关于高中课本中的光电效应现象的讨论
光电效应物理实验心得体会

光电效应物理实验心得体会一、前言光电效应是一种重要的物理现象,是在金属表面照射光线时,使得金属中的电子受到能量的激发,从而从金属中逸出。
在这次光电效应物理实验中,我们通过实际操作和观察,深入了解了光电效应的基本原理和实际应用,并从教学中汲取到了很多有益的经验和体会。
二、实验原理在光电效应实验中,实验装置的主要组件有光电池、光源、样品台以及电子倍增管等。
当光线照射到样品台上时,经过薄铝箔的反射,最终照射到光电池上,激发光电效应,产生的电子会经过信号放大器放大,最终输出到电压计上进行检测。
通过对输出的电压的大小和变化情况的观察和分析,我们可以得出各个参数之间的量变关系,进而比较直观地了解光电效应的实际应用。
三、实验步骤1.按照实验安排的步骤,先检查设备的工作情况是否正常,确保实验的顺利进行;2.根据实验要求,选取不同的样品台,并通过狭缝调节光源的强弱和方向,进行对比分析;3.获取各个参数的实验数据,如电压和电流等,通过实验操作和测量分析,确定光电效应与各个参数之间的关系,进而推测出实验结果的影响因素和规律;4.根据实验操作和实验数据的实际情况,对实验结果进行评价和总结,得出对光电效应实验的体会和感悟,为后续的学习和实践提供借鉴和启示。
四、实验体会和总结通过本次实验,我最大的收获是在实际操作和测量中,逐渐理解了光电效应的基本原理和实际应用,掌握了光电效应实验的关键技术和操作方法。
通过实验数据的统计和分析,我也更加深入地了解了各个参数之间的量变关系,可以更好地预测实验结果的影响因素和规律。
总的来说,光电效应实验是一次宝贵的学习和实践机会,对我们的学习和未来的职业发展都有着重要的意义。
希望通过本次实验,我们可以更好地掌握光电效应的基本原理和应用技术,为未来的学习和实践奠定坚实的基础。
探究光电效应的心得体会

探究光电效应的心得体会光电效应是物理学中一项重要的实验,在雷电实验中也曾被使用。
通过对光电效应的研究,我们可以更深入地理解光和电之间的关系,探索物质世界的奥秘。
在我的探究中,我发现光电效应不仅是一项有趣的实验,更是一种了解光和电之间相互作用的重要工具。
首先,光电效应的原理是光子与金属表面之间的相互作用。
当光子撞击金属表面时,会将其中的能量传递给金属中的电子。
如果光子的能量足够高,那么电子就会获得足够的能量从金属表面释放出来,产生光电流。
这种现象可以用来制造光电池,也可以用来检测光子的性质和能量。
就像在实验中看到的那样,使用不同的频率和强度的光源,可以产生不同大小的电子流。
其次,对于我们来说最有趣的是探究光电效应的参数。
我们可以用实验测量光电子的能量和最大动能,从而计算出电子的波长和光子的频率,这有助于我们了解光子的基本性质。
同时,我们也可以通过改变金属的材料和表面特性来研究光电效应的影响。
对于真空中的光电效应,我们还可以通过改变光子的强度和频率,来研究电子与光子之间的相互作用规律。
最后,我们也可以将光电效应应用到其他领域中。
光电池作为一种新型的能源被广泛应用于太阳能、照明和通讯等领域。
除此之外,光电效应还可以用于解析材料的组成和结构,探索化学和材料科学的新前沿。
总之,光电效应是一项精彩的实验,它帮助我们更好地理解光和电之间的相互作用,深入探索物质世界的奥秘。
通过对光电效应的深入研究,我们可以更好地应用它的原理和方法,提高我们的科学创新能力,为人类探索未知的科学世界做出贡献。
61. 如何理解高中物理中的光电效应?

61. 如何理解高中物理中的光电效应?一、关键信息1、光电效应的定义及现象描述:____________________________2、光电效应的实验发现及相关物理学家:____________________________3、影响光电效应的关键因素:____________________________4、光电效应与经典物理学理论的冲突:____________________________5、爱因斯坦对光电效应的解释及光子理论:____________________________6、光电效应的实际应用领域:____________________________二、光电效应的定义及现象描述11 光电效应是指在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电的现象。
111 当光照射到金属表面时,电子会从金属表面逸出。
这种逸出的电子被称为光电子。
112 光电效应具有瞬时性,即光电子的产生几乎是在光照射的瞬间发生的,不存在明显的延迟。
三、光电效应的实验发现及相关物理学家21 光电效应的实验最早由赫兹等人进行。
211 他们在研究电磁波的过程中,意外地发现了这一现象。
212 随后,勒纳德等物理学家对光电效应进行了更深入的研究和测量。
四、影响光电效应的关键因素31 入射光的频率是影响光电效应的关键因素之一。
只有当入射光的频率高于某一特定值(称为截止频率)时,才会发生光电效应。
311 入射光的强度对光电流的大小有影响,但对能否产生光电效应没有决定作用。
312 金属材料的种类也会影响光电效应的发生,不同金属的截止频率不同。
五、光电效应与经典物理学理论的冲突41 按照经典物理学的理论,光的能量是连续分布的,其强度决定了能否产生光电效应以及光电子的能量。
411 然而,光电效应的实验结果表明,光的能量是量子化的,即光是以光子的形式存在,每个光子具有特定的能量。
412 经典理论无法解释光电效应的瞬时性。
光电效应实验 体会和建议

光电效应实验体会和建议光电效应实验是一种重要的物理实验,通过实验可以观察到光的粒子性质和光电效应现象。
在进行光电效应实验时,我们可以从以下几个方面进行体会和建议:一、实验现象观察:1. 在实验中,可以观察到当光照射到金属表面时,电流表会显示出电流的流动,这一现象可以直观地展示光电效应的产生。
2. 实验中可以观察到当改变光的强度时,电流的大小也会相应改变。
光强的增大会使得电流增大,光强的减小则会使电流减小。
二、光电效应机制:3. 通过光电效应实验,可以进一步了解光电效应的机制。
实验结果表明,光电效应是由光子与金属表面的电子相互作用而产生的。
4. 当光照射到金属表面时,光子的能量被传递给金属中的电子,当电子获得的能量超过金属中电子的逸出功时,电子就会逸出金属表面,从而形成电流。
三、实验结果分析:5. 在光电效应实验中,观察到当改变光的频率时,电流的大小也会相应改变。
频率的增大会使得电流增大,频率的减小则会使电流减小。
6. 这一现象可以通过能量守恒原理解释,光子的能量与其频率有关,频率越高,光子的能量越大,电子获得的能量也越大,逸出金属表面的概率就越大,从而电流增大。
四、实验误差和改进:7. 光电效应实验中可能存在一些误差,如光源的不稳定性、电路接触不良等。
为了减小误差,可以使用稳定的光源,注意电路的连接质量。
8. 另外,实验中还可能存在光电管的非线性特性,可以通过选择合适的工作电压和测量电流的范围来减小这种误差。
五、实验应用和意义:9. 光电效应实验不仅是一种基础的物理实验,还具有重要的应用价值。
光电效应的研究为光电器件的发展提供了理论基础,如光电二极管、光电倍增管等。
10. 光电效应的研究还在光谱分析、光电能转换等领域有广泛的应用,为科学研究和工程技术的发展提供了支持。
总结起来,光电效应实验通过观察现象、分析机制和探讨应用,可以更好地理解光的粒子性质和光电效应现象。
在实验过程中,我们可以注意实验误差和改进方法,提高实验结果的准确性。
物理高考光电效应解释

物理高考光电效应解释光电效应是一种基本的物理现象,广泛应用于光电子器件和光电子技术领域。
在高考物理中,对于光电效应的解释是必要的内容之一。
本文将对光电效应的原理和应用进行详细阐述。
一、光电效应的原理光电效应是指当光照射到金属表面时,使金属表面的电子受到能量的激发,从而跃迁到金属内,形成光电流的现象。
光电效应是量子力学的实验证明,它的基本原理可以概括为以下几点:1. 光的粒子性:根据量子理论,光具有粒子性和波动性的特性。
根据爱因斯坦的光量子假说,光以能量子的形式传播,在与物质相互作用时,光的能量被传递给物质的电子。
2. 光子能量:光的能量由光子携带,光子的能量与光的频率相关。
根据普朗克的能量量子化假说,光的能量E与光的频率ν的关系为E = hν,其中h为普朗克常量。
3. 光电子发射:金属表面的自由电子在光照射下吸收足够能量后,可以克服束缚力逸出金属表面,形成光电子。
光电子具有动能和电荷,可以在外电路中形成电流。
二、光电效应的公式光电效应可以用公式来描述。
根据实验观测到的光电效应现象,可以得到以下两个重要的公式:1. 光电效应方程:光电效应的动能定律可以用如下方程表达:E = hf - φ其中E为光电子的最大动能,h为普朗克常量,f为光的频率,φ为金属的逸出功。
该方程量化了光电效应中光子能量与光电子动能之间的关系。
2. 阈频公式:根据实验观察到的光电效应现象,发现当光的频率小于一定频率时,光电效应不会发生。
这个频率被称为阈频。
阈频可以用如下公式计算:f0 = φ / h其中f0为阈频,φ为金属的逸出功,h为普朗克常量。
阈频是金属材料的特性参数,不同金属具有不同的阈频。
三、光电效应的应用光电效应作为一种重要的物理现象,广泛应用于光电子器件和光电子技术领域。
以下是一些光电效应的应用:1. 光电池:利用光电效应原理,将光能转化为电能的器件被称为光电池。
光电池的工作原理是光照射在半导体材料上,产生电子-空穴对,并通过外电路形成电流。
光电效应实验思想感悟总结

光电效应实验思想感悟总结光电效应实验思想感悟总结光电效应是指当光照射到金属表面时,如果光的频率达到或超过一定临界频率,就能够使得金属表面产生电子的电流。
这种现象在实验室中是通过光电效应实验来研究和观察的。
光电效应实验不仅为我们揭示了光的粒子性和电子的波粒二象性,还在很多技术和应用领域有着广泛的应用。
通过参与光电效应实验,我不仅对光电效应有了更深的理解,而且收获了一些思考和感悟。
首先,光电效应实验让我对光的粒子性有了直观的认识。
在实验中,我们使用光源照射金属表面,并通过电路连接来测量电流的变化。
实验结果表明,光的强度和频率对电流的影响非常明显,而光的波动性对电流没有影响。
这一结果与我们平常对光的理解存在很大的不同,也揭示了光的粒子性的本质。
光电效应实验让我意识到,光实际上是由许多粒子(光子)组成的,而且与电子的相互作用会产生电流。
这一认识让我对光的本质有了更加深刻的理解。
光电效应实验还帮助我认识到电子波粒二象性的重要性。
在实验中,我们观察到金属表面的电流与光的频率有关,而与光的强度无关。
这一结果与经典的波动理论相矛盾,而与量子力学的粒子性理论相一致。
根据量子力学理论,光的频率与能量是相关的,光子的能量足以释放金属表面的束缚电子,从而产生电流。
通过光电效应实验,我深刻认识到电子波粒二象性在微观世界中的重要性。
这一认识也使我对量子力学的学习和理解产生了浓厚的兴趣。
此外,光电效应实验还让我对物质的量子特性有了更深入的认识。
在实验中,我们发现金属表面的电流与光的频率有关,而与光的强度无关。
这表明,金属表面对光子的吸收存在临界频率,低于临界频率时,光子无法释放束缚电子,从而金属表面的电流为零。
这一结果说明了电子在金属中的能级分布情况对光电效应具有重要影响。
通过光电效应实验,我认识到物质的量子特性可以通过与光的相互作用来研究和表征。
这一认识对我理解物质的微观结构和特性有着重要的启示作用。
此外,光电效应实验还让我进一步认识到实验设计和数据分析的重要性。
讨论物理学中的光电效应与量子力学

讨论物理学中的光电效应与量子力学光电效应是物理学中的一个重要现象,它是指当光照射到金属表面时,会引起电子的发射。
这个现象的发现和解释对于量子力学的发展起到了重要的推动作用。
本文将讨论光电效应与量子力学之间的关系,并探讨其在物理学中的重要性。
一、光电效应的发现光电效应最早是由德国物理学家赫兹在1887年发现的。
他发现,当紫外线照射到金属表面时,会有电流通过。
这个发现引起了物理学界的广泛关注,因为传统的波动理论无法解释这个现象。
根据波动理论,光是一种电磁波,其能量应该与光的强度有关,而不应该与光的频率有关。
然而,实验证明,光电效应的电流强度与光的频率成正比。
二、爱因斯坦的解释对于光电效应的解释,爱因斯坦在1905年提出了一个重要的假设:光的能量是以光子的形式传播的。
根据这个假设,光子的能量与其频率成正比,而与光的强度无关。
当光子与金属表面的电子相互作用时,如果光子的能量大于金属表面束缚电子的能量,那么电子就会被激发出来,形成光电流。
爱因斯坦的解释在当时引起了很大的争议,因为它违背了传统的波动理论。
然而,随着实验证据的不断积累,爱因斯坦的解释逐渐获得了广泛的认可。
光电效应的实验结果与爱因斯坦的理论预言非常吻合,这为量子力学的发展奠定了基础。
三、量子力学的发展光电效应的发现和爱因斯坦的解释对于量子力学的发展起到了重要的推动作用。
量子力学是一门研究微观粒子行为的物理学,它的核心概念就是量子。
量子是指能量的离散单位,光子就是一种量子。
爱因斯坦的解释表明,光的能量是以离散的光子形式传播的,这与传统的波动理论有着本质的区别。
量子力学的发展不仅解释了光电效应,还解释了许多其他看似奇怪的现象。
例如,量子力学可以解释原子的稳定性、粒子的波粒二象性以及量子纠缠等现象。
量子力学的发展不仅丰富了物理学的内容,也对其他学科的发展产生了深远的影响。
四、光电效应的应用光电效应不仅在理论物理学中有重要的意义,还在实际应用中发挥着重要的作用。
光电效应的教学设计和反思

光电效应的教学设计和反思引言光电效应是物理学中的一个重要现象,它的研究对于理解光与物质相互作用的基本原理具有重要意义。
在高中物理教学中,光电效应一直是一个难以理解和掌握的内容。
本文旨在探讨光电效应的教学设计和反思,通过合理的教学设计和反思,提高学生对光电效应的理解和掌握能力。
一、教学设计1. 教学目标在教学过程中,应明确教学目标。
光电效应的教学目标主要包括以下几个方面:(1)了解光电效应的基本概念和定义。
(2)掌握光电效应的实验方法和步骤。
(3)理解光电效应的机制和原理。
(4)能够运用光电效应的知识解决实际问题。
2. 教学内容和方法(1)教学内容:①光电效应的概念和定义;②光电效应的实验方法和步骤;③光电效应的机制和原理;④光电效应在实际生活中的应用。
(2)教学方法:①启发式教学法:通过引导学生观察、实验和思考,帮助他们主动探索和发现光电效应的规律和规律。
②实验教学法:通过开展相关的实验活动,让学生亲自操作和观察,提高他们对光电效应的认识。
③讨论教学法:组织学生进行小组讨论或全班讨论,促进思维碰撞和交流,培养学生的合作意识和创新思维能力。
④归纳总结法:在教学过程中,及时归纳和总结已学内容,帮助学生加深记忆和理解。
3. 教学过程(1)导入阶段:通过讲解一些与光电效应相关的现象或问题,引起学生的兴趣,并激发他们的探索欲望。
比如,可以提问:为什么在某些材料上照射光线会产生电流?(2)实验探究阶段:组织学生进行光电效应实验,让他们亲自操作并观察现象。
可以使用光电效应实验装置,通过改变光源强度、光源频率或光源材料等因素,观察其对光电效应的影响。
(3)概念讲解阶段:通过讲解和示例,帮助学生理解光电效应的基本概念和定义。
可以结合粒子模型和波动模型来进行说明,让学生对光电效应的本质有更深刻的理解。
(4)机制和原理阶段:通过讲解光电效应的机制和原理,引导学生深入探究和思考。
可以结合经典物理理论,解释光电效应发生的原因和光子的能量与频率之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于高中课本中的光电效应现象的讨论
摘要:本文主要从中学物理教学角度对光电效应概念进行了界定,对光电效应实验现象内容的一些认识在参考一些文献的基础点进行了澄清。
关键词:光电效应高中物理教学概念理解
1.问题的提出
光电效应最早是赫兹在1886年12月进行电磁波实验研究中偶然发现的,随后的三十年间有多位物理学家对其进行了系统研究,爱因斯坦对光电效应的解释而获得诺贝尔奖。
由于该实验在物理学史上有很高的地位,在中学教学中也普遍受到物理教师的重视。
但是不管是老师还是学生,对光电效应现象的理解存在很多问题有很多是错误的认识。
随着物理学的发展,今天的光电效应与1900年前后的光电效应有了很大的不同,老师们在阅读一些文献时,有的老师对一些问题缺少正确的认识,不加分析的照搬。
本文在综合文献的基础上,对光电效应现象的四条内容的理解及相关概念理解加以澄清。
其实任何光电效应的任何一个方面都值得大做文章,限于篇幅与水平,对这些问题也是点到为止,与同行与专家们交流,欢迎讨论。
2.光电效应概念的界定与实验现象描述
2.1 光电效应概念的界定
所谓“光电效应”是指在光的照射下金属表面发射电子的现象[ ]。
这里要说明的是,这一概念对于1900前后来说是正确的,随着对光电现象研究的深入,该概念的内涵已经发生了很大的变化。
后来物理学家把上世纪初前后研究的光电效应(即高中课本上的这一类光电效应)称为外光电效应,与内光电效应相对应。
也是说我们中学研究的实验现象是属于光电效应,但光电效应不只是我们课本上说的那样简单。
在这里,我们对概念的界定是为了帮助我们中学教师对光电效应概念了解更加深入。
注意我们在一些文献中看到的光电效应可能不是高中课本上的概念,也有利于我们把握课本上的光电效应的历史条件。
曾谨言教授对光电效应的描述是“光照射到某些物质上,引起物质的电性质发生变化,这类光致电变的现象统称为光电效应”[ ],该表述说明了光电效应包涵了比中学教材更为广泛的内含。
2.2光电效应现象的内容
物理教材中对光电效应的现象描述不是仅由一个科学家观察到的,而是综合了1900年前后多位科学家的实验观察结果。
莱比锡大学的讲师哈尔瓦克斯,俄国的斯托列托夫对光电效应都进行了系统研究,并取得了重要成果。
但该实验最主要贡献者是赫兹的助手,德国科学家勒纳德(P. Lenard,1862-1947),他的实验观察结果[ ]与中学教材中的说法基本一
致。
其内容主要有四个方面: 1.对各种金属都存在着极限频率和极限波长,低于极限频率的任何入射光强度再大、照射时间再长都不会发生光电效应;2.光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大; 3.只要入射光频率高于金属的极限频率,照到金属表面时光电子的发射几乎是瞬时的,不超过10-9S;4.发生光电效应时,光电流的强度与入射光的强度成正比。
这是光电效应现象常见的描述。
3.对四条内容的理解
对光电效应实验现象内容的理解是仁者见仁,智者见智,显得很混乱。
有的老师对内容妄加推测并任意发挥,出现了一些不该有的错误。
很多中学老师由于缺乏资料,对光电效应现象的认识也是停留在课本的水平上,不理解也是情有可原的,下面是笔者在查阅文献的基础上,对该问题提出一些看法,供大家参考。
3.1对极限频率的理解
对于该问题,需要理解的是为什么有极限频率。
对于中学生的要求是让学生了解有这一现象即可,同时也了解这一现象给波动理论的解释带来了困难,即按波动理论只要给以足够长的时间照射,都能发生光电效应相矛盾。
但是在教学实践中,学生对电子怎么吸收光子的,为什么不能吸收多个光子有疑问且感兴趣。
一般情况下我们的老师是直接告诉学生电子不吸收多个光子,无论是相继和同时。
学生再问为什么呢?很多老师也不知道了。
其实20世纪初的科学家和现在的中学老师们一样不知道电子怎样吸收光子和不能同时吸收多个光子,也只知道与波动论相冲突。
其中一个重要的原因是当时的实验条件是十分有限的,也谈不上精确,另外一个原因是物理学面对新的实验现象,理论还没有建立起来,科学家也是根据自己的理解来解释原因,都难以服众。
即使后来密立根实验很精确了,但理论还是还没有建立起相关理论。
目前有关文献对电子吸收光子的问题做出了一些分析,认为主要原因是同时吸收两个光子的概率太低,当时无法观察到。
普通光源光强较弱,从发光机制来讲自发辐射占主导地位。
在光电效应过程中,有人实验发现,当入射光的频率大于金属材料的截止频率时,入射104 数量级的光子才能射出一个电子[ ]。
对于该问题,《关于光电效应中电子不可能吸收两个光子的可能性的分析》[ ]一文中对此作了较为详细的计算,计算的结果是普通光源的产生光子的概率也是104 数量级。
而一个电子相继和同时吸收两个光子的概率,是108数量级的光子中才出现一次。
即在普通光源(即弱光)条件下,电子也有可能吸收两个光子,只是这种概率极小,相应的光电流远远小于测量仪器的灵敏度而不能够通过仪器测量出来。
在中学甚至大学物理中所叙述的光电效应规律都是物理学史实上的内容,是针对普通光源来讲
的,这也与历史上发现光电效应时没有更强的光源,特别是激光源有很大的关系。
激光的问世,相关实验还可观测到双光子、甚至四光子吸收现象,也会破坏极限频率的概念,这时候光电效应中的内容发生了很大的变化,所以我们要强调普通光源是当时观察光电效应的实验条件。
3.2对最大初动能的理解
有不少人认为,所有的光电子都具有最大初动能,有不少参考资料不明确说明是最大初动能,而是以动能来代替,这是历史的产物,是不准确的描述。
在教学中要明确说明,以免学生理解错误。
有不少文章研究表明,能吸收光子的电子是不自由的,至少在与光子作用的过程中,否则不遵守动量守恒定律与能量守恒定律。
一般认为,金属中电子吸收光子时,运动方向朝外,只克服原子实库仑力的光电子具有最大初动能。
其它光电子的动能在零与最大值之间。
克服原子实做功较多的光电子的动能较少。
光电子的初动能还受金属表面的清洁程度和表面吸附气体等因素的影响,光电子从金属表面逸出时需要消耗的能量也不同。
同第一问题一样,激光光源照射下,由于吸收多个光子,这一结论也不成立。
所以本结论也是在普通光源下。
3.3对瞬时性的理解
大家对瞬时性的理解没有问题,学生知道瞬时性用波动论理无法解释该现象即可。
为了解释光电效应的瞬时性问题,勒纳德在1902年还提出了触发假设。
笔者自己提出一个问题,供大家讨论。
勒纳德1902年关于瞬时性的实验现象的内容是:当入射光频率大于截止频率v时,光一照射便立即有电了从金属表面逸出,而低于截止频率的入射光不管多强都不可能产生光电效应。
文中并没有提出反应时间短到10-9S,学生对10-9S,没有概念,只知道时间很短即可。
是谁最早测量出的这一时间?笔者表示疑问,多方查阅材料,也没有结果。
在时间的测量史上,能测量10-7S的时间,也是上世纪六七十年代的事情。
所以,我有理由怀疑该叙事的合理性。
3.4对光电电流的理解
关于这一点的认识存在两个问题:第一个问题是课本为了减少概念的引入,没有说明光电电流是饱和电流,导致了很多学生无法正确理解这一点;第二个问题是本结论的前提是在大于极限频率的同一种照射结果,离开此条件无法讨论。
在中学生的教辅练习中有不少出现了类似情况,光电效应实验中,将一种光换成另外一种光,说光强度相同,比较它们饱和电流的大小。
其实完全没有必要,不同光的频率不同,电流与
频率的关系也较为复杂,不是中学生研究的问题。
如果频率变大了,会使更加深层的电子变为光电子,但同时单位时间的光子数目少了,哪一个起更大的作用?恐怕连老师也不清楚。
当然,作为老师,如果对这一问题进行了解也是可以的。
下面是笔者查阅文献的结果,总体情况是很复杂,没有定论。
以下是其中两种情况:
美国物理学家席夫在假设入射光为单色线偏振光射到原子的K层电子上,得出电子数与入射光频率的定量关系式,其结论是:[ ]
(1)在光强P一定时,光电子数N正比于v- 9/ 2,可见随着频率的增加光电子数迅速减少;(2)在光强P和频率v一定时,光电子数N正比于金属靶的原子序数Z的五次方,即光电子数随金属靶的原子序数的增大而迅速增加;(3)在金属和频率一定时,光电子数N正比于入射光光强P。
另一种情况是,不同频率的光子激发出光电子的本领是不同的。
有些材料特别是碱金属物质,在发生光电效应时,光电流饱和值随照射光频率变化而变化的规律较为复杂,称之为选择性光电效应[ ],根据有关文献说明是光电子数目与频率之间的变化关系图像是一个先大后小的关系。
所以中学老师要回避这类问题中典型错误,不要去讨论入射光频率与光电子数的关系,以免得出错误的结论。