潘省初计量经济学——第七章
计量经济学 第七章答案

练习题7.1参考解答(1)先用第一个模型回归,结果如下:22216.4269 1.008106 t=(-6.619723) (67.0592)R 0.996455 R 0.996233 DW=1.366654 F=4496.936PCE PDI =-+==利用第二个模型进行回归,结果如下:122233.27360.9823820.037158 t=(-5.120436) (6.970817) (0.257997)R 0.996542 R 0.996048 DW=1.570195 F=2017.064t t t PCE PDI PCE -=-++==(2)从模型一得到MPC=1.;从模型二得到,短期MPC=0.,长期MPC= 0.+(0.)=1.01954练习题7.2参考答案(1)在局部调整假定下,先估计如下形式的一阶自回归模型:*1*1*0*tt ttu Y X Y +++=-ββα估计结果如下:122ˆ15.104030.6292730.271676 se=(4.72945) (0.097819) (0.114858)t= (-3.193613) (6.433031) (2.365315)R =0.987125 R =0.985695 F=690.0561 DW=1.518595t t t Y X Y -=-++根据局部调整模型的参数关系,有****11 ttu u αδαβδββδδ===-=将上述估计结果代入得到: *1110.2716760.728324δβ=-=-=*20.738064ααδ==-*0.864001ββδ==故局部调整模型估计结果为: *ˆ20.7380640.864001ttYX =-+ 经济意义解释:该地区销售额每增加1亿元,未来预期最佳新增固定资产投资为0.亿元。
运用德宾h 检验一阶自相关:(121(1 1.34022d h =-=-⨯=在显著性水平05.0=α上,查标准正态分布表得临界值21.96h α=,由于21.3402 1.96h h α=<=,则接收原假设0=ρ,说明自回归模型不存在一阶自相关。
计量经济学第七章练习题及参考答案

第七章练习题及参考答案7.1 表7.11中给出了1970-1987年期间美国的个人消费支出(PCE)和个人可支配收入(PDI)数据,所有数字的单位都是10亿美元(1982年的美元价)。
表7.11 1970-1987年美国个人消费支出(PCE)和个人可支配收入(PDI)数据估计下列模型:tt t t tt t PCE B PDI B B PCE PDI A A PCE υμ+++=++=-132121(1) 解释这两个回归模型的结果。
(2) 短期和长期边际消费倾向(MPC )是多少?练习题7.1参考解答:1)第一个模型回归的估计结果如下,Dependent Variable: PCEMethod: Least Squares Date: 07/27/05 Time: 21:41 Sample: 1970 1987 Included observations: 18Variable Coefficient Std. Error t-StatisticProb. C -216.4269 32.69425 -6.619723 0.0000 PDI 1.008106 0.015033 67.05920 0.0000 R-squared 0.996455 Mean dependent var1955.606 Adjusted R-squared 0.996233 S.D. dependent var 307.7170 S.E. of regression 18.88628 Akaike info criterion 8.819188 Sum squared resid 5707.065 Schwarz criterion 8.918118 Log likelihood -77.37269 F-statistic 4496.936 Durbin-Watson stat 1.366654 Prob(F-statistic)0.000000回归方程:ˆ216.4269 1.008106t tPCE PDI =-+(32.69425) (0.015033) t =(-6.619723) (67.05920) 2R =0.996455 F=4496.936 第二个模型回归的估计结果如下,Dependent Variable: PCEMethod: Least Squares Date: 07/27/05 Time: 21:51 Sample (adjusted): 1971 1987 Included observations: 17 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.C -233.2736 45.55736 -5.120436 0.0002 PDI 0.982382 0.140928 6.970817 0.0000 PCE(-1) 0.037158 0.144026 0.2579970.8002R-squared 0.996542 Mean dependent var 1982.876 Adjusted R-squared 0.996048 S.D. dependent var 293.9125 S.E. of regression 18.47783 Akaike info criterion 8.829805 Sum squared resid 4780.022 Schwarz criterion 8.976843 Log likelihood -72.05335 F-statistic 2017.064 Durbin-Watson stat 1.570195 Prob(F-statistic)0.000000回归方程:1ˆ233.27360.98240.0372t t t PCE PDI PCE -=-+- (45.557) (0.1409) (0.1440)t = (-5.120) (6.9708) (0.258) 2R =0.9965 F=2017.0642)从模型一得到MPC=1.008;从模型二得到,短期MPC=0.9824,由于模型二为自回归模型,要先转换为分布滞后模型才能得到长期边际消费倾向,我们可以从库伊克变换倒推得到长期MPC=0.9824/(1+0.0372)=0.9472。
计量经济学课件第7章

7
在实际经济活动中,经济变量的关系是复杂的,直 接表现为线性关系的情况并不多见。
如著名的恩格尔曲线(Engle curves)表现为 幂函数曲线形式、宏观经济学中的菲利普斯曲线 (Pillips cuves)表现为双曲线形式等。 但是,大部分非线性关系又可以通过一些简 单的数学处理,使之化为数学上的线性关系,从 而可以运用线性回归的方法进行计量经济学方面 的处理。
31
若区别男女两类的不同,引入两个虚拟变量, 则会导致完全共线性。
Yi Yi . ln X 1i X 1i / X 1i
给出了当X 2保持不变时,X 1i 变化 1%时Y的绝对变化量, Y的绝对变化量Yi 1 * X 1i / X 1i),即Y的绝对变化量为 0.01* 1。 ( P120,图 7 3,右边
17
例:牛肉需求方程
P120-121
t t 1
PF 为t年的农场劳动价格。
t
注意解释经济意义:保 持今年农场劳动价格不 变,
度量了去年棉花价格增 加一单位所引起的
1
今年棉花产量的平均单 位增加量。
27
7.4 虚拟变量的应用
一、虚拟变量模型 虚拟变量(dummy variable):在实际建模过程 中,被解释变量不但受定量变量影响,同时还受定 性变量影响。例如性别、民族、不同历史时期、季 节差异、企业所有制性质不同等因素的影响。这些 因素也应该包括在模型中。 由于定性变量通常表示的是某种特征的有和无, 所以量化方法可采用取值为1或0。这种变量称作虚 拟变量,用D表示。虚拟变量应用于模型中,对其 回归系数的估计与检验方法与定量变量相同。
28
加法模型:
1.包含一个虚拟变量的模型
i 0 1 i 2 i i
[经管营销]计量经济学第七章
![[经管营销]计量经济学第七章](https://img.taocdn.com/s3/m/950e4ff243323968001c92b9.png)
36个投保人年龄的数据
23 35 39 27 36 44
36 42 46 43 31 33
+1.96x
90%的样本
95% 的样本
99% 的样本 h
x
17
评价估计量的标准
无偏性 有效性 一致性
h
18
总体均值的区间估计
正态总体、方差已知,或非正态总体、大样本
z
x
N(0,1)
n
x z 2
n
h
19
总体均值的区间估计(例题分析)
【 例 】一家食品生产企业以生产袋装食品为主,为对产量
h
11
置信区间
(confidence interval)
1. 由样本统计量所构造的总体参数的估计区间称为 置信区间
2. 统计学家在某种程度上确信这个区间会包含真正 的总体参数,所以给它取名为置信区间
3. 用一个具体的样本所构造的区间是一个特定的区 间,我们无法知道这个样本所产生的区间是否包 含总体参数的真值
第七章 参数估计
参数估计的一般问题 抽样估计的基本方法 样本容量的确定
h
1
抽样估计的过程
总体
样 本
h
样本统计量 例如:样本均 值、比例
2
参数估计的一般问题
参数估计:用样本统计量估计去估计参数
估计量:用来估计总体参数的统计量。 估计值:根据样本计算出来的估计量的数值。
h
3
参数估计的方法
点估计: 区间估计:
我们只能是希望这个区间是大量包含总体参数真值的 区间中的一个,但它也可能是少数几个不包含参数真 值的区间中的一个
h
12
置信水平
(confidence level)
计量经济学(数字教材版)教案第七章

教学环节
教学内容与教学设计
导入主题
教学内容:
先简要回顾OLS回归的基本假定,再问题式导入主题——如何对时间序列时间建模分析。
经济增长的时间序列数据、人口增长的时间序列数据、工资增长的时间序列数据等问题表明时间序列数据从普遍性。问题:如何对时间序列数据建模找出经济规律?
教学设计:
采用真实的数据进行演示,通过现实问题,引导学生感受到所学思考内生性问题的本质,从而产生好奇心,激起学习新知的欲望。适时设疑,启发学生思考,调动学生学习的积极性。
巩固加深
教学内容:
向量自回归模型的软件实现。教材7.6给出了工具变量法的应用案例。
教学设计:
1实际问题引导学生思考:影响中美贸易量的因素是什么?人民币汇率是决定因素吗?引导学生学应用计量模型分析实际问题。
2软件实现数据平稳性检验,训练学生动手能力。
3软件实习方差分解和脉冲响应分析,让学生对软件得出的结果进行分析,进一步激发学习兴趣和树立为国家繁荣富强而奋斗的志向。
(3)合理设计板书:重点凸显DF检验和ADF检验的推导公式。
(4)请两个小组各派一个同学对DF检验与ADF检验作个小结,教师打分。
深入研讨
教学内容:
知识点:协整与误差修正模型。
具体如下:
(1)由协整的定义引出误差修正模型。
(2)推导误差修正模型,着重讲解模型的应用。
教学设计:
(1)通过协整的定义,问题式导入误差修正模型,让学生感受所学知识在计量经济学体系中的定位,激发其学习热情与探究欲望。
总结提高
在小结之前,及时设疑,设置思考题,启发学生。要想更深入地思考,要更好地估计模型,还需本课程的后续知识,让学生对课程充满期待,激发自主探究欲。学生完成随堂测验,并借习题练习对数据序列数据建模的能力。
(完整word版)计量经济学中级教程(潘省初 清华大学出版社)课后习题答案

计量经济学中级教程习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YYn==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正) (1)对 (2)对 (3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。
(4)错R 2 =ESS/TSS 。
(5)错。
我们可以说的是,手头的数据不允许我们拒绝原假设。
(6)错。
因为∑=22)ˆ(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。
2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。
潘省初计量经济学中级教程习题参考答案

计量经济学中级教程习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1n ii Y Y n ==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.1074130********=+++。
第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。
(4)错。
计量经济学第七章

济
学
夏 凡
n 自回归模型
n 移动平均模型
n 自回归移动平均模型
6
计 量 经 济 学
夏 凡
ARMA模型
自回归(AR: Autoregressive)模型
移动平均(MA: Moving Average)模型
自回归移动平均(ARMA: Auto-regressive Moving Average)模型
7
自回归模型
计 量
n 自回归模型
经
l 若时序yt 是它的前期值和随机项的线性函
济 学
数 yt 1 yt1 2 yt2 p yt p ut
1
n
夏
l 则称该时序yt 是自回归序列,(1)式为p阶
凡
自回归模型1,,2,记,为p AR(p)
n 实参数
称为自回归系数,是待估参数
l 季节性和趋势同时存在时
n 必须事先剔除序列趋势性再识别序列的季节性 n 否则季节性会被强趋势性所掩盖,以至判断错误
24
计
时序特性分析(续5)
量
经
济
学 n [例7-1] 下表中,序列zt表示1994年1月
夏 至1998年12月经居民消费价格指数调整的
凡 中国城镇居民可支配收入时间序列。用自
相关分析图识别序列的季节性
计 量
第七章 ARMA模型应用
经
济
学
第一节 ARMA模型概述
夏 凡
第二节 随机时序的特性分析
第三节 模型的识别与建立
第四节 模型的预测
第五节 序列相关与ARMA模型
1
计 量
引言
经
济
学
n 对时间序列Yt的变动进行解释或预测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潘省初计量经济学——第七章
协整
协整分析被认为是上世纪八十年代中期以来计量 经济学领域最具革命性的进展。
简单地说,协整分析涉及的是一组变量,它们各自 都是不平稳的(含义是随时间的推移而上行或下行), 但它们一起漂移。这种变量的共同漂移使得这些变量 之间存在长期的线性关系,因而使人们能够研究经济 变量间的长期均衡关系。如果这些长时间内的线性关 系不成立,则对应的变量被称为是“非协整的” 。
潘省初计量经济学——第七章
一. 单位根 考察(7.8)式的一阶自回归过程,即
Xt=φXt-1+εt
(7.11)
其中εt为白噪声,此过程可写成
Xt-φXt-1=εt 或(1-φL)Xt = εt (7.12)
其中L为滞后运算符,其作用是取时间序列的滞后, 如Xt 的一期滞后可表示为L(Xt),即
L(Xt)= Xt-1
ΔXt=εt
(7.6)
这个一阶差分新变量ΔXt是平稳的,因为它就等 于白燥声εt,而后者是平稳时间序列。
潘省初计量经济学——第七章
3、带漂移项的随机漫步 (Random walk with drift)
Xt=μ+Xt-1+εt
(7.7)
其中μ是一非0常数,εt为白燥声。
μ之所以被称为“漂移项”,是因为(7.7)式的 一阶差分为
例7.1 检验某国私人消费时间序列的平稳性。
潘省初计量经济学——第七章
潘省初计量经济学——第七章
用表7.2中的私人消费(Ct)时间序列数据,估计 与(7.16)和(7.17)相对应的方程,分别得到如下
估计结果:
(1) △ =12330.48-0.01091 Ct-1 (t:) (5.138) (-1.339)
若 tδ>τ, 则接受原假设H0,即Xt非平稳。 若tδ<τ,则拒绝原假设H0,Xt为平稳序列。
潘省初计量经济学——第七章
Dickey和Fuller注意到τ临界值依赖于回归方程
的类型。因此他们同时还编制了与另外两种类型方
程中相对应的τ统计表,这两类方程是:
Hale Waihona Puke △Xt=α+δXt-1+εt 和
(7.16)
(3)协方差 Cov(Xt, Xt+k)= E [(Xt -μ)(Xt+k -μ)]= rk, t=1,2,…,k≠0 (7.3)
潘省初计量经济学——第七章
3. 平稳性和非平稳性
通常情况下,我们所说的平稳性指的就是弱平稳性。 一般来说,如果一个时间序列的均值和方差在任何时间 保持恒定,并且两个时期t和t+k之间的协方差仅依赖于 两时期之间的距离(间隔或滞后)k,而与计算这些协 方差的实际时期t无关,则该时间序列是平稳的。
这类检验可用t检验进行,检验统计量为:
或
(7.14)
其中, 和 分别为参数估计值 和 的标准误差, 即
这里的问题是,(7.14)式计算的t值不服从t分布, 而是服从一个非标准的甚至是非对称的分布。因而 不能使用t分布表,需要用另外的分布表。
潘省初计量经济学——第七章
二. Dickey-Fuller检验(DF检验) 迪奇(Dickey) 和福勒(Fuller)以蒙特卡罗模拟 为基础,编制了(7.14)中tδ统计量的临界值表,表中 所列已非传统的t统计值,他们称之为τ统计值。这些 临界值如表7.1所示。后来该表由麦金农(Mackinnon) 通过蒙特卡罗模拟法加以扩充。
序列无需差分即是平稳的。另一方面,如果一个序列
不管差分多少次,也不能变为平稳序列,则称为“非
单整的”。
潘省初计量经济学——第七章
第二节 平稳性的检验
平稳性检验的方法可分为两类:传统方法和现代方 法。前者使用自相关函数(Autocorrelation function), 后者使用单位根(Unit roots)。单位根方法是目前最常 用的方法,因此本节中,我们仅介绍单位根方法。
在δ=0的情况下,即若原假设为真,则相应的过程 是非平稳的。
换句话说,非平稳性或单位根问题,可表示为Φ=1 或δ=0。从而我们可以将检验时间序列Xt的非平稳性 的问题简化成在方程(7.11)的回归中,检验参数 Φ=1 是否成立或者在方程(7.13)的回归中,检验参 数δ=0是否成立。
潘省初计量经济学——第七章
二. 几种有用的时间序列模型
1、白噪声( White noise)
白噪声通常用εt表示,是一个纯粹的随机过程,满 足: (1)E(εt) = 0 , 对所有t成立; (2)V ar(εt) = σ2,对所有t成立; (3)Cov (εt, εt+k) = 0,对所有t和k≠0成立。
白噪声可用符号表示为:
潘省初计量经济学——第七章
(7.11)式 Xt=φXt-1+εt 两端各减去Xt-1,我们得到
Xt-Xt-1= ΦXt-1-Xt-1+εt
即 ΔXt= δXt-1+εt
(7.13)
其中Δ是差分运算符,δ=Φ-1。
前面的假设
H0:φ= 1 Ha:φ<1
潘省初计量经济学——第七章
可写成如下等价形式: H0:δ= 0 Ha:δ<0
潘省初计量经济学——第七章
由上节所知,自回归过程Xt平稳的条件是其特征 方程的所有根的绝对值大于1。由于这里特征方程为 1-ΦL=0,该方程 仅有一个根L=1/φ ,因而平稳性 要求-1<φ<1。
因此,检验Xt的平稳性的原假设和备择假设为: H0:∣φ∣≥1 Ha:∣φ∣<1
接受原假设H0表明Xt是非平稳序列,而拒绝原假 设(即接受备择假设Ha)则表明Xt是平稳序列。
εt~IID(0, σ2)
(7.4)
注:这里IID为Independently Identically Distributed(独立同分 布)的缩写。
潘省初计量经济学——第七章
2、随机漫步(Random walk)
随机漫步是一个简单随机过程,由下式确定:
Xt = Xt-1+εt
(7.5)
其中εt为白噪声。
由于在实践中上述联合概率分布很难确定,我们 用随机变量Xt(t=1,2,…)的均值、方差和协方差代替 之,即所谓的“弱平稳性”。
潘省初计量经济学——第七章
2. 弱平稳性 (weak stationarity)
一个时间序列是“弱平稳的”,如果:
(1)均值 E(Xt) =μ,t=1,2,…
(7.1)
(2 )方差 Var(Xt) = E(Xt -μ)2 =σ2,t =1,2,…(7.2)
1-φ1L-φ2L2-φ3L3-……-φqLq = 0 (7.10) 的所有根的绝对值均大于1,则此过程(7.9)是平稳 的,否则为非平稳过程。
潘省初计量经济学——第七章
三. 单整的时间序列(Integrated series)
从(7.6)可知,随机漫步序列的一阶差分序列 ΔXt = Xt-Xt-1是平稳序列。在这种情况下,我们说原 非平稳序列Xt是“一阶单整的”,表示为I(1)。
潘省初计量经济学——第七章
实践中,上述原假设和备择假设采用如下形式:
这是因为,首先,可以假设
,因为绝大多数
经济时间序列确实如此;其次, 意味着
是爆炸性的,通常不予考虑,这意味着备择假设实
际上是
。
潘省初计量经济学——第七章
单位根检验方法的由来
在Φ=1的情况下,即若原假设为真,则(7.11)就 是随机漫步过程(7.5),从上节得知,它是非平稳 的。因此,检验非平稳性就是检验Φ=1是否成立, 或者说,就是检验单位根是否存在。换句话说,单 位根是表示非平稳性的另一方式。这样一来,就将 对非平稳性的检验转化为对单位根的检验,这就是 单位根检验方法的由来。
Xt的均值:
E(Xt)= E(Xt-1+εt)= E(Xt-1) + E(εt) = E(Xt-1)
这表明Xt的均值不随时间而变。
潘省初计量经济学——第七章
为求Xt的方差,对(7.5)式进行一系列置换: Xt = Xt-1+εt = Xt-2+εt-1+εt = Xt-3+εt-2+εt-1+εt
与此类似,若非平稳序列必须取二阶差分
(Δ2Xt=ΔXt-ΔXt-1)才变为平稳序列,则原序列是“二 阶单整的”,表示为I(2)。 一般地,若一个非平稳序 列必须取d阶差分才变为平稳序列,则原序列是“d阶 单整的”(Integrated of order d),表示为I(d)。
由定义不难看出,I(0)表示的是平稳序列,意味着该
潘省初计量经济学—— 第七章
2020/11/21
潘省初计量经济学——第七章
第一节 时间序列分析的基本概念
经济分析通常假定所研究的经济理论中涉及的 变量之间存在着长期均衡关系。按照这一假定,在 估计这些长期关系时,计量经济分析假定所涉及的 变量的均值和方差是常数,不随时间而变。
然而,经验研究表明,在大多数情况下,时间 序列变量并不满足这一假设,从而产生所谓的“伪 回归”问题(‘spurious’ regression problem)。
=……
= X0+ε1+ε2+……+εt = X0+∑εt 其中X0是Xt的初始值,可假定为任何常数或取初 值为0,则
潘省初计量经济学——第七章
这表明Xt的方差随时间而增大,平稳性的第二个条 件(7.2)不满足,因此,随机漫步时间序列是非平
稳时间序列。可是,若将(7.5)式 成一阶差分形式:
Xt = Xt-1+εt写