2020中考模拟卷三

合集下载

2020年安徽省中考数学模拟试卷(三)

2020年安徽省中考数学模拟试卷(三)

2020年安徽省中考数学模拟试卷(三)一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)6-的绝对值的相反数是()A.6-B.6C.16D.16-2.(4分)计算3a a÷,结果是()A.a B.2a C.3a D.4a3.(4分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A.B.C.D.4.(4分)设a为正整数,且371a a<<+,则a的值为()A.5B.6C.7D.85.(4分)已知:如图,////AB CD EF,50ABC∠=︒,150CEF∠=︒,则BCE∠的值为( )A.50︒B.30︒C.20︒D.60︒6.(4分)计算222211111a a a aa a a-+-÷-+-+的正确结果为()A.11a+B.1C.2D.1a-7.(4分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是()A.(12)864x x+=B.(12)864x x-=C.212864x x+=D.2128640x x+-=8.(4分)如图,ABCD 中,AC BC ⊥,3BC =,4AC =,则B ,D 两点间的距离是()A .213B .62C .10D .559.(4分)二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数y bx =在同一坐标系中的大致图象可能是( )A .B .C .D .10.(4分)如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE x =,DE 的延长线交CB 的延长线于点F ,设BF y =,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( )A .2AD =B .当1x =时,6y =C .若AD DE =,则1BF EF ==D .若2BF BC =,则43AE =二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为 元.12.(5分)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是 .13.(5分)如图,已知四边形ABCD 内接于O ,AD 是直径,120ABC ∠=︒,3CD =,则弦AC = .14.(5分)如图,抛物线2286y x x =-+-与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是 .三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:201()|22|2cos45(3)2π-----︒+-16.(8分)定义一种新运算:观察下列式: 131437=⨯+=3(1)34111-=⨯-= 5454424=⨯+=4(3)44313-=⨯-=(1)请你想一想:a b = ; (2)若a b ≠,那么a b ba (填入“=”或“≠” )(3)若(2)3ab -=,请计算()(2)a b a b -+的值.四、(本大题共2小题,每小题8分,满分16分)17.(8分)2019年2月24日,华为发布旗下最新款折叠屏手机MateX ,如图是这款手机的示意图,当两块折叠屏的夹角为30︒时(即30)ABC ∠=︒,测得AC 之间的距离为40mm ,此时45CAB ∠=︒.求这款手机完全折叠后的宽度AB 长是多少?(结果保留整数,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈18.(8分)已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC ∆关于原点成中心对称的△111A B C ,并写出点1C 的坐标; (2)画出将111A B C 绕点1C 按顺时针旋转90︒所得的△221A B C .五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在圆O中,弦8AB=,点C在圆O上(C与A,B不重合),连接CA、⊥,垂足分别是点D、E.CB,过点O分别作OD AC⊥,OE BC(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.20.(10分)为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数;(3)估计该校1200名学生中有多少人喜爱跑步项目.六、(本题满分12分)21.(12分)如图,一次函数的图象与y 轴交于(0,8)C ,且与反比例函数(0)k y x x=>的图象在第一象限内交于(3,)A a ,(1,)B b 两点. (1)求AOC ∆的面积;(2)若2224a ab b -+=,求反比例函数和一次函数的解析式.七、(本题满分12分)22.(12分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系. 销售量y (千克) ⋯32.5 35 35.5 38⋯售价x (元/千克)⋯27.5 25 24.5 22⋯(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式,如果水果店该天获利400元,那么这天芒果的售价为多少元? 八、(本题满分14分)23.(14分)如图1,在锐角ABC ∆中,D 、E 分别是AB 、BC 的中点,点F 在AC 上,且满足AFE A ∠=∠,//DM EF 交AC 于点M . (1)证明:DM DA =;(2)如图2,点G 在BE 上,且BDG C ∠=∠,求证:DEG ECF ∆∆∽; (3)在图2中,取CE 上一点H ,使得CFH B ∠=∠,若3BG =,求EH 的长.2020年安徽省中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)6-的绝对值的相反数是()A.6-B.6C.16D.16-【解答】解:6-的绝对值为6,6的相反数为6-,6∴-的绝对值的相反数是6-.故选:A.2.(4分)计算3a a÷,结果是()A.a B.2a C.3a D.4a【解答】解:32a a a÷=.故选:B.3.(4分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A.B.C.D.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(4分)设a为正整数,且371a a<+,则a的值为()A.5B.6C.7D.8【解答】解:363749∴6377<<,a 为正整数,且371a a <<+,6a ∴=.故选:B .5.(4分)已知:如图,////AB CD EF ,50ABC ∠=︒,150CEF ∠=︒,则BCE ∠的值为()A .50︒B .30︒C .20︒D .60︒【解答】解:////AB CD EF ,50ABC BCD ∴∠=∠=︒,180CEF ECD ∠+∠=︒; 18030ECD CEF ∴∠=︒-∠=︒, 20BCE BCD ECD ∴∠=∠-∠=︒.故选:C .6.(4分)计算222211111a a a a a a a-+-÷-+-+的正确结果为( )A .11a + B .1 C .2D .1a-【解答】解:原式2(1)(1)111111(1)(1)(1)a a a a a a a a a-+=⨯-+=-+=+--.故选:B .7.(4分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x 步,那么同学们列出的下列方程中正确的是( ) A .(12)864x x +=B .(12)864x x -=C .212864x x +=D .2128640x x +-=【解答】解:设矩形田地的长为x 步,那么宽就应该是(12)x -步. 根据矩形面积=长⨯宽,得:(12)864x x -=. 故选:B .8.(4分)如图,ABCD 中,AC BC ⊥,3BC =,4AC =,则B ,D 两点间的距离是()A .213B .62C .10D .55【解答】解:过D 作DE BC ⊥,ABCD 中,AC BC ⊥, //AD CE ∴, DE BC ⊥, //AC DE ∴,∴四边形ACED 是平行四边形,3CE AD BC ∴===,连接BD ,在Rt BDE ∆中,222264213BD BE DE =+=+=, 故选:A .9.(4分)二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数y bx =在同一坐标系中的大致图象可能是( )A .B .C .D .【解答】解:二次函数2y ax bx c =++的图象开口方向向下, 0a ∴<,对称轴在y 轴的右边, a ∴、b 异号,即0b >.∴反比例函数ay x=的图象位于第二、四象限, 正比例函数y bx =的图象位于第一、三象限. 观察选项,C 选项符合题意. 故选:C .10.(4分)如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE x =,DE 的延长线交CB 的延长线于点F ,设BF y =,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( )A .2AD =B .当1x =时,6y =C .若AD DE =,则1BF EF == D .若2BF BC =,则43AE =【解答】解:ABCD 为平行四边形//AD BC ∴,//AB DCF ADF ∴∠=∠,FBE A ∠=∠ BFE ADE ∴∆∆∽∴BF BEAD AE=设AB a =,AD b = 则BE AB AE a x =-=-∴y a xb x -=aby b x∴=- 图象过点(2,2),(4,0) 4a ∴=,2b =故A 正确; 4a =,2b =82y x∴=- ∴当1x =时,6y =,故B 正确;若AD DE =,则A AED ∠=∠A FBE ∠=∠,AED FEB ∠=∠ FBE FEB ∴∠=∠ BF EF ∴=∴若AD DE =,则总有BF EF =,它们并不总等于1,故C 不正确;若2BF BC =, BF BEAD AE=∴24BC AEBC AE-=解得43AE =故D 正确. 故选:C .二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为 107.210⨯ 元. 【解答】解:720亿10720000000007.210==⨯. 故答案为:107.210⨯.12.(5分)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是18.【解答】解:如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,∴指针落在惊蛰、春分、清明的概率是:31248=. 故答案为:1813.(5分)如图,已知四边形ABCD 内接于O ,AD 是直径,120ABC ∠=︒,3CD =,则弦AC = 33 .【解答】解:四边形ABCD 内接于O , 18060D B ∴∠=︒-∠=︒,AD 是直径,90ACD ∴∠=︒, tan 33AC CD D ∴==故答案为:3314.(5分)如图,抛物线2286y x x =-+-与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是1538m -<<-.【解答】解:令22860y x x =-+-=, 即2430x x -+=, 解得1x =或3, 则点(1,0)A ,(3,0)B ,由于将1C 向右平移2个长度单位得2C , 则2C 解析式为22(4)2(35)y x x =--+, 当1y x m =+与2C 相切时, 令212(4)2y x m y x =+==--+, 即21215300x x m -++=, △18150m =--=, 解得1158m =-, 当2y x m =+过点B 时, 即203m =+,23m =-,当1538m -<<-时直线y x m =+与1C 、2C 共有3个不同的交点, 故答案是:1538m -<<-.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:201()22|2cos45(3)2π----︒+-【解答】解:原式422213=-+=.16.(8分)定义一种新运算:观察下列式: 131437=⨯+=3(1)34111-=⨯-= 5454424=⨯+=4(3)44313-=⨯-=(1)请你想一想:a b = 4a b + ; (2)若a b ≠,那么a b ba (填入“=”或“≠” )(3)若(2)3ab -=,请计算()(2)a b a b -+的值. 【解答】解:(1)根据定义可知:4a b a b =+;(2)4a b a b =+,4b a b a =+,a b ≠,ab ba ∴≠;(3)(2)3a b -=,423a b ∴-=, 2 1.5a b ∴-=,()(2)a b a b ∴-+4()(2)a b a b =-++ 63a b =-3(2)a b =- 4.5=.故答案为:4a b +;≠.四、(本大题共2小题,每小题8分,满分16分)17.(8分)2019年2月24日,华为发布旗下最新款折叠屏手机MateX ,如图是这款手机的示意图,当两块折叠屏的夹角为30︒时(即30)ABC ∠=︒,测得AC 之间的距离为40mm ,此时45CAB ∠=︒.求这款手机完全折叠后的宽度AB 长是多少?(结果保留整数,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈【解答】解:过点C 作CD AB ⊥于点D , 40AC mm =,45A ∠=︒,40202()2CD AD mm ∴===,30B ∠=︒,2402()BC CD mm ∴==,∴由勾股定理可知:206()BD mm =,AB AD BD ∴=+202206=+77()mm ≈,18.(8分)已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC ∆关于原点成中心对称的△111A B C ,并写出点1C 的坐标; (2)画出将111A B C 绕点1C 按顺时针旋转90︒所得的△221A B C .【解答】解:(1)如图所示,△111A B C 即为所求,其中点1C 的坐标为(2,1)--.(2)如图所示,△221A B C 即为所求.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在圆O 中,弦8AB =,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD AC ⊥,OE BC ⊥,垂足分别是点D 、E .(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.【解答】解:(1)OD 经过圆心O ,OD AC ⊥, AD DC ∴=,同理:CE EB =,DE ∴是ABC ∆的中位线,12DE AB ∴=, 8AB =,4DE ∴=.(2)过点O 作OH AB ⊥,垂足为点H ,3OH =,连接OA ,OH 经过圆心O ,12AH BH AB ∴==, 8AB =,4AH ∴=,在Rt AHO ∆中,222AH OH AO +=, 5AO ∴=,即圆O 的半径为5.20.(10分)为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数; (3)估计该校1200名学生中有多少人喜爱跑步项目. 【解答】解:(1)45%80÷=,即在这次问卷调查中,一共抽查了80名学生; (2)喜爱游泳的学生有:8025%20⨯=(人), 补全的频数分布直方图如右图所示,扇形统计图中“体操”所对应的圆心角度数是:103604580︒⨯=︒;(3)10120015080⨯=(人), 答:该校1200名学生中有150人喜爱跑步项目.六、(本题满分12分)21.(12分)如图,一次函数的图象与y 轴交于(0,8)C ,且与反比例函数(0)k y x x=>的图象在第一象限内交于(3,)A a ,(1,)B b 两点. (1)求AOC ∆的面积;(2)若2224a ab b -+=,求反比例函数和一次函数的解析式.【解答】解:(1)作AD y ⊥轴于D ,(3,)A a , 3AD ∴=,一次函数的图象与y 轴交于(0,8)C , 8OC ∴=,11831222AOC S OC AD ∆∴==⨯⨯=;(2)(3,)A a ,(1,)B b 两点在反比例函数(0)ky x x=>的图象上,3a b ∴=,4, 22216a ab b ∴-+=,2223(3)16a a a a ∴-+=, 整理得,24a =, 0a >, 2a ∴=,(3,2)A ∴, 326k ∴=⨯=,设直线的解析式为y mx n =+,∴832n m n =⎧⎨+=⎩,解得:28m n =-⎧⎨=⎩,∴一次函数的解析式为28y x =-+, ∴反比例函数和一次函数的解析式分别为6y x=和28y x =-+. 七、(本题满分12分)22.(12分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系.(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式,如果水果店该天第21页(共23页)获利400元,那么这天芒果的售价为多少元?【解答】解:(1)设该一次函数解析式为(0)y kx b k =+≠,则 25352238k b k b +=⎧⎨+=⎩, 解得160k b =-⎧⎨=⎩, 60(1540)y x x ∴=-+,∴当28x =时,32y =,答:芒果售价为28元/千克时,当天该芒果的销售量为32千克;(2)由题易知2(10)(60)(10)70600m y x x x x x =-=-+-=-+-, 当400m =时,则270600400x x -+-=,解得,120x =,250x =,1540x ,20x ∴=,答:这天芒果的售价为20元.八、(本题满分14分)23.(14分)如图1,在锐角ABC ∆中,D 、E 分别是AB 、BC 的中点,点F 在AC 上,且满足AFE A ∠=∠,//DM EF 交AC 于点M .(1)证明:DM DA =;(2)如图2,点G 在BE 上,且BDG C ∠=∠,求证:DEG ECF ∆∆∽;(3)在图2中,取CE 上一点H ,使得CFH B ∠=∠,若3BG =,求EH 的长.【解答】(1)证明:如图1所示,//DM EF,∴∠=∠,AMD AFE∠=∠,AFE AAMD A∴∠=∠,∴=.DM DA(其他解法酌情给分)(2)证明:如图2所示,D、E分别是AB、BC的中点,∴,//DE AC∴∠=∠,DEG CBDE A∠=∠,∠=∠,AFE A∴∠=∠,BDE AFEBDG GDE C FEC∴∠+∠=∠+∠,∠=∠,BDG CGDE FEC∴∠=∠,∽.∴∆∆DEG ECF(3)如图3所示,第22页(共23页)BDG C DEB∠=∠=∠,B B∠=∠,BDG BED∴∆∆∽,∴BD BGBE BD=,2BD BG BE∴=,AFE A∠=∠,CFH B∠=∠,180180C A B AFE CFH EFH∴∠=︒-∠-∠=︒-∠-∠=∠,又FEH CEF∠=∠,EFH ECF∴∆∆∽,∴EH EFEF EC=,2EF EH EC∴=,//DE AC,//DM EF,∴四边形DEFM是平行四边形,EF DM DA BD∴===,BG BE EH EC∴=,BE EC=,3EH BG∴==.第23页(共23页)。

2020年海南省中考数学模拟仿真试卷(三)含答案解析

2020年海南省中考数学模拟仿真试卷(三)含答案解析

2020年海南省中考数学模拟仿真试卷(三)一、选择题(本题有14小题,每小题3分,共42分)1.若|a|=3,则a的值是()A.﹣3 B.3 C.D.±32.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.2a3•a=2a4D.(3a)3=9a33.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤24.2020年12月30日,全球首条环岛高铁南海环岛高速通车了,环绕全岛的环岛高铁,犹如一条镶嵌于海南岛上的“珍珠链”、“幸福圈”,覆盖了全省12个市县约7820000人口,数据7820000用科学记数法表示为()A.×108B.×107C.×106D.×1055.如图所示的几何体的主视图是()A.B.C.D.6.数据2,3,﹣4,﹣1,0,3的中位数是()A.﹣1 B.0 C.1 D.37.方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣38.已知双曲线y=经过点(2,1),则k的值等于()A.﹣1 B.1 C.2 D.49.某小区在规划设计时,准备在两栋楼房之间,设置一块面积为800平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=800 B.x(x+10)=800 C.10(x+10)=800 D.2(x+x+10)=800 10.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,则女生当组长的概率是()A.B.C.D.11.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65° B.50° C.45° D.40°12.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°13.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上,将△ABC绕点O旋转180°后得到三角A′B′C′,则点B的对应点B′的坐标为()A.(﹣2,﹣1)B.(﹣3,3)C.(1,3)D.(0,3)14.如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为y,则y与t的大致图象是()A.B.C. D.二、填空题(本大题满分16分,每小题4分)15.分解因式:2a2﹣4a+2= .16.不等式组的解集为.17.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过点O作OH⊥AC于H.若OH=3,AB=12,BO=13.则弦AC的长为.18.如图,在▱ABCD中,AB=6,AD=10,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AG=,则△CEF的周长为.三、解答题(本大题满分62分)19.(1)计算:(﹣2)×5+÷﹣()﹣1;(2)解方程: +1=.20.“2020年2月1日首届海南国际旅游岛三角梅花展盛大开幕.”三角梅繁花似锦、绚丽满枝,花期长,象征着热情、坚忍不拔、顽强奋进的精神,是我们海南省的省花.海口市某公司在花卉基地购买了6盆紫色三角梅和4盆朱红色三角梅,共花了3080元,已知朱红色三角梅比紫色三角梅每盆贵320元,问紫色三角梅和朱红色三角梅每盆售价各是多少元21.某中学数学老师在做“利用信息技术培养学生自学能力”的课题研究时,就“你最喜欢哪种方式获取知识”对本校八年级部分学生进行了随机抽样问卷调查,其中调查问卷设置以下选项(只选一项):A.通过老师单纯讲解B.通过网络查找资源自主学习C.在老师的指导下,合作学习或自主学习D.其他方式并将调查结果绘制成了两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次问卷调查中,一共抽查了名学生;在扇形图中,x= ;(2)请将条形图补充完整;在扇形图中,B选项所对应的圆心角是度;(3)如果全校八年级学生有1100名,那么估计选择“B”的学生有名.22.如图,某轮船位于A处,观测到某港口城市C位于轮船的北偏西67°,轮船以21海里/时的速度向正北方向行驶,行驶5小时后该船到达B处,这时观测到城市C位于该船的南偏西37°方向,求此时轮船所处位置B与城市C的距离.(参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)23.如图,已知O为正方形ABCD对角线的交点,CE平分∠ACB交AB于点E,延长CB到点F,使BF=BE,连接AF,交CE的延长线于点G,连接OG.(1)求证:△BCE≌△BAF;(2)求证:OG=OC;(3)若AF=2﹣,求正方形ABCD的面积.24.如图,二次函数y=ax2+bx+c的图象与x轴监狱点A(﹣3,0)和点B,与y轴交于点C,顶点D的坐标为(﹣1,4).点P是第二象限内抛物线上的一动点,过点P做PM⊥x轴于M,交线段AC于点E.(1)求该二次函数的解析式和直线AC的解析式;(2)当△PAC面积为3时,求点P的坐标;(3)过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于N.若点P在点Q左边,当矩形PQMN的周长最大时:①求EM的长;②直接判断△PCE是什么特殊三角形.2020年海南省中考数学模拟仿真试卷(三)参考答案与试题解析一、选择题(本题有14小题,每小题3分,共42分)1.若|a|=3,则a的值是()A.﹣3 B.3 C.D.±3【考点】绝对值.【分析】根据绝对值的定义求解.因为|+3|=3,|﹣3|=3,从而得出a的值.【解答】解:因为|+3|=3,|﹣3|=3,所以若|a|=3,则a的值是±3.故选D.2.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.2a3•a=2a4D.(3a)3=9a3【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项、幂的乘方、单项式乘以单项式、积的乘方,即可解答.【解答】解:A、3a2﹣a2=2a2,故本选项错误;B、(a2)3=a6,故本选项错误;C、2a3•a=2a4,故本选项正确;D、(3a)3=27a3,故本本选项错误;故选:C.3.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.4.2020年12月30日,全球首条环岛高铁南海环岛高速通车了,环绕全岛的环岛高铁,犹如一条镶嵌于海南岛上的“珍珠链”、“幸福圈”,覆盖了全省12个市县约7820000人口,数据7820000用科学记数法表示为()A.×108B.×107C.×106D.×105【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:7820000=×106.故选:C.5.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】解:如图所示的几何体的主视图是.故选:A.6.数据2,3,﹣4,﹣1,0,3的中位数是()A.﹣1 B.0 C.1 D.3【考点】中位数.【分析】先把题干中的数据按照从小到大的顺序排列,从而可以得到这组数据的中位数,本题得以解决.【解答】解:数据2,3,﹣4,﹣1,0,3按照从小到大的顺序排列是:﹣4,﹣1,0,2,3,3,故这组数据的中位数是:,故选C.7.方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【考点】解一元一次方程.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:方程2x﹣1=3x+2,移项得:2x﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选D.8.已知双曲线y=经过点(2,1),则k的值等于()A.﹣1 B.1 C.2 D.4【考点】反比例函数图象上点的坐标特征.【分析】直接把点(2,1)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(2,1),∴2=k﹣2,解得k=4.故选D.9.某小区在规划设计时,准备在两栋楼房之间,设置一块面积为800平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=800 B.x(x+10)=800 C.10(x+10)=800 D.2(x+x+10)=800【考点】由实际问题抽象出一元二次方程.【分析】首先用x表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.【解答】解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=800.故选B.10.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,则女生当组长的概率是()A.B.C.D.【考点】概率公式.【分析】由一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴女生当组长的概率是: =.故选A.11.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65° B.50° C.45° D.40°【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.故选B.12.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.13.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上,将△ABC绕点O旋转180°后得到三角A′B′C′,则点B的对应点B′的坐标为()A.(﹣2,﹣1)B.(﹣3,3)C.(1,3)D.(0,3)【考点】坐标与图形变化-旋转.【分析】根据题意可得B与B′关于原点对称,因此根据关于原点对称的点的坐标特点:横纵坐标均互为相反数可得答案.【解答】解:根据平面直角坐标系可得B(0,﹣3),将△ABC绕点O旋转180°后得到三角A′B′C′,因此B与B′关于原点对称,则B′(0,3),故选:D.14.如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为y,则y与t的大致图象是()A.B.C. D.【考点】动点问题的函数图象.【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P 在AB上运动时△ACP的面积为y,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【解答】解:设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为y=hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=h(AB+BC﹣vt)=﹣hvt+h(AB+BC),是关于t的一次函数关系式;故选B.二、填空题(本大题满分16分,每小题4分)15.分解因式:2a2﹣4a+2= 2(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.16.不等式组的解集为x<3 .【考点】解一元一次不等式组.【分析】首先分别计算出两个不等式的解集,再根据小小取小确定不等式组的解集.【解答】解:,由①得:x<4,由②得:x<3,不等式组的解集为:x<3,故答案为:x<3.17.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过点O作OH⊥AC于H.若OH=3,AB=12,BO=13.则弦AC的长为8 .【考点】切线的性质;勾股定理;垂径定理.【分析】首先根据切线的性质可得∠OAB=90°,利用勾股定理计算出AO的长,再利用勾股定理计算出AH的长,根据垂径定理可得AC=2AH,进而可得答案.【解答】解:∵AB是⊙O的切线,A为切点,∴∠OAB=90°,∵AB=12,BO=13,∴AO===5,∵OH⊥AC,∴AC=2AH,∵OH=3,∴AH==4,∴AC=8,故答案为:8.18.如图,在▱ABCD中,AB=6,AD=10,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AG=,则△CEF的周长为.【考点】平行四边形的性质.【分析】由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,求出CE、CF的长,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,求得AG的长,再证明∴△ABE∽△FCE,求出EF的长,即可求得△CEF的周长.【解答】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=6,BC=AD=10,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,同理;DF=AD=10,∴CE=BC﹣BE=4,CF=DF﹣CD=4,BE:CE=6:4=3:2.∵BG⊥AE,垂足为G,∴AG=EG=,∴AE=5,∵AB∥FC,∴△ABE∽△FCE,∴AE:EF=BE:CE=3:2,∴EF=AE=×5=,∴△CEF的周长=CE+CF+EF=4+4+=;故答案为:.三、解答题(本大题满分62分)19.(1)计算:(﹣2)×5+÷﹣()﹣1;(2)解方程: +1=.【考点】二次根式的混合运算;负整数指数幂;解分式方程.【分析】(1)根据二次根式的除法法则和负整数指数幂的意义计算;(2)先去分母,把分式方程化为整式方程,解整式方程,然后检验确定分式方程的解.【解答】解:(1)原式=﹣10+﹣3=﹣10+2﹣3=﹣11;(2)去分母得x﹣3+x﹣2=3,解得x=4,检验:当x=4时,x﹣2≠0,所以原方程的解为x=4.20.“2020年2月1日首届海南国际旅游岛三角梅花展盛大开幕.”三角梅繁花似锦、绚丽满枝,花期长,象征着热情、坚忍不拔、顽强奋进的精神,是我们海南省的省花.海口市某公司在花卉基地购买了6盆紫色三角梅和4盆朱红色三角梅,共花了3080元,已知朱红色三角梅比紫色三角梅每盆贵320元,问紫色三角梅和朱红色三角梅每盆售价各是多少元【考点】二元一次方程组的应用.【分析】设紫色三角梅每盆售价是x元,朱红色三角梅每盆售价是y元,根据“购买了6盆紫色三角梅和4盆朱红色三角梅共花了3080元,朱红色三角梅比紫色三角梅每盆贵320元”列方程组求解可得.【解答】解:设紫色三角梅每盆售价是x元,朱红色三角梅每盆售价是y元,根据题意,得:,解得:,答:紫色三角梅每盆售价是180元,朱红色三角梅每盆售价是500元.21.某中学数学老师在做“利用信息技术培养学生自学能力”的课题研究时,就“你最喜欢哪种方式获取知识”对本校八年级部分学生进行了随机抽样问卷调查,其中调查问卷设置以下选项(只选一项): AA.通过老师单纯讲解B.通过网络查找资源自主学习C.在老师的指导下,合作学习或自主学习D.其他方式并将调查结果绘制成了两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次问卷调查中,一共抽查了120 名学生;在扇形图中,x= 15 ;(2)请将条形图补充完整;在扇形图中,B选项所对应的圆心角是108 度;(3)如果全校八年级学生有1100名,那么估计选择“B”的学生有330 名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可以求得本次调查的学生数和在扇形中x的值;(2)根据统计图可以求得D的学生数,从而可以将统计图补充完整,计算出B选项所对应的圆心角的度数;(3)根据统计图中的数据可以估计全校八年级学生选择“B”的学生.【解答】解:(1)本次调查的学生有:48÷40%=120(名),x%=18÷120×100%=15%,故答案为:120,15;(2)选D的学生有:120﹣18﹣36﹣48=18(名),补全的条形统计图如右图1所示,B选项多对的圆心角是:360°×=108°,故答案为:108;(3)全校八年级学生有1100名,选择“B”的学生有:1100×=330(名),故答案为:330.22.如图,某轮船位于A处,观测到某港口城市C位于轮船的北偏西67°,轮船以21海里/时的速度向正北方向行驶,行驶5小时后该船到达B处,这时观测到城市C位于该船的南偏西37°方向,求此时轮船所处位置B与城市C的距离.(参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)【考点】解直角三角形的应用-方向角问题.【分析】首先过点C作CP⊥AB于点P,然后设PC=x海里,分别在Rt△APC中与Rt△PCB中,利用正切函数求得出AP与BP的长,由AB=21×5,即可得方程,解此方程即可求得x的值,继而求得答案.【解答】解:过点C作CP⊥AB于点P,设PC=x海里.在Rt△APC中,∵tan∠A=,∴AP===.在Rt△PCB中,∵tan∠B=,∴BP==,.∵AP+BP=AB=21×5,∴+x=21×5,解得:x=60.∵sin∠B=,∴CB==60×=100(海里).答:轮船所处位置B与城市C的距离为100海里.23.如图,已知O为正方形ABCD对角线的交点,CE平分∠ACB交AB于点E,延长CB到点F,使BF=BE,连接AF,交CE的延长线于点G,连接OG.(1)求证:△BCE≌△BAF;(2)求证:OG=OC;(3)若AF=2﹣,求正方形ABCD的面积.【考点】四边形综合题.【分析】(1)由四边形ABCD是正方形,BF=BE,可利用SAS证得:△BCE≌△BAF;(2)由△BCE≌△BAF,易证得CG⊥AF,又由CE平分∠ACB,可得△ACF是等腰三角形,G 是AF的中点,继而可得OG是△ACF的中位线,则可证得结论;(3)首先设边长为x,由(2)可表示出BF的长,然后由勾股定理得方程:(2﹣)2=[(﹣1)x]2+x2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABF=∠EBC=90°,在△BCE和△BAF中,,∴△BCE≌△BAF(SAS);(2)∵△BCE≌△BAF,∴∠BCE=∠BAF,∵∠BEC=∠MEG,∴∠AGE=∠EBC=90°,∴CG⊥AF,∵CE平分∠ACB,∴AC=FC,AG=FG,∵OA=OC,∴OG∥BC,∴∠OGC=∠FCG,∵∠OCG=∠FCG,∴∠OGC=∠OCG,∴OG=OC;(3)设AB=x,则AC=FC=x,∴BF=FC﹣BC=(﹣1)x,在Rt△ABF中,AF2=BF2+AB2,∴(2﹣)2=[(﹣1)x]2+x2,解得:x2=.∴正方形ABCD的面积为:.24.如图,二次函数y=ax2+bx+c的图象与x轴监狱点A(﹣3,0)和点B,与y轴交于点C,顶点D的坐标为(﹣1,4).点P是第二象限内抛物线上的一动点,过点P做PM⊥x轴于M,交线段AC于点E.(1)求该二次函数的解析式和直线AC的解析式;(2)当△PAC面积为3时,求点P的坐标;(3)过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于N.若点P在点Q左边,当矩形PQMN的周长最大时:①求EM的长;②直接判断△PCE是什么特殊三角形.【考点】二次函数综合题.【分析】(1)待定系数法可分别求得二次函数与一次函数解析式;(2)作PH⊥y轴,连接PC,设点P(a,﹣a2﹣2a+3),表示出PH、OH、AO、CH的长,由S△PAC=S梯形PHOA ﹣S△PCH﹣S△AOC=3得出关于a的方程,求解即可得a的值,即可知点P的坐标;(3)①设P(m,﹣m2﹣2m+3),矩形PQMN的周长为C,根据矩形周长公式表示出C关于m 的函数解析式,求得其最值情况即可知点P坐标,结合直线AC的解析式即可得知EM的长;②根据①知点P、E、C坐标,求出PE、PC、CE的长即可判断△PCE的形状.【解答】解:(1)由题意可设抛物线解析式为y=a(x+1)2+4,将点A(﹣3,0)代入,得:4a+4=0,解得:a=﹣1,∴抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,则点C坐标为(0,3),设直线AC的解析式为y=kx+b,将点A(﹣3,0)、C(0,3)代入,得:,解得:,∴直线AC的解析式为y=x+3;(2)如图,作PH⊥y轴,连接PC,设点P(a,﹣a2﹣2a+3),则PH=﹣a,OH=﹣a2﹣2a+3,OA=3,∵S△PAC =S梯形PHOA﹣S△PCH﹣S△AOC=3,∴×(﹣a+3)(﹣a2﹣2a+3)﹣×(﹣a)(﹣a2﹣2a+3﹣3)﹣×3×3=3,整理,得:a2+3a+2=0,解得:a=﹣1或a=﹣2,∴点P的坐标为(﹣1,4)或(﹣2,3);(3)①设P(m,﹣m2﹣2m+3),矩形PQMN的周长为C,则PQ=﹣2m﹣2,PM=﹣m2﹣2m+3,∵C=2[(﹣2m﹣2)+(﹣m2﹣2m+3)]=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时,矩形PQMN的周长最大,此时点P(﹣2,3),当x=﹣2时,y=x+3=﹣2+3=1,即EM=1;②由①知点E(﹣2,1),∵点P(﹣2,3)、C(0,3),∴PE=2,PC=2,CE==2,∵PE2+PC2=CE2,且PE=PC,∴△PCE是等腰直角三角形.2020年8月27日。

2020年贵州省遵义市中考化学模拟试卷三(含解析)

2020年贵州省遵义市中考化学模拟试卷三(含解析)

2020年中考化学模拟试卷(三)一、选择题(本大题包括10个小题,每小题2分,共20分.每小题只有一个正确答案)1.(2分)我们的生活与化学息息相关。

下列说法错误的是()A.一般来说,磷肥的外观与氮肥、钾肥明显不同B.人体缺乏铁元素易导致贫血C.棉纤维是天然纤维,燃烧时有烧焦羽毛气味D.蔬菜水果中富含维生素,应每天适量食用2.(2分)学好化学的关键是树立正确的化学观念。

下列有关化学核心观念的描述中,不正确的是()A.微粒观:在任何变化中,原子的种类和个数都不会发生改变B.元素观:一种物质若能分解产生氧气,那么这种物质中一定含有氧元素C.分类观:常见的化石燃料有煤、石油和天然气等D.环保观:使用可降解塑料、用布袋取代塑料袋有利于解决“白色污染”3.(2分)正确的实验操作是实验成功的保证。

下列实验操作示意图不正确的是()A.蒸发B.加热液体C.过滤D.二氧化碳验满4.(2分)推理是学习化学的一种思维方法。

以下推理正确的是()A.铝的金属活动性比铁强,则铝制品比铁制品更容易锈蚀B.CO2水溶液能使紫色石蕊变红,所以CO2显酸性C.酸碱中和反应生成盐和水,则有盐和水生成的反应一定属于中和反应D.水通电分解生成氢气和氧气,所以水一定是由氢、氧元素组成的5.(2分)银杏果又称白果,它含有多种营养成分并具备一定的药用功效。

银杏果中含有银杏酸(化学式为C22H34O3),下列有关银杏酸的说法正确的是()A.银杏酸由22个碳原子、34个氢原子和3个氧原子构成B.银杏酸的相对分子质量为346 gC.银杏酸属于有机化合物D.银杏酸中碳元素和氢元素的质量比为11:176.(2分)黄铁矿的主要成分为二硫化亚铁(FeS2),可用于工业上冶炼铁和生产浓硫酸,如图所示。

下列说法错误的是()A.反应前将黄铁矿粉碎,能提高反应速率B.反应①②③④中都有元素化合价的变化C.反应②不属于四种基本反应类型之一D.该过程回收利用了SO2,能减少酸雨的发生7.(2分)燃烧是人们生活中重要的化学反应,我们既要利用燃烧,也要注意防灾减灾。

2020年浙江省宁波市中考数学模拟试卷(三) 解析版

2020年浙江省宁波市中考数学模拟试卷(三)  解析版

2020年浙江省宁波市中考数学模拟试卷(三)一.选择题1.在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.12.在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10124.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数5.一元一次不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x≤2D.x>﹣1或x≤2 6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.8.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.129.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④11.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣412.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二.填空题13.把多项式x2﹣3x因式分解,正确的结果是.14.已知扇形的面积为3π,圆心角为120°,则它的半径为.15.若分式的值为0,则x的值为.16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.17.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B 在同一水平直线上,则这条江的宽度AB为米(结果保留根号).18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y =(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB 与CD的距离为5,则a﹣b的值是.三.解答题19.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.24.计划在某广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?25.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC.∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2.在矩形ABCD中,AB=5.BC=9,点P是对角线BD中点,过点P作直线分别交边AD,BC于点E,F.使四边形ABFE是等腰直角四边形,求四边形DPFC的面积.26.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2020年浙江省宁波市中考数学模拟试卷(三)参考答案与试题解析一.选择题1.在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.2.在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点P(1,2)关于原点的对称点P'的坐标是(﹣1,﹣2),故选:D.3.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:150000000000=1.5×1011,故选:C.4.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【分析】根据各自的定义判断即可.【解答】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选:A.5.一元一次不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x≤2D.x>﹣1或x≤2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.7.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出红球情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出红球的有9种情况,∴两次摸出红球的概率为;故选:D.8.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.12【分析】本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于12小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于6而小于10,看哪个符合就可以了.【解答】解:设三角形的三边分别是a、b、c,令a=4,b=6,则2<c<10,12<三角形的周长<20,故6<中点三角形周长<10.故选:B.9.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④【分析】分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2﹣6(3+n)+10,当x=3﹣n时,y=(n﹣3)2﹣6(3﹣n)+10,∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(3﹣n)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2﹣6(n+1)+10,当x=n时,y=n2﹣6n+10,(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣5,∵n是整数,∴2n﹣5是整数,∴y的整数值有(2n﹣4)个;故③正确;∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,∴当x>3时,y随x的增大而增大,x<3时,y随x的增大而减小,∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a<b,故④错误,故选:C.11.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh =k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.12.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选:B.二.填空题13.把多项式x2﹣3x因式分解,正确的结果是x(x﹣3).【分析】直接提公因式x即可.【解答】解:原式=x(x﹣3),故答案为:x(x﹣3).14.已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.15.若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.17.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B 在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y =(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB 与CD的距离为5,则a﹣b的值是6.【分析】利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.【解答】解:如图,设CD交y轴于E,AB交y轴于F.连接OD、OC.由题意知:DE•OE=﹣b,CE•OE=a,∴a﹣b=OE(DE+CE)=OE•CD=2OE,同法:a﹣b=3•OF,∴2OE=3OF,∴OE:OF=3:2,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.三.解答题19.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.【分析】先用平方差公式和单项式乘以多项式的方法将代数式化简,然后将a的值代入化简的代数式即可求出代数式的值.【解答】解:(a+2)(a﹣2)+a(1﹣a)=a2﹣4+a﹣a2=a﹣4将a=5代入上式中计算得,原式=a﹣4=5﹣4=120.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【分析】(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.【解答】解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.22.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.23.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a 的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.24.计划在某广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【分析】(1)首先设A种花木的数量为x棵,B种花木的数量为y棵,根据题意可得等量关系:①A、B两种花木共6600棵;②A花木数量=B花木数量的2倍﹣600棵,根据等量关系列出方程,再解即可;(2)首先设应安排a人种植A花木,则安排(26﹣a)人种植B花木,由题意可等量关系:种植A花木所用时间=种植B花木所用时间,根据等量关系列出方程,再解即可.【解答】解:(1)设A种花木的数量为x棵,B种花木的数量为y棵,由题意得:,解得:,答:A种花木的数量为4200棵,B种花木的数量为2400棵;(2)设应安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原方程的解,26﹣a=12,答:应安排14人种植A花木,应安排,12人种植B花木,才能确保同时完成各自的任务.25.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC.∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2.在矩形ABCD中,AB=5.BC=9,点P是对角线BD中点,过点P作直线分别交边AD,BC于点E,F.使四边形ABFE是等腰直角四边形,求四边形DPFC的面积.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.②如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD(SAS),∴AD=CD.(2)若EF⊥BC,则四边形ABFE是矩形,AE=BF=BC=4.5,∵AB=5,∴AE≠AB∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2﹣1中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5,∴S△PDCF=S△BDC﹣S△BPF=×5×9﹣×4×=.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∴S△PDCF=S△BDC﹣S△BPF=×5×9﹣×5×=,综上所述,四边形DPFC的面积为或.26.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD 为△P AB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR =,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ =90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ 的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH ⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG 的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴P A=PB,∴∠P AB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△P AB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,DE∥AB,∴四边形AMDE是平行四边形,四边形AMDF是等腰梯形,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴∠GMD=∠GDM,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.。

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。

即1x y x+=-的自变量取值范围是0x ≠。

故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。

生物_2020年广东省中考生物模拟试卷(三)(含答案)

生物_2020年广东省中考生物模拟试卷(三)(含答案)

2020年广东省中考生物模拟试卷(三)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一个选项最符合题意要求)1. 下列细胞的结构中,人体口腔上皮细胞不具有,而菠菜叶肉细胞具有的是()①细胞壁②细胞膜③细胞质④细胞核⑤线粒体⑥叶绿体⑦液泡A ①⑥⑦B ①⑤⑥C ②⑤⑦D ⑤⑥⑦2. 下列关于组织的叙述,正确的是()A 口腔上皮属于保护组织B 洋葱表皮属于上皮组织C 番茄果肉属于肌肉组织 D 人体血液属于结缔组织3. 下列关于细胞分裂的叙述,正确的是()A 多细胞生物通过细胞分裂增加细胞数目B 细胞分裂产生的新细胞所含的遗传物质是原来细胞的一半C 细胞分裂时,首先是细胞质分成两份,然后是细胞核一分为二 D 植物细胞与动物细胞的分裂过程完全相同4. 如图所示是在显微镜下观察到的几何图形,要将图甲转换成图乙,载玻片的移动方向和调整的反光镜分别是()A 左下方调为平面镜B 左上方调为凹面镜C 右上方调为凹面镜D 右下方调为平面镜5. 在戴云山山脚下阔叶林较多,半山腰针叶林较多,山顶主要是灌木和草地,造成这种分层现象的主要环境因素是()A 温度B 阳光C 水分D 土壤6. 某生态系统中四种生物体内有毒物质的含量如图,假设这四种生物只构成一条食物链。

据图判断下列说法正确的是()A 这条食物链可表示为乙→甲→丁→丙B 图中的四种生物和非生物部分组成了该生态系统C 丙是生产者,甲、乙、丁是消费者D 短期内甲的数量增加,会导致乙和丁的数量增加7. 小明在校园里浇花时发现了几只鼠妇,他和同学们对鼠妇的生活环境发生了兴趣,便一起去寻找探索,记录各处发现鼠妇的数据如下表,下列说法错误的是()需要与他人进行交流与合作 C 此实验他们可以“提出问题”是:鼠妇喜欢生活在什么样的环境中呢? D “种花的湿花盆底下”和“水泥路上”可以形成一组对照实验8. 花生种子吸水迅速,通常6天左右萌发。

为探究浸种处理对花生萌发率的影响,生物小组完成实验,获得下表数据。

2020年中考数学模拟试卷(黑龙江大庆)(三)(解析版)

2020年中考数学全真模拟试卷(大庆专用)(三)一、选择题(本大题共10小题,每小题3分,共30分)下列选项中有且只有一个选项是正确的,选择正确选项的代号并填涂在答题纸的相应位置上〕1.2018年我国国内生产总值(GDP)是900309亿元,首次突破90万亿大关,90万亿用科学记数法表示为().A.9.0×1013B.9.0×1012C.9.0×1011D.9.0×1010【答案】A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.90万亿用科学记数法表示成:9.0×1013。

2.实数a,b在数轴上的对应点的位置如图所示.下列结论正确的是()A.a>b B.a>﹣b C.﹣a>b D.﹣a<b【答案】C.【解析】根据数轴可以发现a<b,且﹣3<a<﹣2,1<b<2,由此即可判断以上选项正确与否.∵﹣3<a<﹣2,1<b<2,∴答案A错误;∵a<0<b,且|a|>|b|,∴a+b<0,∴a<﹣b,∴答案B错误;∴﹣a>b,故选项C正确,选项D错误.3.下列命题:①若x2+kx+是完全平方式,则k=1;②若A(2,6),B(0,4),P(1,m)三点在同一直线上,则m=5;③等腰三角形一边上的中线所在的直线是它的对称轴;④一个多边形的内角和是它的外角和的2倍,则这个多边形是六边形.其中真命题个数是()A.1 B.2 C.3 D.4【答案】B【解析】利用完全平方公式对①进行判断;利用待定系数法求出直线AB的解析式,然后求出m,则可对②进行判断;根据等腰三角形的性质对③进行判断;根据多边形的内角和和外角和对④进行判断.若x2+kx+是完全平方式,则k=±1,所以①错误;若A(2,6),B(0,4),P(1,m)三点在同一直线上,而直线AB的解析式为y=x+4,则x=1时,m=5,所以②正确;等腰三角形底边上的中线所在的直线是它的对称轴,所以③错误;一个多边形的内角和是它的外角和的2倍,则这个多边形是六边形,所以④正确.4.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A.24 B.24πC.96 D.96π【答案】B.【解析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π5.下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【答案】D.【解析】据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确。

陕西省2020年中考数学模拟试卷(三)及解析

2020年陕西省中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)9的倒数是()A.9B.C.﹣9D.2.(3分)如图所示,该几何体的俯视图是()A.B.C.D.3.(3分)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2D.6y2÷2y=3y4.(3分)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为()A.75°B.65°C.45°D.30°5.(3分)已知:点A(a,b),B(a+1,b﹣2)均在正比例函数y=kx(k≠0)的图象上,则k值为()A.﹣1B.﹣2C.﹣3D.﹣46.(3分)如图,在Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,等腰直角三角形DEH的边DE经过点F,EH交BC于点G,且DF=2EF,则CG的长为()A.2B.2﹣1C.D.+17.(3分)直线y=﹣x+1与y=2x+a的交点在第一象限,则a的取值不可能是()A.B.﹣C.﹣D.﹣8.(3分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3B.C.D.49.(3分)如图,在半径为6的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E,则tan∠OEA的值是()A.B.C.D.10.(3分)在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣7二、填空题(共4小题,每小题3分,计12分)11.(3分)在﹣2,,,,这5个数中,无理数有个.12.(3分)在正六边形中,其较短对角线与较长对角线的比值为.13.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(8,4),反比例函数y=(k >0)的图象分别交边BC、AB于点D、E,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是.14.(3分)如图,在正方形ABCD中,AB=4,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD 的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG的最小值为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:(π﹣2020)0+|1﹣|+2﹣1﹣2sin60°.16.(5分)化简:(x)17.(5分)赵凯想利用一块三角形纸片ABC裁剪一个菱形ADEF,要求一个顶点为A,顶点D在三角形的AC边上,点E在三角形的BC边上,点F在三角形的AB边上,请你利用尺规作图把这个菱形作出来.(不写作法,保留作图痕迹)18.(5分)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.19.(7分)为了给顾客提供更好的服务,某商场随机对部分顾客进行了关于“商场服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度人数所占百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值为;(2)请补全条形统计图;(3)根据统计,该商场平均每天接待顾客约3600名,若将“非常满意”和“满意”作为顾客对商场服务工作的肯定,请你估计该商场服务工作平均每天得到多少名顾客的肯定.20.(7分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度约为多少米(精确到0.1米).21.(7分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.22.(7分)小明最喜欢吃芝麻馅的汤圆了,一天早晨小明妈妈给小明下了四个大汤圆,一个花生馅,一个水果馅,两个芝麻馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)求小明吃第一个汤圆恰好是芝麻馅的概率;(2)请利用树状图或列表法,求小明吃前两个汤圆恰好是芝麻馅的概率.23.(8分)如图,已知⊙O经过平行四边形ABCD的顶点A,B及对角线的交点M,交AD于点E且圆心〇在AD 边上,∠BCD=45°.(1)求证:BC为⊙O的切线;(2)连接ME,若ME=﹣1,求⊙O的半径.24.(10分)综合与探究:如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,求点H坐标;(3)若抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,求点P坐标;(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.25.(12分)问题提出(1)如图1,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.问题探究(2)如图2,在△ABC中,内角∠ABC的平分线BE和外角∠ACF的平分线CE,相交于点E,连接AE,若∠BEC=40°,请求出∠EAC的度数.问题解决(3)如图3,某地在市政工程施工中需要对一直角区域(∠AOB=90°)内部进行围挡,直角区域∠AOB内部有一棵大树(点P),工作人员经过测量得到点P到OA的距离PC为10米,点P到OB的距离PD为20米,为了保护大树及节约材料,设计要求围挡牌要经过大树位置(点P)并且所用材料最少,即围挡区域△EOF周长最小,请你根据以上信息求出符合设计的△EOF周长的最小值,并说明理由.参考答案与试题解析1.B.2.C.3.D.4.A.5.B.6.B.7.D.8.C.9.D.10.D.11.3.12.:2.13.12.14.2﹣2.15.解:原式=1+﹣1+﹣2×=.16.解:原式=•=•=x(x﹣1)=x2﹣x.17.解:如图所示:先作∠BAC的平分线交BC边于点E,再作线段AE的垂直平分线交AC于点D,交AB于点F 连接DE、EF,易证△EAD≌△EAF(SAS),则F A=DA而由线段的垂直平分线的性质可得DA=DE、F A=FE∴F A=DA=DE=FE∴四边形ADEF为菱形则菱形ADEF即为所求作的菱形.18.证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD19.解:(1)本次调查的总人数为:12÷10%=120,m=54÷120×100%=45%,故答案为:120,45%;(2)比较满意的人数为:120×40%=48,补全的条形统计图如右图所示;(3)3600×(10%+45%)=3600×55%=1980(名),答:该商场服务工作平均每天得到1980名顾客的肯定.20.解:∵∠CED=∠AEB,CD⊥DB,AB⊥BD,∴△CED∽△AEB,∴=,∵CD=1.6米,DE=2.4米,BE=8.4米,∴=,∴AB==5.6米.故答案为:5.6米.21.解:(1)设甲、乙两种商品每件的进价分别是x元、y元,,解得,,即甲、乙两种商品每件的进价分别是30元、70元;(2)设购买甲种商品a件,获利为w元,w=(40﹣30)a+(90﹣70)(100﹣a)=﹣10a+2000,∵a≥4(100﹣a),解得,a≥80,∴当a=80时,w取得最大值,此时w=1200,即获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元.22.解:(1)小明吃第一个汤圆,可能的结果有4种,其中是芝麻馅的结果有2种,∴小明吃第一个汤圆恰好是芝麻馅的概率==;(2)分别用A,B,C表示花生馅,水果馅,芝麻馅的大汤圆,画树状图得:∵共有12种等可能的结果,小明吃前两个汤圆恰好是芝麻馅的有2种情况,∴小明吃前两个汤圆恰好是芝麻馅的概率为=.23.(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°,连接EM,过M作MF⊥AE于F,∵OM=DM,∴∠MOF=∠MDF=30°,设OM=OE=r,∴FM=r,OF=r,∴EF=r﹣r,∵EF2+FM2=EM2,∴(r﹣r)2+(r)2=(﹣1)2,解得:r=(负值舍去),∴⊙O的半径为.24.解:(1)∵抛物线与y轴交于点C,∴点C坐标为(0,﹣4),把A(﹣3,0)、B(4,0)坐标代入y=ax2+bx﹣4得解得∴抛物线解析式为:.(2)抛物线的对称轴为:x=,由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,点H为AC直线与对称轴的交点,由A(﹣3,0)、C(0,﹣4)易得直线AC解析式为:,当x=时,y=,故点H的坐标为:(,﹣).(3)∵抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,∴点P(m,n)只能位于第一象限,C(0,﹣4)∴n=4∴由4=﹣4解得x=或x=(舍)故点P坐标为(,4).(4)若以A、B、M、N为顶点的四边形是矩形,则点M和点N的位置有两种如图所示点M和点M’点N和点N’易得OA=3,OC=4,AC=5,点M是∠BAC平分线上的一点,作QF⊥AC,则OQ=QF,∴OQ=QF=1.5,∴在直角三角形AOQ和直角三角形ABM中,,∴,∴BM=3.5,∴点N(﹣3,﹣3.5)同理在直角三角形AEN’和直角三角形ABN’中,可解得点N’(﹣,).故点N的坐标为(﹣3,﹣3.5)或(﹣,).25.解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故答案为:4;(2)解:∵∠ABC与∠ACD的角平分线相交于点E,∴∠CBE=∠ABC,∠ECD=∠ACD,由三角形的外角性质得,∠ACD=∠ABC+∠BAC,∠ECD=∠BEC+∠CBE,∴∠ACD=∠BEC+∠ABC,∴(∠ABC+∠BAC)=∠BEC+∠ABC,整理得,∠BAC=2∠BEC,∵∠BEC=40°,∴∠BAC=2×40°=80°,过点E作EH⊥BA交延长线于H,作EG⊥AC于G,作EF⊥BC于F,∵BE平分∠ABC,∴EF=EH,∵CE平分∠ACD,∴EG=EF,∴EH=EG,∴AE是∠CAF的平分线,∴∠CAE=(180°﹣∠BAC)=(180°﹣80°)=50°;(3)如图,设∠AOB、∠AEF、∠BFE的角平分线交于点Q,作QN⊥OB于N,QM⊥OA于M,QH⊥EF于H.连接QP.则QN=QH=QM=y,FH=FN,EH=EM,∴△OEF的周长:OE+OF+EF=OF+FN+OE+EM=ON+OM=QN+QM=2QN=2y,∵PDOC是矩形,且PD=20,PC=10,∴ND=y﹣10,CM=y﹣20,∴QP2=(y﹣10)2+(y﹣20)2∵PQ≥QH,∴(y﹣10)2+(y﹣20)2≥y2∴y2﹣60y+500≥0,∴(y﹣30)2≥400,∴y≥50或y≤10(舍),∴2y≥100,当且仅当P、H重合时取等号.即△OEF的周长的最小值为100.。

2020年新疆乌鲁木齐市中考数学模拟试卷(三)(解析版)

2020年新疆乌鲁木齐市中考数学模拟试卷(三)一.选择题(共9小题)1.下列各数中,最小的数是()A.0B.﹣1C.πD.12.某几何体的展开图如图所示,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱3.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=70°,则∠4的度数为()A.110°B.100°C.80°D.70°4.下列四个运算中,正确的个数是()①30+3﹣1=﹣3;②(3x3)2=9x5;③﹣=;④﹣x6÷x3=﹣x3.A.1个B.2个C.3个D.4个5.某校学生会主席竞选中,参与投票的学生必须从进入决赛的四名选手中选1名,且只能选1名进行投票,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票数为()A.80B.90C.100D.4006.如图,在▱ABCD中,∠ADB=40°,依据尺规作图的痕迹可判断∠1的度数是()A.100°B.110°C.120°D.130°7.关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为()A.(62﹣x)(42﹣x)=2400B.(62﹣x)(42﹣x)+x2=2400C.62×42﹣62x﹣42x=2400D.62x+42x=24009.在矩形ABCD中,AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F,设∠AGE=α(0°<α<90°),下列四个结论:①AE=CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=.正确的个数是()A.1B.2C.3D.4二.填空题(共6小题)10.使有意义的x的取值范围是.11.小华同学计算一组数据的方差时,写下的计算过程如下:s2=[(3.5﹣)2+(4.2﹣)2+(7.8﹣)2+(6﹣)2+(8.5﹣)2],则其中的=.12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大正方形M的边长是3,则正方形A、B、C、D、E、F的面积之和是.13.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2,则阴影部分的面积为.14.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,……试猜想,32020的个位数字是.15.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m (am+b).其中正确的结论为.(注:只填写正确结论的序号)三.解答题(共8小题)16.计算:﹣12020+2sin30°+(﹣π)0+(﹣)﹣2.17.先化简,再求值:(﹣1)÷,其中x=.18.如图,在矩形ABCD中,过对角线BD中点O的直线分别交边AD,BC于点E,F.(1)求证:四边形BEDF是平行四边形;(2)若AB=3,BC=4,当四边形BEDF是菱形时,求EF的长.19.如图,一次函数y=﹣x+6的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,m)和B两点,与x轴交于点C,连接OA、OB.(1)求反比例函数的解析式;(2)若点P在x轴上,且S△APC=S△OAB,求点P的坐标.20.一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关,第一道题有4个选项,第二道题有3个选项,这两道题小新都不会,不过小新还有一个“求助卡“没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.(1)如果小新在第一题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;(2)从概率的角度分析,你建议小新在第几题使用“求助卡“?为什么?21.如图,无人机在离地面40米的D处,测得楼房顶点C处俯角为37°,测得地面点B 的俯角为45°.已知点B到楼房AC的距离为60米,求楼房AC的高度.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△ABC的三边AB,BC,AC分别相切于点D,E,F,则△ABC 叫做⊙O的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD 叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>,<或=“);(2)利用图2证明你的猜想(写出已知,求证,证明过程);(3)用文字叙述上面证明的结论:.(4)若圆外切四边形的周长为32,相邻的三条边的比为2:5:6,求此四边形各边的长.23.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点,交y轴于点C,AB=4,对称轴是直线x=﹣1.(1)求抛物线的解析式及点C的坐标;(2)连接AC,E是线段OC上一点,点E关于直线x=﹣1的对称点F正好落在AC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点A运动,到达点A即停止运动,过点M作x轴的垂线交抛物线于点N,交线段AC于点Q.设运动时间为t(t>0)秒.①连接BC,若△BOC与△AMN相似,请直接写出t的值;②△AOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案与试题解析一.选择题(共9小题)1.下列各数中,最小的数是()A.0B.﹣1C.πD.1【分析】先根据实数的大小比较法则比较数的大小,再得出答案即可.【解答】解:∵﹣1<0<1<π,∴最小的数是﹣1,故选:B.2.某几何体的展开图如图所示,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:观察图可得,这是个上底面、下底面为三角形,侧面有三个长方形的三棱柱的展开图.故选:C.3.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=70°,则∠4的度数为()A.110°B.100°C.80°D.70°【分析】由∠1=∠2,证出a∥b,由平行线的性质即可得出∠4=∠3=70°.【解答】解:∵∠1=∠2,∴a∥b,∴∠4=∠3=70°,故选:D.4.下列四个运算中,正确的个数是()①30+3﹣1=﹣3;②(3x3)2=9x5;③﹣=;④﹣x6÷x3=﹣x3.A.1个B.2个C.3个D.4个【分析】利用零次幂的性质、积的乘方的计算法则、二次根式的减法法则、同底数幂的除法法则分别进行计算即可.【解答】解:①30+3﹣1=1+=1;②(3x3)2=9x6;③和不能合并;④﹣x6÷x3=﹣x3.计算正确是④,共1个,故选:A.5.某校学生会主席竞选中,参与投票的学生必须从进入决赛的四名选手中选1名,且只能选1名进行投票,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票数为()A.80B.90C.100D.400【分析】根据A选手的票数和所占的百分比求出票数,再用总票数乘以C所占的百分比,求出C选手的票数,最后再用总票数减去A、C、D选手的票数,即可求出B的得票数.【解答】解:调查总人数:140÷35%=400(人),C选手的票数:400×30%=120(票),B选手的得票:400﹣140﹣120﹣40=100(票);故选:C.6.如图,在▱ABCD中,∠ADB=40°,依据尺规作图的痕迹可判断∠1的度数是()A.100°B.110°C.120°D.130°【分析】根据作图痕迹可得,EO是BD的垂直平分线,BF平分∠DBC,再根据平行四边形的性质和三角形外角定义即可求出∠1的度数.【解答】解:根据作图痕迹可知:EO是BD的垂直平分线,∴∠EOB=90°∵在▱ABCD中,AD∥BC,∴∠DBC=∠ADB=40°,∵BF平分∠DBC,∴∠OBF=DBC=20°,∴∠1=90°+20°=110°.故选:B.7.关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【分析】利用判别式的意义得到22﹣4k≥0,解不等式得到k的范围,然后利用数轴表示不等式解集的方法可对各选项进行判断.【解答】解:根据题意得△=22﹣4k≥0,解得k≤1.故选:D.8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为()A.(62﹣x)(42﹣x)=2400B.(62﹣x)(42﹣x)+x2=2400C.62×42﹣62x﹣42x=2400D.62x+42x=2400【分析】设道路的宽为x米,利用“道路的面积”作为相等关系可列方程(62﹣x)(42﹣x)=2400.【解答】解:设道路的宽为x米,根据题意得(62﹣x)(42﹣x)=2400.故选:A.9.在矩形ABCD中,AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F,设∠AGE=α(0°<α<90°),下列四个结论:①AE=CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=.正确的个数是()A.1B.2C.3D.4【分析】过点G作GH⊥BC于H,可证四边形ABHG是矩形,可得AB=GH=1,AG=BH=1,∠AGH=90°=∠EGF,由“ASA”可证△AEG≌△HFG,可得AE=HF,GE =GF,∠AEG=∠BFG,即可判断②;由旋转的性质可得点F的位置不确定,可判断①③;由锐角三角函数可得GE==,可求出△GEF的面积,可判断④,即可求解.【解答】解:如图,过点G作GH⊥BC于H,∵在矩形ABCD中,AD=2,AB=1,G为AD的中点,∴∠A=∠B=90°,AG=DG=1=AB,又∵GH⊥BC,∴四边形ABHG是矩形,∴AB=GH=1,AG=BH=1,∠AGH=90°=∠EGF,∴∠AGE=∠FGH,又∵∠A=∠GHF=90°,AG=GH=1,∴△AEG≌△HFG(ASA)∴AE=HF,GE=GF,∠AEG=∠BFG,故②正确,∵将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F,∴点F的位置不确定,∴HF不一定等于CF,∴AE不一定等于CF,故①不正确,若点F在线段CH上时,CH=HF+CF=AE+CF=1,若点F在HC的延长线上时,CH=HF﹣CF=AE﹣CF=1,故③不正确,在Rt△AEG中,GE==,∵GE=GF,∠EGF=90°,∴S△EFG=EG2=×,故④不正确,故选:A.二.填空题(共6小题)10.使有意义的x的取值范围是x≥﹣1.【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.11.小华同学计算一组数据的方差时,写下的计算过程如下:s2=[(3.5﹣)2+(4.2﹣)2+(7.8﹣)2+(6﹣)2+(8.5﹣)2],则其中的=6.【分析】由方差公式得出这组数据为3.5、4.2、7.8、6、8.5,再根据算术平均数概念计算可得.【解答】解:由题意知,这组数据为3.5、4.2、7.8、6、8.5,则这组数据的平均数==6,故答案为:6.12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大正方形M的边长是3,则正方形A、B、C、D、E、F的面积之和是18.【分析】根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的2倍.【解答】解:根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是M的面积.即A、B、C、D、E、F的面积之和为2个M的面积.∵M的面积是32=9,∴A、B、C、D、E、F的面积之和为9×2=18.故答案为:18.13.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2,则阴影部分的面积为.【分析】连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.【解答】解:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),故S△OCE=S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S扇形OBD==,即阴影部分的面积为.故答案为:.14.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,……试猜想,32020的个位数字是1.【分析】根据给出的规律,3n的个位数字是3,9,7,1,是4个循环一次,用2020去除以4,看余数是几,再确定个位数字.【解答】解:设n为自然数,∵34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32020=3505×4的个位数字与34的个位数字相同,应为1,故答案为:1.15.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m (am+b).其中正确的结论为②⑤.(注:只填写正确结论的序号)【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①函数的对称轴在y轴右侧,则ab<0,而c<0,故abc>0,故①错误,不符合题意;②将点(﹣,0)代入函数表达式得:a﹣2b+4c=0,故②正确,符合题意;③函数的对称轴为直线x=﹣=1,即b=﹣2a,故2a+b=0,故③错误,不符合题意;④由②③得:a﹣2b+4c=0,b=﹣2a,则c=﹣,故2c﹣3b=>0,故④错误,不符合题意;⑤当x=1时,函数取得最小值,即a+b+c≤m(am+b)+c,故⑤正确,符合题意;故答案为②⑤.三.解答题(共8小题)16.计算:﹣12020+2sin30°+(﹣π)0+(﹣)﹣2.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简得出答案.【解答】解:﹣12020+2sin30°+(﹣π)0+(﹣)﹣2=﹣1+2×+1+4=﹣1+1+1+4=5.17.先化简,再求值:(﹣1)÷,其中x=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当x=时,原式==.18.如图,在矩形ABCD中,过对角线BD中点O的直线分别交边AD,BC于点E,F.(1)求证:四边形BEDF是平行四边形;(2)若AB=3,BC=4,当四边形BEDF是菱形时,求EF的长.【分析】(1)证△BOE≌△DOF(ASA),得出EO=FO,即可得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF为菱形,∴BE=DE DB⊥EF,∵AB=3,BC=4,设BE=DE=x,则AE=4﹣x,在Rt△ADE中,32+(4﹣x)2=x2,∴x=,∴DE=,∵BD==5,∴DO=BO=BD=,∴OE===,∴EF=2OE=.19.如图,一次函数y=﹣x+6的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,m)和B两点,与x轴交于点C,连接OA、OB.(1)求反比例函数的解析式;(2)若点P在x轴上,且S△APC=S△OAB,求点P的坐标.【分析】(1)先把A(1,m)代入y=﹣x+6中求出m得到A点坐标,然后把A点坐标代入y=中求出k,从而得到反比例函数解析式;(2)通过解方程组得B(5,1),再确定C(6,0),利用三角形面积公式计算出S△OAB=12,则S△APC=6,设P(t,0),列方程×|t﹣6|×5=6,然后解方程求出t 得到P点坐标.【解答】解:(1)把A(1,m)代入y=﹣x+6得m=﹣1+6=5,则A(1,5),把A(1,5)代入y=得k=1×5=5,∴反比例函数解析式为y=;(2)解方程组得或,∴B(5,1),当y=0时,﹣x+6=0,解得x=6,∴C(6,0),∵S△OAB=S△OAC﹣S△OBC=×6×5﹣×6×1=12,∴S△APC=S△OAB=6,设P(t,0),∵×|t﹣6|×5=6,解得t=或t=,∴P点坐标为(,0)或(,0).20.一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关,第一道题有4个选项,第二道题有3个选项,这两道题小新都不会,不过小新还有一个“求助卡“没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.(1)如果小新在第一题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;(2)从概率的角度分析,你建议小新在第几题使用“求助卡“?为什么?【分析】(1)画树状图展示所有9种等可能的结果数,找出小新都选对的结果数,然后根据概率公式计算;(2)如果小新在第二题使用“求助卡”,画树状图展示所有8种等可能的结果数,找出小新都选对的结果数,利用概率公式计算出小新顺利通过第一关的概率,然后比较两个概率的大小可判断小新在第几题使用“求助卡“.【解答】解:(1)画树状图为:共有9种等可能的结果数,其中小新都选对的结果数为1,所以小新顺利通过第一关的概率=;(2)如果小新在第二题使用“求助卡”,画树状图为:共有8种等可能的结果数,其中小新都选对的结果数为1,所以小新顺利通过第一关的概率=,因为>,即小新在第二题使用“求助卡”,顺利通过第一关的概率大,所以建议小新在第二题使用“求助卡“.21.如图,无人机在离地面40米的D处,测得楼房顶点C处俯角为37°,测得地面点B 的俯角为45°.已知点B到楼房AC的距离为60米,求楼房AC的高度.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点D作DE⊥AB于点E,CF⊥DE于点F,根据题意可得四边形ACFE是矩形,得CF=AE,AC=EF,再根据锐角三角函数即可求出楼房AC的高度.【解答】解:如图,过点D作DE⊥AB于点E,CF⊥DE于点F,根据题意可知:CA⊥AB,所以四边形ACFE是矩形,∴CF=AE,AC=EF,∵∠B=45°,∴DE=BE=40,∴AE=AB﹣BE=60﹣40=20,∴CF=AE=20,DF=DE﹣EF=DE﹣AC=40﹣AC,在Rt△CFD中,∠DCF=37°,∴DF=CF•tan∠DCF即40﹣AC=20×tan37°,解得AC≈25(米).答:楼房AC的高度为25米.22.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△ABC的三边AB,BC,AC分别相切于点D,E,F,则△ABC 叫做⊙O的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD 叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD=AD+BC(横线上填“>,<或=“);(2)利用图2证明你的猜想(写出已知,求证,证明过程);(3)用文字叙述上面证明的结论:圆外切四边形的对边和相等.(4)若圆外切四边形的周长为32,相邻的三条边的比为2:5:6,求此四边形各边的长.【分析】(1)根据圆外切四边形的定义猜想得出结论;(2)根据切线长定理即可得出结论;(3)由(2)可得出答案;(4)根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.【解答】解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=.(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.(3)由(2)可知:圆外切四边形的对边和相等.故答案为:圆外切四边形的对边和相等;(4)∵相邻的三条边的比为2:5:6,∴设此三边为2x,5x,6x,根据圆外切四边形的性质得,第四边为2x+6x﹣5x=3x,∵圆外切四边形的周长为32,∴2x+5x+6x+3x=16x=32,∴x=2,∴此四边形的四边的长为2x=4,5x=10,6x=12,3x=6.即此四边形各边的长为:4,10,12,6.23.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点,交y轴于点C,AB=4,对称轴是直线x=﹣1.(1)求抛物线的解析式及点C的坐标;(2)连接AC,E是线段OC上一点,点E关于直线x=﹣1的对称点F正好落在AC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点A运动,到达点A即停止运动,过点M作x轴的垂线交抛物线于点N,交线段AC于点Q.设运动时间为t(t>0)秒.①连接BC,若△BOC与△AMN相似,请直接写出t的值;②△AOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.【分析】(1)点A、B关于直线x=﹣1对称,AB=4,由对称性质知A(﹣3,0),B(1,0),即可求解;(2)设点E(0,m),则点F(﹣2,m),将点F的坐标代入直线AC的表达式,即可求解;(3)①当△BOC与△AMN相似,,即=3或,即可求解;②分AO=AQ、QO=AQ、AO=OQ三种情况,分别求解即可.【解答】解:(1)∵点A、B关于直线x=﹣1对称,AB=4,∴由对称性质知A(﹣3,0),B(1,0),将点A、B的坐标代入y=﹣x2+bx+c中,得:y=(x+3)(x﹣1)=x2+2x﹣3,令x=0,则y=﹣3,故点C(0,﹣3);(2)设直线AC的表达式为:y=kx+m,则,解得:,故直线AC的表达式为:y=﹣x﹣3;设点E(0,m),则点F(﹣2,m),将点F的坐标代入直线AC的表达式的:m=2﹣3=﹣1,故点F(﹣2,﹣1);(3)①t秒时,点M的坐标为(﹣2t,0),则点Q(﹣2t,2t﹣3),点N[﹣2t,(﹣2t)2+2×(﹣2t)﹣3],即(﹣2t,4t2﹣4t﹣3),则MN=﹣4t2+4t+3,AM=3﹣2t,∵△BOC与△AMN相似,∴,即=3或,解得:t=或1或﹣(舍去和﹣),故t=1;②点Q(﹣2t,2t﹣3),点A(﹣3,0),则AO2=9,AQ2=2(2t﹣3)2,OQ2=(﹣2t)2+(2t﹣3)2,当AO=AQ时,即9=2(2t﹣3)2,解得:t=(舍去);当QO=AQ时,同理可得:t=;当AO=OQ时,同理可得:t=0或(舍去);综上,t=或.。

2020武汉中考数学综合模拟测验卷3(含答案及解析)

2020武汉市初中毕业生学业模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.在实数-2、0、2、3中,最小的实数是( )A.-2B.0C.2D.32.若代数式-在实数范围内有意义,则x的取值范围是( )A.x≥-3B.x>3C.x≥3D.x≤33.光速约为300000千米/秒,将数字300000用科学记数法表示为( )A.3×104B.3×105C.3×106D.30×1044.那么这些运动员跳高成绩的众数是( )A.4B.1.75C.1.70D.1.655.下列代数运算正确的是( )A.(x3)2=x5B.(2x)2=2x2C.x3·x2=x5D.(x+1)2=x2+16.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )A.(3,3)B.(4,3)C.(3,1)D.(4,1)7.下图是由4个大小相同的正方体组合而成的几何体.其俯视图是( )8.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )A.9B.10C.12D.159.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…….按此规律第5个图中共有点的个数是( )A.31B.46C.51D.6610.如图,PA、PB切☉O于A、B两点,CD切☉O于点E,交PA、PB于C、D,若☉O的半径为r,△PCD 的周长等于3r,则tan∠APB的值是( )A. B. C. D.第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算:-2+(-3)= .12.分解因式:a3-a= .13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米.15.如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD,则实数k的值为.16.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共9小题,共72分)下列各题解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)=.解方程:-18.(本小题满分6分)已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.19.(本小题满分6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.20.(本小题满分7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称的线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(本小题满分7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回..,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回...,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(本小题满分8分)如图,AB是☉O的直径,C,P是上两点,AB=13,AC=5.(1)如图①,若点P是的中点,求PA的长;(2)如图②,若点P是的中点,求PA的长.图①图②23.(本小题满分10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(本小题满分10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm 的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连结PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连结AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.25.(本小题满分12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A、B两点.(1)直线AB总经过一个定点C,请直接写出点C的坐标;(2)当k=-时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.备用图答案全解全析:一、选择题1.A∵-2<0<2<3,∴最小的实数是-2,故选A.评析本题考查了实数的大小比较,属容易题.2.C要使-在实数范围内有意义,则需x-3≥0,解得x≥3.故选C.评析本题考查二次根式有意义的条件,即被开方数大于等于零,属容易题.3.B300000用科学记数法可表示为3×105.故选B.评析本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,属容易题.4.D∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65,故选D.评析本题考查了众数的定义,众数是一组数据中出现次数最多的数,属容易题.5.C(x3)2=x6,故A选项错误;(2x)2=4x2,故B选项错误;x3·x2=x5,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.6.A∵线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的坐标为(3,3).故选A.评析本题主要考查位似图形的性质,属容易题.7.C从上面看可得到一行正方形,其个数为3,故选C.评析本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,属容易题.8.C由题图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为30×0.4=12,故选C.评析本题考查了折线统计图及用样本估计总体的思想,属容易题.9.B第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,第n个图中有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选B.评析本题是规律探索题,属容易题.10.B连结OA、OB、OP,延长BO交PA的延长线于点F.∵PA、PB切☉O于A、B两点,CD切☉O于点E,∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB.∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=r.在Rt△OAF和Rt△BFP中,∴Rt△AFO∽Rt△BFP.∴===,∴AF=FB.在Rt△FBP中,PF2-PB2=FB2,∴(PA+AF)2-PB2=FB2,∴-=BF2,解得BF=r,∴tan∠APB===,故选B.评析本题主要考查切线的性质,相似三角形的判定及三角函数的定义,属难题.二、填空题11.答案-5解析-2+(-3)=-(2+3)=-5.评析本题考查有理数加法的运算,属容易题.12.答案a(a+1)(a-1)解析a3-a=a(a2-1)=a(a+1)(a-1).评析本题考查利用提公因式法和公式法分解因式,属容易题.13.答案解析∵一个转盘被分成7个相同的扇形,红色的有3个,∴指针指向红色的概率为. 14.答案2200解析设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得解得∴这次越野跑的全程为1600+300×2=2200(米).评析本题考查了行程问题的数量关系及二元一次方程组的解法,属容易题.15.答案解析过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BF=x,则DF=x,BD=2x.因为OC=3BD,所以OE=3x,CE=3x,所以C(3x,3x),D(5-x,x).因为点C、D都在双曲线上,所以3x·3x=x·(5-x),解得x1=,x2=0(舍去),所以C,故k=×=.评析本题考查了反比例函数图象上点的坐标特征,解答本题的关键是利用k的值相同建立方程,属中等偏难题.16.答案解析作AD'⊥AD,且使AD'=AD,连结CD',DD',如图.由已知条件可得∠BAC+∠CAD=∠DAD'+∠CAD,即∠BAD=∠CAD'.在△BAD与△CAD'中,∴△BAD≌△CAD'(SAS),∴BD=CD'.又∠DAD'=90°,由勾股定理得DD'===4,易知∠D'DA+∠ADC=90°,由勾股定理得CD'===,∴BD=CD'=.评析本题考查了等腰直角三角形的性质、勾股定理、全等三角形的判定与性质,属难题.三、解答题17.解析方程两边同乘以x(x-2),得2x=3(x-2).解得x=6.检验:当x=6时,x(x-2)≠0.∴x=6是原分式方程的解.评析本题考查了解分式方程,解分式方程一定要注意验根,属容易题.18.解析∵直线y=2x-b经过点(1,-1),∴-1=2×1-b.∴b=3.∴不等式2x-b≥0即为2x-3≥0,解得x≥.19.证明在△AOB和△COD中,∴△AOB≌△COD.∴∠A=∠C,∴AB∥CD.20.解析(1)如图所示:(2).评析本题考查利用旋转、轴对称变换作图,属容易题.21.解析(1)分别用R1,R2表示2个红球,G1,G2表示2个绿球,列表如下:由上表可知,有放回地摸2个球共有16个等可能结果.①其中第一次摸到绿球,第二次摸到红球的结果有4个.∴第一次摸到绿球,第二次摸到红球的概率P==;②其中两次摸到的球中有1个绿球和1个红球的结果有8个.∴两次摸到的球中有1个绿球和1个红球的概率P==.画树形图法按步骤给分(略).(2).22.解析(1)如图,连结PB,BC.∵AB是☉O的直径,P是的中点,∴PA=PB,∠APB=90°.∵AB=13,∴PA=AB=.(2)如图,连结PB,BC.连结OP交BC于D点.∵P是的中点,∴OP⊥BC于D,BD=CD.∵OA=OB,∴OD=AC=.∵OP=AB=,∴PD=OP-OD=-=4.∵AB是☉O的直径,∴∠ACB=90°.∵AB=13,AC=5,∴BC=12,∴BD=BC=6.∴PB==2.∵AB是☉O的直径,∴∠APB=90°,∴PA=-=3.23.解析(1)y=--(2)当1≤x<50时,y=-2x2+180x+2000=-2(x-45)2+6050.∵-2<0,∴当x=45时,y有最大值,最大值为6050元.当50≤x≤90时,y=-120x+12000,∵-120<0,∴y随x的增大而减小.当x=50时,y有最大值,最大值为6000元.∴当x=45时,当天的销售利润最大,最大利润为6050元.(3)41天.评析本题考查利用函数的性质解决实际问题,属中等难度题.24.解析(1)由题意知,BP=5t cm,CQ=4t cm,∴BQ=(8-4t)cm.当△PBQ∽△ABC时,有=.即=-,解得t=1.当△QBP∽△ABC时,有=.即-=,解得t=.∴△PBQ与△ABC相似时,t=1或.(2)如图,过点P作PD⊥BC于D.依题意,得BP=5t cm,CQ=4t cm.则PD=PB·sin B=3t cm,∴BD=4t cm,CD=(8-4t)cm.∵AQ⊥CP,∠ACB=90°,∴tan∠CAQ=tan∠DCP.∴=.∴=-,∴t=.(3)证明:如图,过点P作PD⊥AC于D,连结DQ、BD,BD交PQ于M,则PD=AP·cos∠APD=AP·cos∠ABC=(10-5t)×=(8-4t)cm.而BQ=(8-4t)cm,∴PD=BQ,又PD∥BQ,∴四边形PDQB是平行四边形.∴点M是PQ和BD的中点.过点M作EF∥AC交BC,BA于E,F两点.则==1,即E为BC的中点.同理,F为BA的中点.∴PQ的中点M在△ABC的中位线EF上.25.解析(1)(-2,4).(2)如图,直线y=-x+3与y轴交于点N(0,3).在y轴上取点Q(0,1),易得S△ABQ=5.过点Q作PQ∥AB交抛物线于点P.则PQ的解析式为y=-x+1,由-解得-或∴P点坐标为(-2,2)或.(3)如图,设A,B,D.联立消去y得x2-2kx-4k-8=0.∴x1+x2=2k,x1·x2=-4k-8.过点D作EF∥x轴,过点A作y轴的平行线交EF于点E,过点B作y轴的平行线交EF于点F.由△ADE∽△DBF,得=.∴--=--,整理,得x1x2+m(x1+x2)+m2=-4.∴2k(m-2)+m2-4=0.当m-2=0,即m=2时,点D的坐标与k无关,∴点D的坐标为(2,2).又∵C(-2,4),所以CD=2,过点D作DM⊥AB,垂足为M.则DM≤CD.当CD⊥AB时,点D到直线AB的距离最大,最大距离为2.评析本题考查解方程组、一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的判定与性质等知识,考查了通过解方程组求两函数图象交点坐标等,综合性比较强,属难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省曲靖市2020年中考模拟测试卷三
一、选择题(共8小题,每题4分,共32分)
1.下列各数中,比﹣2小的数是()
A.﹣1B.0C.﹣3D.1
2.下列图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
3.下列运算正确的是()
A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2 4.如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是()
A.B.C.D.
5.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0B.k>0,b>0C.k<0,b>0D.k<0,b<0 6.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()
A.B.
C.D.
7.如图,△ABC的顶点A在反比例函数y=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S△ABC=2,则k的值为()
A.4B.﹣4C.7D.﹣7
8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E →B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()
A.2B.C.D.1
(第7题图)(第8题图)
二、填空题(共6小题,每题3分,共18分)
9.五年以来,我国城镇新增就业人数为66000000人,数据66000000用科学记数法表示为.
10.分解因式:2a2﹣8ab+8b2=.
11.如图,AB∥CD,若∠E=34°,∠D=20°,则∠B的度数为.
(第11题图)(第14题图)
12.关于x的一元二次方程2x2﹣x﹣k=0的一个根为1,则k的值是.
13.不等式组的解集是.
14.如图,A1,A2,A3…,A n,A n+1是直线上的点,且OA1=A1A2=A2A3=…
A n A n+1=2,分别过点A1,A2,A3…,A n,A n+1作l1的垂线与直线相交于点
B1,B2,B3…,B n,B n+1,连接A1B2,B1A2,A2B3,B2A3…,A n B n+1,B n A n+1,交点依次为P1,P2,P3…,P n,设△P1A1A2,△P2A2A3,△P3A3A4,…,△P n A n A n+1的面积分别为S1,S2,S3…,S n,则S n=.(用含有正整数n的式子表示)
三、解答题(共9小题,共70分)
15.(5分)先化简,再求值:(1﹣)÷其中a=2﹣1+(π﹣2018)0
16.(6分)如图,在□ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=O D.
17.(6分)端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B
型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用
了2560元,求两种型号粽子各多少千克?
18.(8分)某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗
诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进
行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)补全条形统计图;本次调查的学生共有人;
(2)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(3)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这
四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两
人恰好是甲和乙的概率.
19.(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求证:四边形ABCD是菱形;
(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.
20.(8分)如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中点处.
(1)求景点B,E之间的距离;
(2)求景点B,A之间的距离.(结果保留根号)
21.(8分)服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式,并写出x的取值范围;
(2)设服装厂所获利润为w(元),若10≤x≤50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?
22.(9分)如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.
(1)判断直线DF与⊙O的位置关系,并说明理由;
(2)当∠A=30°,CF=时,求⊙O的半径.
23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.
(1)求该抛物线的函数解析式.
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.
(3)如图2,点E的坐标为(0,),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.。

相关文档
最新文档