效果,改善现有设备的运行工况,提高系统的安全可靠性和设备利用率,延长设备使用寿命等优点随着应用领域的不断扩大而得到充分的体现。
二、综述通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。
而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。
这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。
在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。
从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。
泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。
而且,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。
这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。
风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。
不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现泵损坏同时电机也被烧毁的现象。
近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用变频调速器(简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点;因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。
变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n =60 f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。
变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。
三、节能分析通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n ,H ∝n2,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。
在现场控制中,通常采用水泵定速运行出口阀门控制流量。
当流量从Q1减小50%至Q2时,阀门开度减小使管网阻力特性由r0变为r1,系统工作点沿方向I由原来的A点移至B点;受其节流作用压力H1变为H2。
水泵轴功率实际值(kW)可由公式:P =Q·H/(η c·η b)×10-3得出。
其中,P、Q 、H 、η c 、η b 分别表示功率、流量、压力、水泵效率、传动装置效率,直接传动为1。
假设总效率(η c·η b)为1,则水泵由A点移至B点工作时,电机节省的功耗为AQ1OH1和BQ2OH2的面积差。
如果采用调速手段改变水泵的转速n,当流量从Q1减小50%至Q2时,那么管网阻力特性为同一曲线r0,系统工作点将沿方向II由原来的A点移至C点,水泵的运行也更趋合理。
在阀门全开,只有管网阻力的情况下,系统满足现场的流量要求,能耗势必降低。
此时,电机节省的功耗为AQ1OH1和CQ2OH3的面积差。
比较采用阀门开度调节和水泵转速控制,显然使用水泵转速控制更为有效合理,具有显著的节能效果。
四、节能计算对于风机、泵类设备采用变频调速后的节能效果,通常采用以下两种方式进行计算:、根据已知风机、泵类在不同控制方式下的流量-负载关系曲线和现场运行的负荷变化情况进行计算。
以一台IS150-125-400型离心泵为例,额定流量200.16m3/h,扬程50m;配备Y225M-4型电动机,额定功率45kW。
泵在阀门调节和转速调节时的流量-负载曲线如下图示。
根据运行要求,水泵连续24小时运行,其中每天11小时运行在90%负荷,13小时运行在50%负荷;全年运行时间在300天。
则每年的节电量为:W1=45×11×(100%-69%)×300=46035kW·h(95%-20%)×300 =131625kW·h+W2=46035+131625=177660kW·h每度电按0.5元计算,则每年可节约电费8.883万元。
、根据风机、泵类平方转矩负载关系式:P / P0=(n / n0)3计算,式中为P0额定转速n0时的功率;P为转速n时的功率。