高一数学(人教A版)必修4课件:第一章三角函数

合集下载

高中数学 第一章 三角函数 1.1.2 弧度制课件 新人教A

高中数学 第一章 三角函数 1.1.2 弧度制课件 新人教A
(2)用角度制和弧度制来度量任一非零角,单位不 同,量数也不同。
角度与弧度间的换算
360 = 2rad 180 = rad
把角度换成弧度
1 = rad 0.01745rad
180
把弧度换成角度
1rad
=
180
57.30
=
5718'
例1 按照下列要求,把67°30′化成弧度。
解:∵
67o30
弧 度
0
64
3
2
2 3 5 346
பைடு நூலகம்
3 2
2
角 度
0 -30o -45o -60o -90o-120-o135-o150-o180o-270o-360o
弧 度
0
-
6
-
4
-
3
-
2
- 2
3
- 3
4
- 5
6
-
- 3
2
-2
终边相同的角的表示
(1)用角度表示 与终边相同的角可以表示为: k 360,k Z
=
135 2
o
∴ 67o30 = rad 135 = 3 rad
180 2 8
例2 把 4 rad化成度. 5
解: 4 rad = 4 180 = 144
5
5
角度制与弧度制互化时要抓住 180 =
弧度这个关键.
特殊角的弧度数
角 度
0 30 45 60 90 120135150180270 360
2k,k Z
它们构成一个集合:
S = | = k 360 , k Z
(2)用弧度表示
与终边相同的角可以表示为:

1.4.1正弦函数、余弦函数的图象课件——高一下学期人教A版必修4第一章三角函数

1.4.1正弦函数、余弦函数的图象课件——高一下学期人教A版必修4第一章三角函数
(1) y x
正弦、余弦函数的图象
用“五点法”画出函数
y= sin2x,x[0, ]的简图:
令2x=X用整体替换思想
用“五点法”画出函数y= sinx,x[0, 2]的简图
正弦、余弦函数的图象
画出函数y= sin2x,x[0, ]的简图:
x
0
2x
0
4
2
2
3 4
3
2
2
sin2x 0
1
0
-1
0
y
y= sin2x,x[0, ]
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象 y
探究二:如何作余弦函数y=cosx的图象?
1-
P1
p1/
-
-
o1
M-1 1A
o
6
3
2
2 3
5 6
7 6
4 3
-
-
作法:(1) 等分 (2) 作余弦线 (3) 竖立、平移
Image 24-3-99
-
-1
o
6
3
2
2 3
5 6
7 6
4 3
3
5
11
2
2
3
6
(
2
,0)
(
3 2
,0)
图x 象的最低点 (,1)
-1 -
24-3-99
正弦、余弦函数的图象
课后作业:用“五点法”作下面函数的图象。
1.y cos2x, x R
2.y sin(x ), x R
4
(4) 连线

高一数学人教A版必修4第一章(三角函数)本章小结课件

高一数学人教A版必修4第一章(三角函数)本章小结课件

1-(-
5 5
)2
=
-
2
5 5
.
6. 用 cosa 表示 sin4a-sin2a+cos2a.
解: sin4a-sin2a+cos2a = sin2a(sin2a-1)+cos2a = sin2a(-cos2a)+cos2a = cos2a(1-sin2a) = cos4a.
7. 求证:
(1) 2(1-sina)(1+cosa) = (1-sina+cosa)2; (2) sin2a+sin2b-sin2a·sin2b+cos2a·cos2b =1.
6. 终边位置确定三角函数值的正负
y
y
y
++ -o - x
-+
ox
-+
-+
ox
+-
sina
cosa
tana
正弦上正下负, 余弦右正左负, 正切一三正二四负.
7. 同角三角函数的关系
sin2a+cos2a=1,
sina cosa
=
tana
.
常用的变形:
sin2a=1-cos2a. cos2a=1-sin2a.
解: 由已知得 sin2x=4cos2x, 1-cos2x=4cos2x,
解得 cos x =
5 5
.
又由已知得 tanx =2,
则 x 是第一、第三象限角.
当 x 是第一象限角时,
cos x =
5 5
,
sin x =
1-(
5 5
)2=
2
5 5
;
当 x 是第三象限角时,

高一数学人教A版必修4课件:1.4.2 正弦函数、余弦函数的性质(一)

高一数学人教A版必修4课件:1.4.2 正弦函数、余弦函数的性质(一)

23.∴f53π=
3 2.
明目标、知重点
反思与感悟 解决此类问题关键是综合运用函数的周 期性和奇偶性,把自变量x的值转化到可求值区间内.
明目标、知重点
跟踪训练 2 已知函数 f(x)对于任意 x∈R 满足条件 f(x+3)=f1x,
且 f(1)=12,则 f(2 014)等于( B )
1 A.2 解析
明目标、知重点
填要点·记疑点
1.函数的周期性 (1)对于函数f(x),如果存在一个 非零常数T ,使得当x取定 义域内的每一个值时,都有 f(x+T)=f(x),那么函数f(x)就 叫做周期函数.非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数, 那么这个最小正数就叫做f(x)的 最小正周期 .
明目标、知重点
由于 x 至少要增加|2ωπ|个单位,f(x)的函数值才会重复出现,因此,|2ωπ| 是函数 f(x)=Asin(ωx+φ)的最小正周期.
同理,函数 f(x)=Acos(ωx+φ)也是周期函数,最小正周期也是|2ωπ|.
明目标、知重点
探究点四 正弦、余弦函数的奇偶性 导引 正弦曲线
∴f(-x)=lg[1-sin(-x)]-lg[1+sin(-x)]
=lg(1+sin x)-lg(1-sin x)=-f(x). ∴f(x)为奇函数.
明目标、知重点
1+sin x-cos2x
(3)f(x)=
.
1+sin x
解 ∵1+sin x≠0,∴sin x≠-1,
∴x∈R 且 x≠2kπ-π2,k∈Z.
明目标、知重点
探究点三 函数y=Asin(ωx+φ)(或y=A·cos(ωx+φ))(A>0,ω≠0)的周期

1.2.1任意角的三角函数课件高中数学人教A版必修4第一章

1.2.1任意角的三角函数课件高中数学人教A版必修4第一章

反思与感悟
利用诱导公式一可把负角的三角函数
化为0到2π间的三角函数,也可把大于2π的角的三
角函数化为0到2π间的三角函数,即实现了“负化
正,大化小”.同时要熟记特殊角的三角函数值.
明目标、知重点
跟踪训练3
求下列各式的值:
23π
(1)cos- 3 +tan



17π
4 ;
π

π

原式=cos3+-4×2π+tan4+2×2π
角为自变量,以比值为函数值的函数, 角的概念推广
后,这样的三角函数的定义明显不再适用,如何对三角
函数重新定义,这一节我们就来一起研究这个问题.
明目标、知重点
探究点一 锐角三角函数的定义
思考1 如图, Rt△ABC中,∠C=90°,若已知
a=3,b=4,c=5,试求sin A,cos B,sin B,
反思与感悟
准确确定三角函数值中角所在象限是基
础,准确记忆三角函数在各象限的符号是解决这类问
题的关键.可以利用口诀“一全正、二正弦、三正切、
四余弦”来记忆.
明目标、知重点
跟踪训练2
已知cos θ·tan θ<0,那角θ是( C )
A.第一或第二象限角
B.第二或第三象限角
C.第三或第四象限角
D.第一或第四象限角
明目标、知重点

; 叫做α的正切,记作

②终边定义法:
设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则



2
2


x
+y

有sin α=
,cos α=
,tan α=

1.3 三角函数的诱导公式 课件(共19张PPT)高中数学人教A版必修四

1.3 三角函数的诱导公式 课件(共19张PPT)高中数学人教A版必修四

2k (k Z)、 、 的三角函数值,等于
的同名函数值,前面加上一个把 看成锐角时原函
数值的符号。
14
理论迁移
例1 求下列各三角函数的值:
(1)cos225
(2)sin 11
3
(3)sin(-16 )
3
(4)cos(-2040 )
15
利用诱导公式一~四,可以把任意角的三角函数转化为锐角三角函数,一般可按下面 步骤进行:
任意负角的 用公式一 任意正角的 三角函数 或公式三 三角函数
用公式一
锐角的三角 用公式二 0~2π的角
函数
或公式四 的三角函数
这是一种化归与转化的数学思想.
16
课堂小结: 1.小结使用诱导公式化简任意角的三 角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想. 3.“学会”学习的习惯.
17
作业布置:
公式二:
sin( ) sin cos( ) cos tan( ) tan
10
问题4:公式中的角 仅是锐角 吗?
11
知识探究(二)
对于任意给定的一个角α,-α的终边与α的终边
有什么关系?
那么它们之间的三角函
数值有什么关系?
y
α的终边
P(x,y)
公式三:
o
Q(x,-y)
x
sin( ) sin
1
(一)回顾旧知
问题1: (1)我们是怎样利用单位圆定义任意角的三角函数? (2) 终边相同的角的三角函数之间有什么关系?
2
温故而知新
1、任意角的三角函数的定义
sin y
y
α的终边
cos x tan y (x 0)
x

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT


解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2

高一数学人教A版必修4课件:1.4.3 正切函数的性质与图象

第一章 三角函数
§1.4 三角函数的图象与性质
内容 索引
01 明目标
知重点
填要点 记疑点
02
03
探要点 究所然
当堂测 查疑缺
04
明目标、知重点
明目标、知重点
1.了解正切函数图象的画法,理解掌握正切函数的性 质. 2.能利用正切函数的图象及性质解决有关问题.
明目标、知重点
填要点·记疑点
函数y=tan x的性质与图象
③是奇函数的是( C )
A.y=tan x
B.y=cos x
C.y=tan
x 2
D.y=-tan x
明目标、知重点
1234
4.方程 tan2x+π3= 3在区间[0,2π)上的解的个数是( B )
A.5
B.4
C.3
D.2
解析 由 tan2x+π3= 3解得 2x+π3=π3+kπ(k∈Z),∴x=k2π (k∈Z),又 x∈[0,2π),∴x=0,π2,π,32π.故选 B.
明目标、知重点
例3 利用正切函数的单调性比较下列两个函数值的大小. (1)tan-65π与 tan-173π; 解 ∵tan-65π=tan-π-π5=tan-π5, tan-173π=tan-2π+π7=tan π7, 又函数 y=tan x 在-π2,π2上是增函数,
明目标、知重点
(2)把单位圆中的右半圆平均分成8份,并作出相应终边的正切线. (3)在 x 轴上,把-π2,π2这一段分成 8 等份,依次确定单位圆上 7 个分点的位置. (4)把角x的正切线向右平移,使它的起点与x轴上的点x重合.
明目标、知重点
(5)用光滑的曲线把正切线的终点连接起来,就得到y=tan x,x∈ -π2,π2 的图象,如图所示.

1.4.2 正弦函数、余弦函数的性质 课件(人教A版必修4)

栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π +2kπ,74π+2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
变式训练
3.求函数 y=2sin(x+π4)的单调区间. 解:y=sinx 的单调增区间为[-π2+2kπ,π2+ 2kπ],k∈Z;单调减区间为[π2+2kπ,32π+2kπ], k∈Z. 由-π2+2kπ≤x+π4≤π2+2kπ,k∈Z,
栏目 导引
第一章 三角函数
由-π2+2kπ≤x-π4≤π2+2kπ,k∈Z, 得-π4+2kπ≤x≤34π+2kπ,k∈Z; 由π2+2kπ≤x-π4≤32π+2kπ,k∈Z, 得34π+2kπ≤x≤74π+2kπ,k∈Z. 所以函数 y=sin(x-π4)的单调增区间为[-π4 +2kπ,34π+2kπ](k∈Z);
∴y=sin12x 的周期是 4π.
(2)∵2sinx3-π6+2π=2sinx3-π6, 即 2sin13(x+6π)-π6
栏目 导引
=2sinx3-π6, ∴y=2sinx3-π6的周期是 6π.
(3)y=|sinx|的图象如图所示.
第一章 三角函数
∴周期T=π.
∴|φ|的最小值|φ|min=2π+π2-83π=π6.
栏目 导引
归纳总结
第一章 三角函数
栏目 导引
函 数 y= sinx (k∈z)
性质
y= cosx 第(k一∈章z) 三角函数
定义域 值域
最值及相应的 x的 集合
单调性
对称轴 对称中心

(优秀经典)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象课件新人教A版必修4

③用___光__滑__的__曲__线___顺次连接这五个点,得正弦曲线在[0,2π]上的简图. y=sinx,x∈[0,2π]的图象向__左____、__右____平行移动(每次 2π 个单位长度), 就可以得到正弦函数 y=sinx,x∈R 的图象.
3.正弦曲线、余弦曲线 (1)定义:正弦函数y=sinx,x∈R和余弦函数y=cosx,x∈R的图象分别叫 做_正__弦_____曲线和余__弦______曲线. (2)图象:如图所示.
[解析] (1)列表
x
0
π 2
π
3 2π

sinx
0
1
0
-1
0
sinx-1
-1
0
-1
-2
-1
描点,连线,如图
(2)列表:
x
0
π 2
π
3 2π

cosx
1
0
-1
0
1
2+cosx
3
2
1
2
3
描点连线,如图
『规律总结』 用“五点法”画函数 y=Asinx+b(A≠0)或 y=Acosx+b(A≠0)
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y= cosx关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
(2)首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分 对称到x轴的上方.如图(2)所示.
『规律总结』 函数的图象变换除了平移变换外,还有对称变换.如本 例.一般地,函数f(x)的图象与f(-x)的图象关于y轴对称;-f(x)的图象与f(x)的 图象关于x轴对称;-f(-x)的图象与f(x)的图象关于原点对称;f(|x|)的图象关于 y轴对称.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档