中考数学复习 第1编 教材知识梳理篇 第3章 函数及其图象 第1节 函数及其图象(精讲)课件
初三数学的函数知识点总结

初三数学的函数知识点总结一、函数的概念1. 函数的定义:函数是一种特殊的关系,即每一个自变量对应唯一的因变量,并且每一个可能的自变量都对应一个确定的因变量。
通俗地讲,函数就是一种“输入-输出”关系。
2. 自变量和因变量:在函数中,自变量是指可以独立变化的变量,通常用x来表示;而因变量则是函数的输出,通常用y来表示。
3. 函数的表达式:函数可以用数学公式或图象表示,通常表示为y=f(x),其中f(x)是函数,表示自变量x经过函数f所得的因变量y。
4. 定义域和值域:函数的定义域是所有可能的自变量值的集合,值域是所有可能的因变量值的集合。
5. 奇函数和偶函数:如果f(-x)=-f(x)成立,那么函数f(x)是奇函数;如果f(-x)=f(x)成立,那么函数f(x)是偶函数。
二、函数的表示方法1. 函数的图象:函数的图象是将自变量和因变量的所有可能取值通过直角坐标系的点连起来所得的图形。
2. 函数的映射图:函数的映射图是将函数值与自变量一一对应的有序对用点表示,并由这些点组成的图。
3. 函数的解析式:函数的解析式是用公式或方程表示的函数表达式,可以直接求出给定自变量时的因变量值。
4. 函数的等价变形:函数的等价变形是对函数进行代数运算、图象变换等操作得到的新函数。
三、函数的基本性质1. 函数的有界性:如果函数f(x)在某一区间内有界,则函数在这个区间内有最大值和最小值。
2. 函数的单调性:如果函数f(x)在某一区间内的导数始终大于0或小于0,则函数在这个区间内是递增或递减的。
3. 函数的奇偶性:奇函数具有对称中心为原点的对称图象,偶函数具有对称中心为y轴的对称图象。
4. 函数的周期性:如果函数f(x)满足f(x+T)=f(x),其中T为正常数,则函数具有周期T。
5. 函数的零点和极值:函数的零点是指使函数取零值的自变量值,而极值则是函数取得最大值或最小值的点。
6. 函数的单值性和多值性:一般情况下,函数对应一个自变量只能有一个因变量,因此是单值函数;但有些函数也可以对应一个自变量有多个因变量,这就是多值函数。
【中考一轮复习】二次函数的图象与性质课件(1)

当堂训练---二次函数的图象的变换
1.如图,在平面直角坐标系中,抛物线y=0.5x2经过平移得到抛物
线y=0.5x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面
积为( B )
A.2
B.4
C.8
D.16
2.将抛物线y=0.5x2-6x+21向左平移2个
单位后,得到抛物线的解析式为( D )
A.y=0.5(x-8)2+5 B.y=0.5(x-4)2+5
人教版中考数学第一轮总复习
第三单元 函数及其图象
•§3.6 二次函数图象与性质(2)
目录
01 二次函数的图象的变换
02 二次函数与一元二次方程
03 二次函数图象的最值问题
考点聚焦---二次函数的图象的变换
二次函数图 平 移 ①先求出原抛物线的顶点;
象的平移
规
律
②后求出变换后的抛物线的顶点; ③写出变换的抛物线的解析式。
【例1】将抛物线y=x2+2x-3,化成顶点式为_y_=_(_x_+_1_)_2_-_4__; (1)该抛物线是由y=x2_向__左__1_个__单__位__,_再__向__下__4_个___单__位__平移得到的;
(2)写出该抛物线关于x轴,y轴,原点和(1,1)对称的抛物线解析式: 关于 x 轴对称:_y_=_-_x_2_-_2_x_+_3___;_y_=_-_(_x_+_1_)_2_+_4___。 关于 y 轴对称:_y_=__x_2_-_2_x_-_3___;_y_=__(_x_-_1_)_2_-_4___。 关于 x=2 对称:_y_=_x_2_-_1_0_x_+_2_1__;_y_=_(_x_-_5_)_2_-_4____。 关于原 点对称:_y_=_-_x_2_+_2_x_+_3___;_y_=_-_(_x_-_1_)_2_+_4___。 关于(1,1)对称:_y_=_-_x_2_+_6_x_-_9___;_y_=_-_(_x_-_3_)_2_+_6___。
中考数学第一轮复习精品讲解第三单元函数与其图象(共215张PPT)

·新课标
第11讲 │ 考点随堂练
9.一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油 9 升,行驶了 1 小时后发现已耗油 1.5 升. (1)求油箱中的剩余油量 Q(升)与行驶的时间 t(小时)之间的函数 关系式,并求出自变量 t 的取值范围; (2)画出这个函数的图象; (3)如果摩托车以 60 千米/小时的速度匀速行驶,当油箱中的剩 余油量为 3 升时,老王行驶了多少千米?
第12讲 函数的概念及其表示法
·新课标
第12讲 │ 考点随堂练 │考点随堂练│
考点1 一次函数的定义
≠0 ≠0
·新课标
第12讲 │ 考点随堂练
1.已知函数
y=(m-1)xm+3m
表示一次函数,则
m
等于(
Байду номын сангаас
B
)
A.1
B.-1
C.-1 或 1
D.0 或-1
[解析] m=1,所以 m=±1,又根据 m-1≠0,m≠1, 所以 m=-1.
[解析] 注意理解:从家里出发走10分钟到离家500米的地方 吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校 参加考试所对应的图象.
观察图象时,首先弄清横轴和纵轴所表示的意义.弄清哪些是 自变量,哪些是因变量,然后分析图象的变化趋势,结合实际问题 的意义进行判断.
·新课标
第12讲 │ 函数的概念及其表示法
数量
x(千克) 1
2
3
4…
售价 y(元)
8+0.4 16+0.8 24+1.2 32+1.6 …
请根据表中所提供的信息,写出售价 y 与数量 x 之间的关
系式,并求出当数量是 2.5 千克时的售价.
考点03 函数与函数图象 中考数学必背知识手册

考点03 函数与函数图象知识归纳知识点1:直角坐标系1.平面直角坐标系(1)对应关系:坐标平面内的点与有序实数对是一一对应的.(2)坐标轴上的点:x轴,y轴上的点不属于任何象限.2.点的坐标特征(1)各象限内点的坐标特征:点P(x,y)在第一象限,即x>0,y>0;点P(x,y)在第二象限,即x<0,y>0;点P(x,y)在第三象限,即x<0,y<0;点P(x,y)在第四象限,即x>0,y<0.(2)坐标轴上点的特征:x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的坐标为(0,0).(3)对称点的坐标特征:点P(x,y)关于x轴的对称点为P1(x,-y);点P(x,y)关于y轴的对称点为P2(-x,y);点P(x,y)关于原点的对称点为P3(-x,-y).(4)点的平移特征:将点P(x,y)向右(或左)平移a个单位长度后得P'(x+a,y)(或P'(x-a,y));将点P(x,y)向上(或下)平移b个单位长度后得P″(x,y+b)(或P″(x,y-b)).(5)点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y|;到y 轴的距离为|x|. 知识点2:函数的认识 1.函数的有关概念(1)变量与常量:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.(2)函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数. (3)表示方法:解析式法、列表法、图象法. (4)自变量的取值范围① 解析式是整式时,自变量的取值范围是全体实数; ② 解析式是分式时,自变量的取值范围是分母不为0的实数; ③ 解析式是二次根式时,自变量的取值范围是被开方数大于等于0;(5)函数值:对于一个函数,如果当x=a 时,y=b ,那么b 叫做当自变量的值为a 时的函数值. 2.函数的图象(1)函数图象的概念:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. (2)函数图象的画法:列表、描点、连线. 知识点3:一次函数与正比例函数 1.一次函数与正比例函数的定义如果y=kx+b (k ≠0),那么y 叫x 的一次函数,当b=0时,一次函数y=kx 也叫正比例函数.正比例函数是一次函数的特例,具有一次函数的性质. 2.一次函数与正比例函数的关系一次函数y=kx+b (k ≠0)的图象是过点(0,b )与直线y=kx 平行的一条直线。
中考数学总复习 基础知识梳理 第3单元 函数及其图象 3.1 平面直角坐标系与函数的概念课件

A,B,C,D的坐标分别为(0,a),(-3,2),(b,m),(c,m),则点E的坐标
是
()
A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)
【解析】由题意可知点A在y轴上,线段CD垂直与y轴,五 边形为正五边形,所以该五边形关于y轴对称,∴E点与B 点关于y轴对称,根据平面直角坐标系中对称点的坐标不难 得出E坐标为(3,2). 【答案】C
②图形的平移(pínɡ yí): 对于一个图形平移,这个图形上所有点的坐标都要发生相应的变化,反过 来,从图形上的点的坐标的某种变化也可以看出对这个图形进行了怎样的 平移.
12/9/2021
第七页,共十八页。
2.对称点的坐标的特征
要点 梳理 (yàodiǎn)
(1)坐标平面内,点P(x,y)关于x轴(横轴)的对称点P1的坐标为
D.(0,2)
【解析(jiě xī)】解:点M(m+1,m+3)在y轴上,m+1=0,解得m=-1.m+3=
-1+3=2.点M的坐标为(0,2).
【答案】D
12/9/2021
第十四页,共十八页。
经典 考题 (jīngdiǎn)
【例2】在直角坐标系中,点 2, 6到原点的距离为
(D)
A.-8
B.8
1.点P(a,b)到x轴的距离(jùlí)等于点P的纵坐标的绝对值,即 . b
2.点P(a,b)到y轴的距离等于点P的横坐标的绝对值,即 .
a
12/9/2021
第五页,共十八页。
要点 梳理 (yàodiǎn)
3.1.4 平面直角坐标系中的平移(pínɡ yí)与对称点的坐标
1.用坐标表示平移 (1)用坐标表示平移 ①点的平移:
中考数学总复习第1编知识梳理篇第3章函数及其图象第11讲二次函数及其应用(精练)试题(new)

第十一讲二次函数及其应用第1课时二次函数1.(2017随州中考)对于二次函数y=x2-2mx-3,下列结论错误的是( C)A.它的图象与x轴有两个交点B.方程x2-2mx=3的两根之积为-3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小2.在下列二次函数中,其图象对称轴为x=-2的是( A)A.y=(x+2)2B.y=2x2-2C.y=-2x2-2 D.y=2(x-2)23.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( A)A.ac+1=b B.ab+1=cC.bc+1=a D.以上都不是,(第3题图)),(第4题图))4.(2017齐齐哈尔中考)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示,则下列结论:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t为实数);⑤点错误!,错误!,错误!是该抛物线上的点,则y1<y2<y3,正确的个数有( B)A.4个B.3个C.2个D.1个5.(2017安顺中考)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中结论正确的个数是(C)A.1 B.2 C.3 D.4,(第5题图)),(第6题图)) 6.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0其中正确的个数为( C)A.1 B.2 C.3 D.47.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为(B) A.m>1 B.m>0C.m>-1 D.-1<m<08.(2017扬州中考)如图,已知△ABC的顶点坐标分别为A(0,2),B(1,0),C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是(C)A.b≤-2 B.b<-2C.b≥-2 D.b>-29.(2017枣庄中考)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(D)A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大10.(2017鄂州中考)如图抛物线y=ax2+bx+c的图象交x轴于A(-2,0)和点B,交y 轴负半轴于点C,且OB =OC. 下列结论:①2b-c=2;②a=错误!;③ac=b-1;④错误!>0.其中正确的个数有(C)A.1个B.2个C.3个D.4个11.(2017陕西中考)已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( C)A.(1,-5) B.(3,-13)C.(2,-8)D.(4,-20)12.抛物线y=x2+2x+3的顶点坐标是__(-1,2)__.13.二次函数y=3x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B,C在二次函数y=错误!x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为__2错误!__.,(第13题图)) ,(第14题图)) 14.(2017乌鲁木齐中考)如图,抛物线y=ax2+bx+c过点(-1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(-3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点错误!;⑤am2+bm+a≥0,其中所有正确的结论是__②④⑤__.15.(2017鹤岗中考)如图,已知抛物线y=-x2+mx+3与x轴交于点A,B两点,与y 轴交于C点,点B的坐标为(3,0),抛物线与直线y=-错误!x+3交于C,D两点.连结BD,AD.(1)求m的值;(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.解:(1)∵抛物线y=-x2+mx+3过(3,0),∴0=-9+3m+3,∴m=2;(2)由错误!得错误!错误!∴D错误!.∵S△ABP=4S△ABD,∴错误!AB×|y P|=4×错误!AB×错误!,∴|y P|=9,y P=±9,当y=9时,-x2+2x+3=9,无实数解,当y=-9时,-x2+2x+3=-9,x1=1+13,x2=1-错误!,∴P(1+错误!,-9)或(1-错误!,-9).16.(2017随州中考)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a,b,c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形".备用图已知抛物线y=-错误!x2-错误!x+2错误!与其“梦想直线”交于A,B两点(点A在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的表达式为________,点A的坐标为________,点B 的坐标为________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A,C,E,F为顶点的四边形为平行四边形?若存在,请直接写出点E,F的坐标;若不存在,请说明理由.解:(1)y=-错误!x+错误!;(-2,2错误!);(1,0);(2)如答图①,过A作AD⊥y轴于点D。
中考数学复习第三章函数讲义
第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。
2. 建立了平面直角坐标系的平面称为坐标平面。
3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。
4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。
2. 常量:某一变化的过程中保持相同数值的量叫做常量。
3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。
4. 函数的表示方法有:、、。
在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。
5. 画函数图象的一般步骤:列表、、。
【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。
4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。
第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。
当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。
【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。
中考数学名师教学笔记:函数及其图像
中考数学名师教学笔记:函数及其图像
2019中考数学名师教学笔记:函数及其图像
一、考点综述
考点内容:
1.函数的概念及表示法
2.函数自变量的取值范围的确定
3.函数值的确定
4.函数的图象
考纲要求:
1.理解函数的概念及表示法,会判断图形是否表示函数,会用函数关系式表示简单的数量变化.
2.了解函数自变量的意义,会求简单函数的自变量的取值范围.
3.了解函数值的意义,能在具体函数中根据自变量的值求函数值.
4.理解函数的图象表示法,能根据问题情景画简单的函数图象,能从函数图象中获取相关信息.
考查方式及分值:
本课时是函数的基础部分,主要是以函数的概念及自变量的取值范围和对函数的图象上信息的读取和判断为命题点,试题难度为低、中档题,题量约占总题量的2%~4%,题型有填空题、选择题为主.
备考策略:
如果交点有2个或者2个以上,则图象不表示函数.
2019中考数学名师教学笔记:函数及其图像
以上“2019中考数学名师教学笔记:函数及其图像”的全部内容是由数学网整理的,更多的关于中考数学指导请查看数学网。
中考数学总复习第一编教材知识梳理篇第三章函数及其图象第一节函数及其图象精试题
第三章函数及其图象第一节函数及其图象怀化七年中考命题规律)标2021选择6函数自变量的取值范围求含有二次根式且位于分母的自变量的取值范围3填空13求函数值自变量的值,求函数的值36命题规律纵观怀化七年中考,有五年考察了此考点内容,并且以选择题、填空题的形式呈现,其中求函数自变量的取值范围考察了4次,平面直角坐标系考察了2次.命题预测预计2021年怀化中考,本课时的考察重点为求函数自变量的取值范围与函数图象的判断,可能会及其他知识结合,特别是及几何图形结合的图象,题型以选择题为主.,怀化七年中考真题及模拟)平面直角坐标系(2次)1.(2021怀化中考)在平面直角坐标系中,点(-3,3)所在象限是( B)A.第一象限B.第二象限C.第三象限D.第四象限2.(2021怀化中考)如图,假设在象棋盘上建立直角坐标系,假设“帅〞位于点(-1,-2),“馬〞位于点(2,-2),那么“兵〞位于点( C)A.(-1,1) B.(-2,-1)C .(-3,1)D .(1,-2)求自变量的取值范围与函数值(5次)3.(2021怀化中考)函数y =x -1x -2中,自变量x 的取值范围是( C )A .x ≥1B .x>1C .x ≥1且x≠2D .x ≠24.(2021怀化中考)在函数y =2x -3中,自变量x 的取值范围是( D )A .x>32B .x ≤32C .x ≠32D .x ≥325.(2021怀化中考)函数y =1x -2中,自变量x 的取值范围是( A )A .x>2B .x ≥2C .x ≠2D .x ≤26.(2021怀化中考)函数y =x -3中,自变量x 的取值范围是__x≥3__.7.(2021怀化中考)函数y =-6x ,当x =-2时,y 的值是__3__.及实际相结合的函数图象(1次)8.(2021怀化一模)小敏家距学校1 200 m ,某天小敏从家里出发骑自行车上学,开场她以v 1 m /min 的速度匀速行驶了600 m ,遇到交通堵塞,耽误了3 min ,然后以v 2 m /min 的速度匀速前进一直到学校(v 1<v 2),你认为小敏离家的距离y 及时间x 之间的函数图象大致是( A ),A ) ,B ) ,C ) ,D )9.(2021沅陵模拟)一艘轮船在同一航线上往返于甲、乙两地.轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h ),航行的路程为s(km ),那么s 及t 的函数图象大致是( C ),A ),B ),C ),D )10.(2021怀化考试说明)如图,在矩形中截取两个一样的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 与x ,那么y 及x 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )11.(2021中考预测)如图,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE =EF =FB =5,DE =12,动点P 从点A 出发,沿折线AD —DC —CB 以每秒1个单位长的速度运动到点B 停顿.设运动时间为t s ,y =S △EPF ,那么y 及t 的函数图象大致是( A ),A ) ,B ) ,C ) ,D )12.(2021怀化学业考试指导)在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中(铁块完全淹没于水中),然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度.如图能反映弹簧秤的读数y(单位:N )及铁块被提起的高度x(单位:cm )之间的函数关系的大致图象是( C ),A ) ,B ) ,C ) ,D )13.(2021 麻阳模拟)小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30 s .他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:s ),他及教练的距离为y(单位:m ),表示y 及t 的函数关系的图象大致如图2所示,那么这个固定位置可能是图1中的( D )A .点MB .点NC .点PD .点Q14.(2021 中方模拟)点M(1-2m ,m -1)关于x 轴对称的点在第一象限,那么m 的取值范围在数轴上表示正确的选项是( A ),A ),B ),C ) ,D )15.(2021怀化二模)根据如下图的程序计算函数值,假设输入的x 的值为-1,那么输出的函数值为( A )A .1B .-2C .13 D .3,中考考点清单)平面直角坐标系及点的坐标1.有序实数对:坐标平面上任意一点都可以用唯一一对有序实数来表示;反过来,任意一对有序实数都可以表示坐标平面上唯一一个点.【方法技巧】一般地,点P(a ,b)到x 轴的距离为|b|;到y 轴的距离为|a|;到原点的距离为a 2+b 2.2.平面直角坐标系中点的坐标特征各象限点的坐标的符号特征 第一象限(+,+);第二象限①__(-,+)__;第三象限(-,-);第四象限②__(+,-)__ 坐标轴上点的坐标特征x 轴上的点的纵坐标为③__0__,y 轴上的点的横坐标为0,原点的坐标为(0,0)各象限角平分线上点的坐标特征 第一、三象限角平分线上点的横、纵坐标相等;第二、四象限角平分线上点的横、纵坐标④__互为相反数__对称点的坐标特征点P(a ,b)关于x 轴对称的点的坐标为(a ,-b);点P(a ,b)关于y 轴对称的点的坐标为⑤__(-a ,b)__;点P(a ,b)关于原点对称的点的坐标为P′(-a ,-b) 平移点的坐标特征将点P(x ,y)向右或向左平移a 个单位,得到对应点的坐标P′是(x +a ,y)或(x -a ,y);将点P(x ,y)向上或向下平移b 个单位,得到对应点的坐标P′是(x ,y +b)或(x ,y -b);将点P(x ,y)向右或向左平移a 个单位,再向上或向下平移b 个单位,得到对应点P′的坐标是⑥__(x +a ,y +b)或(x -a ,y -b)__,简记为:左减右加,上加下减函数的相关概念3.变量:在一个变化过程中,可以取不同数值的量叫做变量. 4.常量:在一个变化过程中,数值保持不变的量叫做常量.5.函数:一般地,在某个变化过程中,有两个变量,就能相应地确定y 的一个值,那么,我们就说y 是x 的函数.其中,x 叫做自变量.函数自变量的取值范围表达式 取值范围 整式型 取全体实数 分式型,如y =ax分母不为0,即x≠0 根式型,如y =x 被开方数大于等于0,即x≥0分式+根式型,如y =ax同时满足两个条件:①被开方数大于等于0即x≥0;②分母不为0,即x≠0函数的表示方法及其图象函数图象的判断近7年共考察3次,题型都为选择题,出题背景有:(1)及实际问题结合;(2)及几何图形结合;(3)及几何图形中的动点问题结合,设问方式均为“判断函数图象大致是〞.6.表示方法:数值表、图象、表达式是函数关系的三种不同表达形式,它们分别表现出具体、形象直观与便于抽象应用的特点.7.图象的画法:知道函数的表达式,一般用描点法按以下步骤画出函数的图象.(1)取值.根据函数的表达式,取自变量的一些值,得出函数的对应值,按这些对应值列表.(2)画点.根据自变量与函数的数值表,在直角坐标系中描点.(3)连线.用平滑的曲线将这些点连接起来,即得函数的图象.8.函数表达式,判断点P(x,y)是否在函数图象上的方法:假设点P(x,y)的坐标适合函数表达式,那么点P(x,y)在其图象上;假设点P(x,y)的坐标不适合函数表达式,那么点P(x,y)不在其图象上.【方法技巧】判断符合题意的函数图象的方法(1)及实际问题结合:判断符合实际问题的函数图象时,需遵循以下几点:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找相对应点;②找特殊点:即指交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性;④看是否及坐标轴相交:即此时另外一个量为0.(2)及几何图形(含动点)结合:以几何图形为背景判断函数图象的题目,一般的解题思路为设时间为t,找因变量及t之间存在的函数关系,用含t的式子表示,再找相对应的函数图象,要注意的是是否需要分类讨论自变量的取值范围.(3)分析函数图象判断结论正误:分清图象的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图象的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的增大而保持不变.再结合题干推导出实际问题的运动过程,从而判断结论的正误.,中考重难点突破)平面直角坐标系中点的坐标特征【例1】假设将点A(-4,3)先向右平移3个单位,再向下平移1个单位,得到点A1,点A1的坐标为( )A.(-1,3) B.(-1,2)C.(-7,2) D.(-7,4)【解析】∵点A(-4,3)先向右平移3个单位,再向下平移1个单位,∴点A1的坐标为(-1,2).【学生解答】B1.在平面直角坐标系中,假设点P的坐标为(-3,2),那么点P所在的象限是( B)A.第一象限B.第二象限C .第三象限D .第四象限函数自变量的取值范围【例2】(2021原创)函数y =xx -3-(x -2)0中,自变量x 的取值范围是________.【解析】根据题意得,x ≥0且x -3≠0且x -2≠0,解得x≥0且x≠3且x≠2.【学生解答】x ≥0且x≠3且x≠2【方法指导】对于分式、根式、零指数幂相结合型求自变量取值范围的,先求出各自变量的取值范围,然后取公共解集即可.2.(2021娄底中考)函数y =xx -2中自变量x 的取值范围是( A )A .x ≥0且x≠2B .x ≥0C .x ≠2D .x>2函数图象的判断【例3】(2021 营口中考)如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,那么△APE 的面积y 及点P 经过的路径长x 之间的函数关系用图象表示大致是( ),A ) ,B ) ,C ) ,D )【解析】∵在矩形ABCD 中,AB =2,AD =3,∴CD =AB =2,BC =AD =3,∵点E 是BC 边上靠近点B 的三等分点,∴CE =23×3=2.①点P 在AD 上时,△APE 的面积y =12x ·2=x(0≤x≤3);②点P 在CD 上时,S △APE =S四边形AECD-S△ADP -S △CEP =12×(2+3)×2-12×3×(x -3)-12×2×(3+2-x)=5-32x +92-5+x =-12x +92,∴y =-12x +92(3<x≤5);③点P 在CE 上时,S △APE =12×(3+2+2-x)×2=-x +7,∴y =-x +7(5<x≤7),纵观各选项,只有A 选项图形符合. 【学生解答】A【方法指导】根据动点P 的运动路径A→D→C→E 可得,在计算△APE 的面积时应该分为3种情况,①当P 在AD 上时,②当P 在DC 上时,③当P 在CE 上时,分别计算出即可.要注意转折点有x =3时与x =5时.3.(2021广东中考)如图,在正方形ABCD 中,点P 从点A 出发,沿着正方形的边顺时针方向运动一周,那么△APC 的面积y 及点P 运动的路程x 之间形成的函数关系的图象大致是( C),A) ,B),C) ,D)。
中考数学复习 第1编 教材知识梳理篇 第3章 函数及其图
第四节反比例函数的图象及性质,青海五年中考命题规律)年份题型题号考查点考查内容分值总分2017选择19 反比例函数由一次函数与反比例函数的交点,求一次函数大于反比例函数的取值范围3 32016填空7 反比例函数利用正比例函数与反比例函数图象的交点,求字母的值2 22015选择19 反比例函数判别同一坐标系中反比例函数与一次函数图象的位置3 32014选择15 反比例函数利用反比例函数的几何意义比较面积大小3 32013选择16 反比例函数判别同一坐标系中反比例函数与正比例函数图象的位置3解答23 反比例函数一次函数与反比例函数结合,求一次函数解析式及三角形面积8 11命题规律纵观青海省五年中考,“反比例函数的图象与性质”这一考点一般以选择题、填空题的形式呈现,且与一次函数结合在一起考查,难度偏低.预计2018年青海省中考的考查仍会以反比例函数图象及性质与一次函数的结合考查,题型多以选择题的形式呈现,但也应注意反比例函数与其他函数或几何图形综合考查,不可忽视.,青海五年中考真题)反比例函数的图象及性质1.(2014青海中考)如图,点P 1,P 2,P 3分别是双曲线同一支图象上的三点,过这三点分别作y 轴的垂线,垂足分别是A 1,A 2,A 3,得到三个三角形△P 1A 1O ,△P 2A 2O ,△P 3A 3O.设它们的面积分别为S 1,S 2,S 3,则它们的大小关系是( C )A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 1=S 2=S 3D .S 2>S 3>S 1反比例函数与一次函数的结合2.(2017青海中考)如图,已知A ⎝ ⎛⎭⎪⎫-4,12,B(-1,2)是一次函数y 1=kx +b(k≠0)与反比例函数y 2=m x (m≠0,x <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,若y 1>y 2,则x 的取值范围是( B )A .x <-4B .-4<x <-1C .x <-4或x >-1D .x <-1(第2题图)(第3题图)3.(2014西宁中考)反比例函数y 1=kx 和正比例函数y 2=mx 的图象如图所示,根据图象可以得到满足y 1<y 2的x 的取值范围是( C )A .x >1B .0<x <1或x <-1C .-1<x <0或x >1D .x >2或x <14.(2015青海中考)已知一次函数y =2x -3与反比例函数y =-2x ,那么它们在同一坐标系中的图象可能是( D ),A ) ,B ) ,C ) ,D )5.(2013青海中考)在同一直角坐标系中,函数y =2x 与y =-1x的图象大致是( D ),A ) ,B ) ,C ) ,D )6.(2016青海中考)如图,直线y =12x 与双曲线y =kx在第一象限的交点为A(2,m),则k =__2__.7.(2013青海中考)如图,在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点C(0,2),且与反比例函数y =8x在第一象限内的图象交于点B ,且BD⊥x 轴于点D ,OD =2.(1)求直线AB 的函数解析式;(2)设点P 是y 轴上的点,若△PBC 的面积等于6,直接写出点P 的坐标.解:(1)∵BD⊥x 轴,OD =2, ∴点B 的横坐标为2,将x =2代入y =8x ,得y =4,∴B(2,4).设直线AB 的函数解析式为y =kx +b(k≠0), 将点C(0,2),B(2,4)代入y =kx +b ,得⎩⎪⎨⎪⎧b =2,2k +b =4,∴⎩⎪⎨⎪⎧k =1,b =2,∴直线AB 的函数解析式为y =x +2; (2)P(0,8)或P(0,-4).8.(2016西宁中考)如图,一次函数y =x +m 的图象与反比例函数y =kx 的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1).(1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<x +m≤kx的解集.解:(1)由题意可得:点A(2,1)在函数y =x +m 的图象上, ∴2+m =1,即m =-1.∵A(2,1)在反比例函数y =kx 的图象上,∴k2=1,∴k =2; (2)∵一次函数解析式为y =x -1,令y =0,得x =1,∴点C 的坐标是(1,0),由图象可知不等式组0<x +m≤kx的解集为1<x≤2.反比例函数与几何图形的结合9.(2014西宁中考)如图,已知▱ABCD 水平放置在平面直角坐标系xOy 中,若点A ,D 的坐标分别为(-2,5),(0,1),点B(3,5)在反比例函数y =kx(x >0)图象上.(1)求反比例函数y =kx的解析式;(2)将▱ABCD 沿x 轴正方向平移10个单位长度后,能否使点C 落在反比例函数y =kx的图象上?并说明理由.解:(1)∵点B(3,5)在反比例函数y =k x 图象上,∴k =15,∴反比例函数的解析式为y =15x (x >0);(2)平移后的点C 能落在反比例函数y =15x 的图象上.理由:∵四边形ABCD 是平行四边形.∴AB∥CD,AB =CD.∵点A ,B ,D 的坐标分别为(-2,5),(3,5),(0,1),∴AB =5,AB ∥x 轴,∴CD ∥x 轴.∴点C 的坐标为(5,1),∴▱ABCD 沿x 轴正方向平移10个单位长度后点C 的坐标为(15,1),在y =15x 中,令x =15,则y =1,∴平移后的点C 能落在反比例函数y =15x的图象上.,中考考点清单)反比例函数的概念1.一般地,如果变量y 与变量x 之间的函数关系可以表示成__y =kx __(k 是常数,且k≠0)的形式,则称y 是x 的反比例函数,k 称为比例函数.反比例函数的图象及性质2.函数图象解析式 y =kx(k≠0,k 为常数) k k >0k <0图象3.函数的图象性质函数 系数 所在象限增减性质对称性 y =k x (k≠0)k >0第一、三象限在每个象限内y关于__y =-x__(x ,y 同号) 随x 的__增大而减小__ 对称 k <0第二、四象限(x ,y 异号)在每个象限内y 随x 的__增大而增大__关于__y =x__对称4.k 的几何意义k 的几 何意义设P(x ,y)是反比例函数y =kx图象上任一点,过点P 作PM⊥x轴于M ,PN ⊥y 轴于N ,则S 矩形PNOM =PM·PN=|y|·|x|=|xy|.【方法技巧】反比例函数与一次函数、几何图形结合 (1)反比例函数与一次函数图象的综合应用的四个方面: ①探求同一坐标系下两函数的图象常用排除法. ②探求两函数解析式常利用两函数的图象的交点坐标.③探求两图象交点的坐标常利用解方程(组)来解决,这也是求两函数图象交点坐标的常用方法.④两个函数值比较大小的方法是以交点为界限,观察交点左、右两边区域的两个函数图象上、下位置关系,从而写出函数值的大小.(2)在平面直角坐标系中求三角形的面积时,通常以坐标轴上的边为底,相对顶点的横坐标(或纵坐标)的绝对值为高;如果没有坐标轴上的边,则用坐标轴将其分割后求解.反比例函数解析式的确定5.步骤(1)设所求的反比例函数为y =kx (k≠0);(2)根据已知条件列出含k 的方程; (3)由代入法解待定系数k 的值; (4)把k 代入函数解析式y =kx 中.6.求解析式的两种途径求反比例函数的解析式,主要有两条途径:(1)根据问题中两个变量间的数量关系直接写出;(2)在已知两个变量x ,y 具有反比例关系y =kx (x≠0)的前提下,根据一对x ,y 的值,列出一个关于k 的方程,求得k 的值,确定出函数的解析式.反比例函数的应用7.利用反比例函数解决实际问题,首先是建立函数模型.一般地,建立函数模型有两种思路:一是通过问题提供的信息,知道变量之间的函数关系,在这种情况下,可先设出函数的解析式y =kx (k ≠0),再由已知条件确定解析式中k 的取值即可;二是问题本身的条件中不确定变量间是什么关系,此时要通过分析找出变量的关系并确定函数解析式.,中考重难点突破)反比例函数的图象及性质【例1】(天水中考)已知函数y =mx 的图象如图以下结论:①m <0;②在每个分支上y 随x 的增大而增大;③若点A(-1,a),点B(2,b)在图象上,则a <b ; ④若点P(x ,y)在图象上,则点P 1(-x ,-y)也在图象上. 其中正确的个数是( )A .4B .3C .2D .1【解析】①根据反比例函数的图象的两个分支分别位于第二、四象限,可得m <0,正确;②在每个分支上y 随x 的增大而增大,正确;③若点A(-1,a),点B(2,b)在图象上,观察图象可知a >0,b <0,则a >b ,错误;④若点P(x ,y)在图象上,则y =mx ,即m =xy ,又∵m=(-x)·(-y)=xy ,则点P 1(-x ,-y)也在图象上,正确.【答案】B1.(2017日照中考)反比例函数y =kbx的图象如图所示,则一次函数y =kx +b(k≠0)的图象大致是( D ),A ) ,B ),C ) ,D )反比例函数k 的几何意义【例2】(宁波中考)如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.【解析】分别过点A ,B 作AD⊥x 轴,BE ⊥x 轴,垂足分别为D ,E ,根据反比例函数的几何意义可得,S △BOE =12,S △AOD =92,S △AOC =2S △AOD =9.∵AD⊥OC,BE ⊥OC ,∴BE ∥AD.∴△BOE ∽△AOD ,∴OBOA =S △BOES △AOD=19=13,∴AB AO=S △ABC S △AOC =23,∴S △ABC =23S △AOC =23×9=6. 【答案】62.(2017衢州中考)如图,在直角坐标系中,点A 在函数y =4x (x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =4x (x >0)的图象交于点D.连接AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( C )A .2B .2 3C .4D .4 33.(2017宁波中考)如图,正比例函数y 1=-3x 的图象与反比例函数y 2=kx 的图象交于A ,B 两点.点C 在x轴负半轴上,AC =AO ,△ACO 的面积为12.(1)求k 的值;(2)根据图象,当y 1>y 2时,写出x 的取值范围.解:(1)过点A 作AD⊥OC 于点D.∵AC=AO ,∴CD =DO ,∴S △ADO =12S △ACO =6,∴k =-12;(2)由(1)得:y =-12x ,联立,得⎩⎪⎨⎪⎧y =-12x ,y =-3x ,解得⎩⎪⎨⎪⎧x 1=-2,y 1=6,⎩⎪⎨⎪⎧x 2=2,y 2=-6,故当y 1>y 2时,x 的取值范围是x <-2或0<x <2.反比例函数解析式的确定及综合应用【例3】(2017内江中考)已知两点A(-4,2),B(n ,-4)是一次函数y =kx +b 和反比例函数y =mx 图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b -mx>0的解集.【解析】(1)利用点A 坐标求反比例函数解析式,然后利用此解析式求B 点坐标,从而求一次函数解析式;(2)求AB 直线解析式求C 点坐标;(3)利用函数与不等式关系确定不等式解集.【答案】解:(1)反比例函数解析式为y =-8x ;一次函数解析式为y =-x -2;(2)求出C(-2,0),S △AOB =S △ACO +S △OCB =12×2×2+12×2×4=6;(3)取值范围:x <-4或者0<x <2.4.(2017自贡中考)一次函数y 1=k 1x +b 和反比例函数y 2=k 2x (k 1·k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( D )A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <15.(2017襄阳中考)如图,直线y 1=ax +b 与双曲线y 2=kx 交于A ,B 两点,与x 轴交于点C ,点A 的纵坐标为6,点B 的坐标为(-3,-2).(1)求直线和双曲线的解析式;(2)求点C 的坐标,并结合图象直接写出y 1<0时x 的取值范围.解:(1)∵点B(-3,-2)在双曲线y 2=k x 上,∴k -3=-2,∴k =6,∴双曲线的解析式为y 2=6x.把y =6代入y 2=6x ,得x =1,∴点A 的坐标为(1,6).∵直线y 1=ax +b 经过A ,B 两点,∴⎩⎪⎨⎪⎧a +b =6,-3a +b =-2,解得⎩⎪⎨⎪⎧a =2,b =4,∴直线的解析式为y 1=2x +4;(2)由直线y 1=0得,x =-2,∴点C 的坐标为(-2,0),当y 1<0时x 的取值范围是x <-2.。