九年级数学培优提高第三十讲
九年级数学培优计划及措施

九年级数学培优计划及措施一、培优目的及意义数学是一门重要的基础学科,对学生的逻辑思维能力和数学素养有着重要的影响。
为了帮助九年级学生提高数学水平,提升数学能力,制定数学培优计划是非常必要的。
培优计划的目的在于帮助学生提高数学成绩,激发学生对数学学习的兴趣,培养学生的数学思维能力,为学生的未来学习和发展提供更好的基础。
二、培优计划的内容1.知识点梳理针对九年级数学课程的重点知识点进行梳理和总结,建立清晰的知识框架,明确学生需要掌握的内容。
通过系统的知识点梳理,帮助学生明确学习规划,提高学习效率。
2.个性化学习采用个性化学习的方式,根据学生的实际水平和特点,量身定制学习计划。
针对学生的不同水平,提供升级或辅导课程,帮助学生更好地掌握知识点。
3.课外拓展组织丰富多彩的数学拓展活动,包括数学竞赛、数学趣味游戏、数学实践课程等,激发学生学习数学的兴趣和热情,拓展数学知识的应用,增强学生的数学能力。
4.考试辅导针对期中期末考试以及各类数学竞赛,设置专门的考前辅导课程,帮助学生系统地复习知识点,掌握考试技巧,提高应试能力,取得更好的成绩。
5.作业检查定期对学生的数学作业进行检查和评价,及时发现学生的学习问题,针对性地进行辅导和提醒,确保学生的学习进度。
6.学科交叉将数学与其他学科进行交叉引用,促进学生独立思考和创新能力的培养。
通过跨学科的学习,激发学生对数学学习的兴趣,并增强学生的学科综合能力。
三、培优计划的实施措施1.定期组织学业测试通过定期的学业测试,了解学生的学习情况和学习进度,及时发现问题并制定相应措施。
2.注重引导在课堂教学中,注重引导学生发散性思维、培养分析问题和解决问题的能力,提高学生的数学素养。
3.鼓励学生思考鼓励学生在解决问题时进行思考和探讨,培养学生的逻辑思维和数学解决问题的能力。
4.个性化辅导为每个学生提供个性化辅导,做到因人而异,因材施教,帮助学生克服学习困难,提高学习成绩。
5.建立激励机制建立奖励机制,对学习成绩优秀的学生给予奖励和表彰,激励学生勤学好问,努力学习。
数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

A.不大于 1
B.大于 1
C.小于 1
D.不小于 1
(2011 年《数学周报杯》全国初中数学竞赛题)
7.若 ab 1 ,且有 5a 2 2001a 9 0及9b2 2001b 5 0,则 a 的值为( ) b
9
A.
5
5
B.
9
C. 2001 5
D . 2001 9
(全国初中数学联赛题)
1
九年级数学培优竞赛辅导讲座
[充满活力的韦达定理] 学历训练
1.已知方程 x 2 px q 0 的两根均为正整数,且 p q 28 ,那么这个方程两根为
.
(“祖冲之杯”邀请赛)
2.已知整数 p,q 满足 p q 2010, 且关于 x 的一元二次方程 67x 2 px q 0 的两个根均为正整数,
值范围是( )
A. 0 m 1
B. m 3 4
(全国初中数学联赛题)
C. 3 m 1 D. 3 m 1
4
4
思路点拨 设方程的根分别为 1、 x1, x2 ,由三角形三边关系定理、韦达定理建立 m 的不等式组。
例 3.设 x1 、 x2 是方程 2x 2 4mx 2m 2 3m 2 0 的两个实数根,当 m 为何值时, x12 x2 2 有最小值?
九年级数学培优竞赛辅导讲座
第 3 讲 充满活力的韦达定理
知识纵横
一元二次方程的根与系数的关系,通常也称 为韦达定理,这是因为该定理是由 16 世纪法国最杰出 的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征 ; 利用韦达定理逆定理,构造一元二次方程辅助解题等. 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路. 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解 这类问题常用到对称分析、构造等数学思想方法.
九年级数学培优计划及措施

九年级数学培优计划及措施第一部分:培优目标及意义1.培优目标:通过数学培优计划,帮助学生掌握九年级数学的基础知识和解题技巧,提高数学学习成绩,为高中数学学习奠定坚实基础。
2.意义:数学是一门重要的学科,对学生的逻辑思维和问题解决能力有着重要的培养作用。
通过数学培优计划,可以帮助学生建立正确的学习态度,提高解决数学问题的能力,培养学生的数学兴趣,为将来的发展打下坚实的基础。
第二部分:培优计划的内容和措施1.知识点归纳补充:九年级数学涉及的知识点较多,学生可能存在一些知识点的薄弱之处。
为此,我们将对九年级数学的重要知识点进行系统归纳,整理成知识点清单,并针对每个知识点进行详细解释和举例说明。
2.题目讲解练习:针对知识点归纳补充后,将组织针对性的题目讲解和练习。
在讲解过程中,我们将重点讲解习题解题技巧和答题思路,帮助学生理解题目意思,掌握解题方法。
同时,还将提供大量的习题训练,让学生进行大量的练习,巩固知识点,提高解题能力。
3.解题方法指导:除了讲解题目和训练练习外,我们还将对一些重要的解题方法进行详细的指导,如分步推导、求解技巧、思维导图等。
通过这些解题方法的指导,可以帮助学生更好地理解和掌握数学解题的方法,提高解题效率,增强解题信心。
4.知识点异化训练:除了基础知识点的讲解和练习外,我们还将对一些知识点的延伸和拓展进行知识点异化训练。
通过对一些相关知识点的拓展训练,可以帮助学生更全面地理解数学知识,提高解决实际问题的能力。
第三部分:培优计划的实施流程1.了解学生情况:在实施培优计划之前,我们将通过调查问卷和小测验等方式,对学生的数学学习情况进行了解,发现学生的薄弱知识点和解题难点,为培优计划的实施提供重要依据。
2.制定详细计划:根据学生的学习情况,我们将制定详细的培优计划,明确培优的内容、目标和时间安排,确保培优计划的实施有条不紊。
3.实施计划:在培优计划实施阶段,我们将组织专门的数学培优班,邀请数学教育专家和资深教师进行授课和辅导,以保证培优计划的实施质量。
(完整版)初中数学培优竞赛讲座第30讲__创新命题

第三十讲 创新命题计算机技术与网络技术的迅猛发展,深刻改变了我们的学习方式、生活方式与思维方式.IT 技术、Cyber 空间、bemgdigital(数字化生存)等新概念层出不穷.与时俱进,科学的发展对数学的需求,不断提出了新问题,在解决新问题的过程中又产生了许多新方法.近年各地中考、各级竞赛出现了丰富的以考查创新意识、创造精神为目的的创新命题,归纳起来有以下类型:1.定义一种新运算; 2.定义一类新数;3.给定一定规则或要求,然后按上述规则要求解题; 4.注重跨学科命题.解创新命题时,需要在新的问题情境下,尽快适应新情况,充分运用已学过的数学知识方法去创造性地思考解决问题,对培养阅读理解能力、创新能力、提高学习兴趣有重要的促进作用.例题【例1】 一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是 . (北京市竞赛题) 思路点拨 自然数可分为奇数与偶数,从分析奇数与偶数中“智慧数”的特征入手. 注: 定义新数,即给出一种特殊的概念或满足某种特殊的关系,解这类问题的关键是准确全面理解“新数”的意义,通过推理解决问题.【例2】 在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为B A ⋅,在乙组图形的(a)、(b)、(c)、(d)4个图中,表示“D A ⋅”和“C A ⋅”的是( ) .A .(a),(b)B .(b),(c)C . (c),(d)D .(b),(d) (江苏省竞赛题)思路点拨 从甲组图形中,两两比较A 、B 、C 、D 分别代表的哪种线段,哪种圆.【例3】 有依次排列的3个数:3,9,8.对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次以后所产生的那个新数串的所有数之和是多少?( “希望杯”邀请赛试题)思路点拨 用字母表示数,通过对一般性的考查,探求新增数之和的规律,以此作为解题的突破口. 【例4】 设[x]表示不超过x 的最大整数(如[3.7]=3,[-3.7]=-4)解下列了程: (1)[-l. 77x]=[-1.77]x ;(x 为非零自然数) (四川省选拔赛试题) (2)[3x+1]=2x -21(全国初中数学联赛题) 思路点拨 解与[x]相关的问题,关键是去掉符号“[ ]”,需灵活运用[x]的性质,并善于把估算、等式与不等式知识综合起来.注:解决实际问题及计算机的运算时,常常需要对一些数据进行取整运算,即用不超过它的最大整数取而代之.[x]有以下基本性质:(1)x=[x]+r ,0≤r<l ; (2) [x]≤x <[x]+1; (3)x -1<[x]≤x ; (4)[n+x]=n+[x]; (5)[x+y]≥[x]+[y]其中当n 为整数,当且仅当x 为整数时等号成立.【例5】 如图,沿着圆周放着一些数,如果有依次相连的4个数a ,b ,c ,d 满足不等式(a 一d)(b 一c)>0,那么就可以交换b ,c 的位置,这称为一次操作.(1)若圆周上依次放着数1,2,3,4,5,6,问:是否能经过有限次操作后,对圆周上任意依次相连的4个数a ,b ,c ,d 都有(a 一d)(b 一c)≤0?请说明理由.(2)若圆周上从小到大按顺时针方向依次放着2003个正整数1,2…,2003,问:是否能经过有限次操作后,对圆周上任意依次相连的4个数a ,b ,c ,d 都有(a 一d)(b 一c)≤0 ?请说明理由.(全国初中数学竞赛题)思路点拨 (1)从1~6中选取满足(a 一d)(b 一c)>0的四个数,按题设条件操作, 直至符合结论的要求;(2)略.注:解按规则要求操作类的问题或写出具体操作步骤,或指出按规则要求不能实现的理由.解题的关键是善于在变化中把握不变量,利用不变量解题,此外,还要能灵活运用整数的整除性、奇偶性、通过赋值数学化等知识与方法.【例6】 假设a#a+b 表示经过计算后a 的值变为a 的原值和b 的原值的和,又b#b.c 表示经过计算后b 的值变为b 的原值和c 的原值和乘飘假设计算开始时a=0,b=1,c=1,对a 、b 、c 同时进行以下计算:(1) a#a+b ;(2) b#b.c ;(3) c#a+b+c(即c 的值变为所得到的a 、b 的值与c 的原值的和).连续进行上述运算共三次,试判断a 、b 、c 三个数值之和是几位数?思路点拨 对a 、b 运算次数1 2 3 a 1 2 5 b 1 3 24 c3837经过三次运算后,a+b+c=5+24+37=66,它是一个两位数.学力训练1.现定义两种运算: ,对于任意两个整数a ,b , =a+b -1,=a b -1,那么 = .2.对于任意有理数a ,b ,c ,d ,我们规定bc ad dc b a -=,如果81122<--x ,那么x 的取值范围是 . 3.餐厅里有两种餐桌,方桌可坐4人,圆桌可坐9人,若就餐人数刚好坐满若干张方桌和圆桌,餐厅经理就称此数为“发财数”,在l ~100这100个数中,“发财数”有 个. (“五羊杯”竞赛题) 4.读一读:式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n ,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-50112n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果)。
(完整版)数学培优竞赛新方法(九年级)-第24讲三角形的四心.doc

6,BC
5,EF
3,则BE= .
A
I
D
E
B
C
(第10题)
(第11
题)
11.如图,ABC中,AB 7,BC 8,CA
9,
ABC的内切圆圆心
I作DE // BC,
分别与AB、AC相较于D、E,则DE=
.
(全国初中数学竞赛试题)
12.若锐角
ABC的三边比是a : b : c,它的外心O到三边的距离分别为
2倍
(2)三角形的垂心、重心、外心在一条直线上,且垂心到重心的距离是外心到重心的距离的2倍。
5
学习训练
基础夯实
1.如图,□ABCD中,E是AB的中点,AB10,AC9,DE12,则□ABCD的面积
为。
2.如图,D是
ABC的内心,E是
ABD的内心,F是
BDE的内心.若
BFE的度数为
整数,则
BFE的最小度数为
思路点拨由IA1IB1IC12r(r为ABC的内切圆半径) ,得I同时是A1B1C1外接圆
的圆心。
【例3】已知ACECDE90O,点B在CE上,CACBCD,经A、C、D三点的
圆交AB于F(如图).求证:F为CDE的内心.
思路点拨连CF、DF,即需证F为CDE角平分线的交点, 充分利用与圆有关的角,将
第24讲三角形的四心
几何是数学中的这样一部分,其中视觉思维占主导地位,
几何直觉是增强数学理解力的有效途径,而且他可以使人增加
勇气,提高修养。
------阿蒂亚
知识纵横
重心、外心、内心、垂心统称为三角形的“四心”,由于三角形的四心处在特殊的位置上,
九年级数学培优计划及措施

九年级数学培优计划及措施一、背景介绍随着社会发展和竞争的加剧,数学作为一门重要的基础学科,对学生的学习能力和综合素质的要求越来越高。
九年级是学生面临高中升学考试的一年,数学作为高考的必考科目,对学生的学习成绩有着至关重要的影响。
为了提高学生的数学学习水平,满足他们的学习需求,培优计划及措施的推行变得尤为必要。
二、培优目标为了提高九年级学生的数学学习水平,我们制定了以下培优目标:1.提高学生的数学基础知识和技能;2.提高学生的数学解题能力和思维能力;3.提高学生的数学应用能力和实际运用能力;4.提高学生的数学学习兴趣和自信心。
三、培优计划及措施1.制定学习计划针对九年级数学学科的特点和学生的实际情况,学校将制定详细的数学学习计划,包括学习内容、学习目标、学习方法和学习进度等方面的安排,使学生能够有序、高效地进行学习。
2.提供优质的教学资源学校将积极采购和整合数学教学资源,包括教材、习题册、参考书和网络资源等,以满足学生的不同学习需求。
同时,学校将积极引进名师授课、优质教学视频等资源,为学生提供优质的教学内容和师资支持。
3.定期组织专题讲座与学术交流学校将组织数学专家和名师开展专题讲座、学术交流等活动,为学生提供更广阔的数学学习视野和更丰富的学习体验,激发学生的学习兴趣和学术热情。
4.引导学生参加竞赛活动学校将引导学生积极参加数学竞赛活动,包括校内数学竞赛、市级数学竞赛和全国数学竞赛等,以提高学生的数学解题能力和思维能力,增强学生的学习信心和学习动力。
5.开展小组讨论和学习辅导学校将积极开展数学学习小组讨论和学习辅导活动,引导学生相互学习、相互帮助,共同提高数学学习水平。
同时,学校将安排专业教师和优秀学生进行一对一或小组辅导,为学生提供更有针对性的学习帮助。
6.建立学生档案和评价机制学校将建立九年级数学学生档案和评价机制,包括学生的学习情况、学习成绩、学习态度和学习表现等方面的记录和评价,以及定期组织学生和家长座谈,为学生提供个性化的学习指导和督促。
九年级数学培优计划及措施

九年级数学培优计划及措施为了提高九年级学生的数学学习水平,我们制定了以下数学培优计划及措施:一、课程设置1.丰富多彩的教学内容,包括基础知识、方法技巧、拓展应用等方面的内容,使学生在学习中能够全面发展。
2.引入现代教学手段,如多媒体教学、互动教学等,提高教学效果,激发学生的学习兴趣。
3.设置专门的数学课外拓展活动,如数学竞赛、数学建模等,培养学生的数学兴趣和解决问题的能力。
二、教学方法1.引入探究式教学,注重培养学生的独立思考能力,通过问题解决的过程,激发学生的求知欲。
2.鼓励学生多问、多思、多练,提高数学思维能力和解题技巧,注重训练学生的数学思维和逻辑推理能力。
3.采用个性化辅导,针对学生的不同情况,采取灵活多样的授课方式,满足学生的不同需求。
三、学习环境1.营造良好的学习氛围,鼓励学生互帮互助,共同进步;同时建立起积极向上的竞争氛围,激发学生的学习激情。
2.提供丰富多样的学习资源,包括数学书籍、数学游戏、数学软件等,让学生在不同的情境中学习数学、享受数学。
四、评价机制1.建立科学全面的评价体系,注重对学生综合能力的评价,包括知识水平、思维能力、解决问题的能力等方面。
2.引入技术手段,对学生的学习情况进行及时详细地评估,对学生的优势和不足进行深入分析,为学生量身定制学习方案。
五、家校合作1.加强家校联系,及时了解学生的学习情况和心理状态,共同为学生的学习进行有效的指导和帮助。
2.鼓励家长和学生一起参与数学课外活动,亲子数学游戏、亲子数学读书会等,增进家庭对数学学习的理解和支持。
六、督导及考核1.设立专门的数学课程督导组,对教学工作进行定期督导,及时发现和解决问题,确保教学质量。
2.举办定期的数学学科检测及考试,对学生的学习情况进行全面、客观的评价,并制定相应的教学改进计划。
七、教师队伍建设1.加强教师培训,提高教师的教学水平和教学能力。
2.激励教师创新教学,鼓励教师进行教学研究,不断完善教学方法,提高教学效果。
九年级上下册数学培优系统讲义

九年级上下册数学培优系统讲义第1讲 一元二次方程㈠★知识点精讲1.一元二次方程的概念⑴ 只含有 个未知数,未知数的最高次数是 且二次项系为_____的整式方程叫一元二次方程.⑴一元二次方程的一般形式()002≠=++a c bx ax ,其中二次项系数为 ,一次项系数为 ,常数项为 .2.一元二次方程的解法⑴直接开平方法:针对()()02≥=+an n a m x⑴配方法:针对()002≠=++a c bx ax ,再通过配方转化成())0(2≥=+n n m x a注:① 配方法的目的是将方程左边化成含未知数的完全平方,右边是一个非负 常数的形式;②配方法常用于证明一个式子恒大于0或恒小于0,或者求二次函数的最值.⑶ 公式法:当0≥∆时(=∆ ),用求根公式 ,求一元二次方程()002≠=++a c bx ax 根的方法.⑶ 因式分解法:通过因式分解,把方程变形为()()0=--n x m x a ,则有m x =或n x =.注:⑴ 因式分解的常用方法(提公因式、公式法、十字相乘法)在这里均可使用,其中十字相乘法是最方便、快捷的方法.⑵ 此法可拓展应用于求解高次方程.典型例题讲解及思维拓展●例1 ⑴方程()0132=+++mx x m m 是关于x 的一元二次方程,则m = .⑴关于x 的一元二次方程()01122=-++-a x x a 有一个根是0,则a = .拓展变式练习11.关于x 的方程03)3(72=+---x x m m 是一元二次方程,则m =__________.2.已知方程012=-+mx x 的一个根121-=x ,则m 的值为 .●例2 解下列方程:⑶0182=+-x x ⑵()()2221239x x -=-拓展变式练习2解下列方程:⑶8632+-=x x⑵()()2221239x x -=-⑶()()1232=--x x⑶()222596x x x -=+-⑸04)32(5)23(2=+-+-x x⑹()()02123122=++-+x x⑺()2223n n m x m x =+--⑻a x a ax x -=+-222●例3 已知0132=-+x x ,求⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.拓展变式练习3 1.已知0200052=--x x ,求()()211223-+---x x x 的值.2.已知0132=+-a a ,求2219294a a a ++--的值.■ 巩固训练题一、填空题1.若方程()()053222=-++--x m x m m 是一元二次方程,则m 的值为 . 2.已知方程()()08=-+x a x 的解与方程0872=--x x 的解完全相同,则a = .3.如果二次三项式226m x x +-是一个完全平方式,那么m 的值是___________.4.若412+-mx x 是一个完全平方式,则m 的值是___________.5.已知06522=--y xy x ,则yx 的值是 . 6.已知7532=++x x ,则代数式2932-+x x 的值为________________.二、解答题1. 解下列方程:⑴ 04052=-x ⑴ ()0644292=-+x⑶20x x -= ⑶ 0813642=+-x x⑶ 22)52()2(+=-x x (6)()x x 210532-=-2. 某商店如果将进价为8元的商品按10元销售,每天可售出200件,通过一段时间的摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件,每降价0.5元,其销售量就增加10件.(1)你能帮店主设计一种方案,使每天的利润达到700元吗?(2)当售价是多少元时,能使一天的利润最大?最大利润是多少?■思维与能力提升1. 设a 、b 为实数,求542222+-++b b ab a 的最小值,并求此时a 、b 的值.2.设a 、b 、c 为实数,求1984254222+--+++c b c b ab a 的最小值,并求此时c b a ++的值.3.已知()012009200720082=-⨯-x x 的较大根为a ,020*******=--x x 的较小根为b ,求()2003b a +.4.如图,锐角∆ABC 中,PQRS 是∆ABC 的内接矩形,且S S PQRS ABC n 矩形=∆,其中n 为不小于3的自然数,求证:AB BS为无理数.DS 金牌数学专题二 一元二次方程㈡★知识点精讲1.一元二次方程根的判别式⑴ 根的判别式:一元二次方程()002≠=++a c bx ax 是否有实根,由 的符号确定,因此我们把 叫做一元二次方程的根的判别式,并用∆表示,即 .⑵ 一元二次方程根的情况与判别式的关系:⇔>∆0方程有 的实数根;⇔=∆0方程有 的实数根;⇔<∆0方程 实数根;⇔≥∆0方程 实数根.2.根系关系(韦达定理)⑴ 对于一元二次方程()002≠=++a c bx ax 的两根21x x ,,有ab x x -=+21,ac x x =⋅21 ⑵ 推论:如果方程02=++q px x 的两个根是21,x x ,那么p x x -=+21,q x x =⋅21. ⑶ 常用变形:()2122122212x x x x x x -+=+ ()()212212214x x x x x x -+=- 3.列方程解应用题的一般步骤:⑴______,⑵______,⑶______⑷______,⑸______,⑹______.4.常见题型⑴ 面积问题;⑵ 平均增长(降低)率问题;⑶ 销售问题;⑷ 储蓄问题.典型例题讲解及思维拓展●例1. 若关于x 的方程()()0122122=++--x m x m 有实根,求m 的取值范围.拓展变式练习11.若关于x 的方程032)1(22=-+++-m m x x m 有实数根,求m 的值.2.是否存在这样的非负整数m ,使得关于x 的一元二次方程()0191322=-+--m x m mx 有两个不相等的实数根,若存在,请求出m 的值,若不存在,请说明理由.●例2 已知21x x ,是方程03622=++x x 的两根,不解方程,求下列代数式的值: ⑶2112x x x x + ⑶ ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+122111x x x x ⑶ ()221x x -拓展变式练习21. 已知21x x ,是方程03622=++x x 的两根,不解方程,,求下列各式的值:⑶ 321231x x x x + ⑶ 112112+++x x x x ⑶ 21x x -2.已知关于x 的方程()024122=+--m x m x ,是否存在正数m ,使方程的两实根的平方和等于224?若存在,则求出来;若不存在,说明理由.●例3 某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元?拓展变式练习31. 市政府为解决市民看病贵的问题,决定下调一些药品的价格.某种药品的售价为125元/盒,连续两次降价后的售价为80元/盒,假设每次降价的百分率相同,求这种药品每次降价的百分率.2. 王洪将100元暑期勤工俭学所得的100元,按一年期定期存入少儿银行,到期后取出本息和,其中的50元捐给希望工程,余下的部分又按一年定期存入,这时存款利率已下调到第一年的一半,这样到期后得本息和共63元,求第一年的存款利率.3.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出).⑴求y与x的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?■巩固训练题一、填空题1.已知方程022=+-m x x 的一个根是51-,则另一根为 ,m = . 2.如果21x x ,是两个不相等的实数,且12121=-x x ,12222=-x x ,则=21x x .3.若a 、b 是方程0532=--x x 的两个实数根,则b b a 3222-+= .4.以2与-6为根的一元二次方程是 .5. 一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,则平均每次降价的百分比率是____________.6.巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为 .二、解答题1.已知a 、b 是方程042=+-m x x 的两个根,b 、c 是方程0582=+-m x x 的两个根,求m 的值.2.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委 州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量W(克)与销售价x (元/千克)有如下关系:W=-2x +80.设这种产品每天的销售利润y (元).(1)求y 与x 之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?■思维与能力提升1.当k 是什么整数时,方程()()072136122=+---x k x k 有两个不相等的正 整数根?2.已知关于x 的方程()0321222=--++-m m x m x 的两个不相等实数根中 有一根为0.是否存在实数k ,使关于x 的方程()02522=-+----m m k x m k x 的两个实根21x x ,之差的绝对值为1?若存在,求出k 的值;若不存在,请说明理由.3.已知21x x ,是关于x 的方程()002≠=++p q px x 的两个实数根,且13222121=++x x x x ,()()0211211=+++x x xx ,求q p +的值.4.已知实数a 、b 、c 满足2=++c b a ,4=abc ,求a 、b 、c 中最大者的 最小值.■补充讲解■反思与归纳DS 金牌数学专题三反比例函数★知识点精讲1.反比例函数⑴ 概念:一般地,如果两个变量x ,y 之间的关系可以表示成x k y =(k 为常数,0≠k )的形式,那么称y 是x 的反比例函数,其中自变量x 不能为零. ⑵ 常见形式:x k y =(k 为常数,0≠k ),1-=kx y (k 为常数,0≠k ), k xy =(k 为常数,0≠k ) 2.反比例函数的图象 ⑴ 反比例函数x k y =(k 为常数,0≠k )的图象是由两条曲线组成的,叫 做 ,因为0≠k 、0≠x ,所以函数图象与x 、y 轴均无交点,而且它是一个以原点为对称中心的中心对称图形. ⑵ 图象基本性质0>k 0<k反 比 例 函 数 图 象性 质两分支位于 象限, 在每一象限内,y 随x 的增大 而两分支位于 象限, 在每一象限内,y 随x 的增大 而⑶ k 的几何意义=AOBP S 矩形_________.=∆AOP S Rt __________.3.直线1y k x m =+和双曲线x k y 2=的交点⑴求直线1y k x m =+和双曲线x k y 2=的交点就是求方程组 的解.反之,交点坐标同时满足两个函数的解析式,可利用待定系数法求解. ⑵ 交点个数由两方程组成的方程组转化得到的一元二次方程20(0)ax bx c a ++=≠的解的情况决定.①当 时,直线与双曲线有两个交点. ②当 时,直线与双曲线有一个交点.y P(m,n) AoxB③当 时,直线与双曲线没有交点. 4.反比例函数和一次函数的综合应用① 交点与解析式相互转化 ② 求三角形、四边形面积 ③ 特殊三角形、四边形的存在性问题 ④ 其它综合典型例题讲解及思维拓展 ● 例1 若反比列函数1232)12(---=k kx k y 的图像经过二、四象限.⑴求k 的值.⑵ 若点()1,2y A -,()2,1y B -,()3,3y C 都在其图象上,比较,,的大小关系.拓展变式练习11.若反比例函数22)12(--=m x m y 的图像在第一、三象限,则m 的值是 .2.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为 . 3.设有反比例函数,、为其图象上的两点,若时,,则的取值范围是___________.1y 2y 3y x k y 22--=k 1y 2y 213y 1y 2y 3y●例2 如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值拓展变式练习21. 如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)ky k x=>的图象于Q ,32OQC S ∆=,求k 的值和Q 点的坐标.2. 已知21y y y -=,1y 与x 成反比例,2y 与2x 成正比例,且当1-=x 时,5-=y ;1=x 时,1=y .求y 与x 之间的函数关系式.x yO A P C QBOxyBA D C 3.已知函数221y y y +=,1y 与2x 成正比例,2y 与x 2成反比例,且当1-=x 时,1=y ;当2=x 时,437=y .求y 关于x 的函数关系式.●例3 如图,已知反比例函数()0<=k y x k 的图象经过点A (3)m -,,过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为3. ①求k 和m 的值;②若一次函数1y ax =+的图象经过点A ,并且与x 轴相交于点C ,求∠ACO 的度数和AO :AC 的值.拓展变式练习31.已知点A 是直线)1(++-=k x y 和双曲线x k y =在第四象限的交点,AB⊥x 轴于点B ,且S 5.1=∆ABO .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积;(3)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.2.如图,一次函数y kx b =+的图象经过第一、二、三象限,且与反比例函数图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,5OB =.且点B 横坐标是点B 纵坐标的2倍. (1)求反比例函数的解析式;(2)设点A 横坐标为m ,ABO △面积为S ,求S 与m 的函数关系式,并求出自变量m 的取值范围.3.如图所示,点A 、B 在反比例函数()0≠=k y xk 的图象上,且点A 、B•的横坐标分别为a 、2a (a >0),AC⊥x 轴于点C ,且△AOC 的面积为2. (1)求该反比例函数的解析式. (2)若点(-a ,1y )、(-2a ,2y )在该函数的图象上,试比较1y 与2y 的大小. (3)求△AOB 的面积.O xyA C DB●例4 若一次函数12-=x y 和反比例函数x k y 2=的图象都经过点(1,1).⑴求反比例函数的解析式;⑵已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; ⑶利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.拓展变式练习41.已知反比例函数x k y 2=和一次函数12-=x y ,其中一次函数图像经过(a ,b )(a +1,k b +)两点.(1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标;(3)利用(2)的结论,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,所符合条件的P 点坐标都求出来;若不存在,请说明理由.2. C 、D 是双曲线x my =在第一象限内的点,直线CD 分别交x 轴、y 轴于 A 、B 两点,设C 、D 坐标分别是(1x ,y 1)、(2x ,y 2),连结OC 、OD.∠AOD=∠BOC=α,作CE⊥y 轴 ,DF⊥x 轴,且31==OF DFOE CE ,10=OC . ⑴求C 、D 的坐标和m 的值.⑵求OCD S ∆.⑶双曲线上是否存在一点P ,使得POD POC S S ∆∆= 若存在,请给出证明;若不存在,请说明理由.3.已知双曲线()0163>=x y x,与经过点A(1,0)、B(0,1)的直线交于点P 、Q ,连结OP 、OQ.⑴求证:ΔOAQ≌ΔOBP⑵若C 是OA 上不与O 、A 重合的任意一点,CA=a ,(0<a <1),CD⊥AB 于D ,DE⊥OB 于E.①a 为何值时,CE=AC ?②在线段OA 上是否存在点C ,使点CE∥AB?若存在这样的点,则请写出点C 的坐标,若不存在,请说明理由.xyCDA B EF OA . x y OB . x y OC .x y O D . x y O■巩固训练题一、选择题 1.函数x k y =的图象经过点(-4,6),则下列各点中在xk y =图象上的是( ) A.(3,8) B.(3,-8) C.(-8,-3) D.(-4,-6) 2.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A.正数B.负数C.非正数D.不能确定 3.已知点P 是反比例函数()0≠=k y xk 的图像上任一点,过P•点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为( )A .2B .-2C .±2 D.44.如图,已知函数ky x=-中,0x >时,y 随x 的增大而增大,则y kx k =-的大致图象为( )5.已知关于x 的函数()1-=x k y 和y=-kx(k ≠0),它们在同一坐标系内的图像大致是下图中的( )二、解答题1.如图,正比例函数()0>=k kx y 与反比例函数xk y =的图象交于A 、C 两点,过A 点作x 轴的垂线,垂足为B ,过C 点作x 轴的垂线,垂足为D ,求S 四边形ABCD .2.制作一种产品,需先将材料加热到60C ︒后,再进行操作,设刻材料温度为y C ︒,从开始加热计算的时间为x 分钟,据了解,该材料加热后,温度y 与时间成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图),已知该材料在操作加工前的温度为15C ︒,加热5分钟后温度达到60C ︒. ⑴分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系;⑵拫据工艺要求,当材料的温度低于15C ︒时,须停止操作,那么从开始加热到停止操作,共经历了多长时间?3.等腰三角形OAB 在直角坐标系中的位置如图,点A 的坐标为(33,3-), 点B 的坐标为(-6,0).(1)若三角形OAB 关于y 轴的轴对称图形是三角形O A B '',请直接写出A 、B 的对称点A 'B '、的坐标;(2)若将三角形OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数x y 36=的图像上,求a 的值;(3)若三角形OAB 绕点O 按逆时针方向旋转α度(090α<<). ①当α=30时点B 恰好落在反比例函数x k y =的图像上,求k 的值. ②问点A 、B 能否同时落在①中的反比例函数的图像上,若能,求出α的值;若不能,请说明理由.y xO56015■思维与能力提升1、如图,在直角坐标平面内,函数x my =(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,连结AD 、DC 、CB .(1)若ABD △的面积为4,求点B 的坐标;(2)求证:DC AB ∥;(3)当AD BC =时,求直线AB 的函数解析式.2.如图,将一块直角三角形纸板的直角顶点放在()5.01,C 处,两直角边分别与y x ,轴平行,纸板的另两个顶点恰好是直线29+=kx y 与双曲线)0(>=m y x m的交点.(1)求m 和k 的值;(2)设双曲线)0(>=m y xm 在B A ,之间的部分为L ,让一把三角尺的直角顶点P 在L 上滑动,两直角边始终与坐标轴平行,且与线段AB 交于N M ,两点,请探究是否存在点P 使得AB MN 21=,写出你的探究过程和结论.B A ,yONM CP3.如图,已知直线AB 交两坐标于A 、B 两点,且OA=OB=1,点P (a 、b )是双曲线x y 21=上在第一象内的点过点P 作PM⊥x 轴于M 、PN⊥y 轴于N .两垂线与直线AB 交于E 、F .(1)写出点E 、F 的坐标(分别用a 或b 表示) (2)求△OEF 的面积(结果用a 、b 表示); (3)△AOF 与△BOE 是否相似?请说明理由;(4)当P 在双曲线x y 21=上移动时,△OEF 随之变动,观察变化过程,△OEF 三内角中有无大小始终保持不变的内角?若有,请指出它的大小,并说明理由.■补充讲解■反思与归纳DS 金牌数学专题四直角三角形的边角关系㈠★知识点精讲1.在ABC Rt ∆中,锐角A 的对边与邻边的比叫做A ∠的_________,记做_______,即_______tan =A ;锐角A 的邻边与对边的比叫做A ∠的_________,记做_______,即_______cot =A .2.坡比、坡角①坡面的铅直高度h 与水平宽度l 的比叫做________,用字母i 表示,即________=i ,坡面与水平面的夹角α叫________,即_______tan =α. ②工程上斜坡的倾斜程度通常用坡度来表示,坡面的_______和________的比称为坡度或坡比,坡度是坡角的_______,坡度______,坡面越陡. 3.在ABC Rt ∆中,锐角A 的对边与斜边的比叫做A ∠的_________,记做_______,即_______sin =A ;锐角A 的邻边与斜边的比叫做A ∠的_________,记做_______,即_______cos =A .4.在ABC Rt ∆中,若︒=∠+∠90B A ,则A sin 与A cos 的关系是_______,由此可得()_______90sin =-︒A ,()_______90cos =-︒A .典型例题讲解及思维拓展● 例1. 在ABC Rt ∆中,︒=∠90C ,如果125tan =A ,且24=AC ,求:⑴BC 和AB 的长;⑵A sin 和A cos 的值.拓展变式练习11. 在ABC Rt ∆中,︒=∠90C ,如果135tan =A ,且26=AC ,求:⑴BC 和AB 的长; ⑵A sin 和A cos 的值.2.在ABC Rt ∆中,︒=∠90C ,D 是BC 上的一点,34tan =∠ADC ,21tan =B ,BD=5,求AD 的长.3.在ABC Rt ∆中,︒=∠90C ,D 是AC 的中点,且BC=AC ,求CDA ∠tan 和DAC ∠sin 的值.●例2.如图,某县为了增强防洪能力,加固长90米,高5米,坝顶宽为4米,迎水坡和背水坡的坡度都是1:1的横断面是梯形的防洪大坝.要讲大坝加高1米,背水坡的坡度改为1:1.5,已知坝顶宽不变,问大坝的横截面积增加了多少平方米?增加了多少立方米土方?拓展变式练习21. 如图,拦水坝的横截面为梯形ABCD,AD∥BC,AB=DC,AD=6,BC=14,梯形ABCD的面积是40,求斜坡AB的坡度.2. 如图,水库大坝的横断面为梯形,坝顶宽6m,坝高23m,斜坡AB的坡度3:1i,斜坡CD的坡度为c,求斜坡AB的坡角(精确到'1),坝底宽AD和斜坡AB的长.(精确到1.0m)3. 泸杭甬高速公路拓宽宁波段工程进入全面施工阶段,在现有双向四车道的高速公路两侧经加宽形成双向八车道.如图,路基原横断面为等腰梯形ABCD ,AD ∥BC ,斜坡DC 的坡度为i 1,在其一侧加宽DF=7.75米,点E 、F 分别在BC 、AD 的延长线上,斜坡FE 的坡度为i 2(i 1<i 2).设路基的高DM=h 米,拓宽后横断面一侧增加的四边形DCEF 的面积为s 米2. (1)已知i 2=1:1.7,h=3米,求ME 的长.(2)不同路段的i 1、i 2、、、h 是不同的,请你设计一个求面积S 的公式(用含i 1、i 2的代数式表示).● 例3. 计算︒+︒-︒-︒︒30tan 345sin 260cos 45cos 30sin拓展变式练习3 1.计算下列各题:⑴()()2121145sin 260tan 130sin 2-︒+︒---︒-; ⑵()212321+-+÷-x x x ,其中︒-︒=60cos 245sin 4x .2. 在ABC ∆中,若()0cos 1tan 223=-+-B A ,其中A ∠、B ∠均为锐角,求C ∠的度数.3. 已知31tan =α且α为锐角,求ααααcos sin 2cos 2sin 3+-的值.■巩固训练题1.已知211(sin )sin 22αα-=-,则锐角α的取值范围是 .2.在△ABC 中,90C ∠=︒且两直角边a b 、满足22560a ab b -+=,则sin A = .3.如图,已知AD 为等腰△ABC 底边上的高,且4tan 3B =,AC 上有一点E ,满足2:3AE EC =:,那么tan ADE ∠= .二.解答题1.如图,在四边形ABCD 中,60DAB ∠=︒,90ABC CDA ∠=∠=︒,2CD =,3BC =,求AB 的长.2. 两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1. 固定△ABC 不动,将△DEF 进行如下操作:(1) 如图 (1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图 (2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图 (3),△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转 △DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sinα 的值.A B E FC D 图 (1)A B E F CD 图 (2)A B() (F )C D 图 (3) Eα■ 思维与能力提升在ABC Rt ∆中,︒=∠90C ,若A ∠、B ∠、C ∠的对边分别是a 、b 、c . ⑴若()A A 22sin sin =,()A A 22cos cos =,请根据三角形函数的定义证明:①1cos sin 22=+A A ; ②BBB cos sin tan =.⑵根据上面的两个结论解答:①若2cos sin =+A A ,求A A cos sin -的值;②若2tan =B ,求B B BB sin cos 2sin cos 4+-的值.■ 补充讲解■反思与归纳DS金牌数学专题五直角三角形的边角关系㈡★知识点精讲1.仰角、俯角:①当从低处观测高处的目标时,视线与水平线所成的角叫;②当从高处观测低处的目标时,视线与水平线所成的角叫.2.方位角:指北或指南方向与_____________所成的夹角叫方位角.典型例题讲解及思维拓展●例1.如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果可保留根号)拓展变式练习11.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30︒,B村的俯角为60︒(如图7).求A、B两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)QB C PA450 60︒30︒图72.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC ,小丽同学在点A 处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后, 又在点B 处测得条幅顶端D 的仰角为45°,已知测点A 、B 和C 离地面高度都为1.44米,求条幅顶端D 点距离地面的高度.(计算结果精确到0.1米,参考数据.)3.在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A 、B 两点间的距离为4.5米.请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)23 1.732≈≈60o4.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离. 结果保留根号,参考数据:42615sin -=︒,42615cos +=︒,3215tan -=︒,3215cot +=︒.● 例2. 如图,在某海域内有三个港口A 、D 、C .港口C 在港口A 北偏东60方向上,港口D 在港口A 北偏西60方向上.一艘船以每小时25海里的速度沿北偏东30的方向驶离A 港口3小时后到达B 点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B 处测得港口C 在B 处的南偏东75方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B 处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.拓展变式练习21.根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .求所测之处河AB 的宽度.(o o o sin68≈0.93,cos68≈0.37,tan68≈2.48)2.载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递, 途经A 、B 、C 、D 四地,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,参考数据:2 1.4,3 1.7≈≈)A CB3.如图,A 、B 、C 三个粮仓的位置如图所示,A 粮仓在B 粮仓北偏东26,180千米处;C 粮仓在B 粮仓的正东方,A 粮仓的正南方.已知A 、B 两个粮仓原有存粮共450吨,根据灾情需要,现从A 粮仓运出该粮仓存粮的53支援C粮仓,从B 粮仓运出该粮仓存粮的52支援C 粮仓,这时A 、B 两处粮仓的存粮吨数相等.(sin 260.44=,cos 260.90=,tan 260.49=) (1)A 、B 两处粮仓原有存粮各多少吨? (2)C 粮仓至少需要支援200吨粮食,问此调拨计划能满足C 粮仓的需求吗? (3)由于气象条件恶劣,从B 处出发到C 处的车队来回都限速以每小时35公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶4小时,那么小王在途中是否需要加油才能安全的回到B 地?请你说明理由.■巩固训练题 一、选择题1. 已知α为锐角,且cot (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75°北南 西东CB A262.如图,在Rt △ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )32353A 53333、 B、 C、 D、3.已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m4.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( ) A .154B .14C .15D .45.已知α为锐角,则ααcos sin +=m 的值( ) A .1>m B .1=m C .1<m D .1≥m6. 如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半 圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为( )A .43B .34C .45D .357.在Rt △ABC 中,∠C=90°,若AC=2BC,则tanA 的值是( )A.21B. 2C. 55D. 258.已知ABC ∆中,AC=4,BC=3,AB=5,则sin A =( ) A. 35B. 45C. 53D. 349. 如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( )A .4.5mB .4.6mC .6mD .8m10.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ).A.250m B.2503m C.50033m D.2502m.A O B东北A DB E 图6 i =1:C 二.解答题1. 如图,港口B 位于港口O 正西方向120海里处,小岛C 位于港口O 北 偏西60°方向.一艘科学考察船从港口O 出发,沿北偏西30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°方向以60海里/小时的速度驶向小岛C ,在小岛C 用一小时装补给物资后,立即按原来的速度给考察船送.⑴快艇从港口B 到小岛C 需要多少时间?⑵快艇从小岛C 出发后最少需要多少时间才能和考察船相遇?2. 如图6,梯形ABCD 是拦水坝的横断面图,(图中3:1 i 是指坡面的铅 直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈1.732,2≈1.414)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学培优提高第三十讲(整体思想)
知识梳理
整体思想就是在解决数学问题时,将要解决的问题看作一个整体,通过对问题的整体形式、整体结构、已知条件和所求综合考虑后.得出结论.整体思想的应用,要做到观察全局、整体代入、整体换元、整体构造.整体思想作为重要的数学思想之一,我们在解题过程中经常使用.整体思想使用得恰当,能提高解题效率和能力,减少不必要的计算和走弯路,直奔主题.因而在处理数与式的运算、方程、几何计算等方面有着广泛应用.是初中数学学习中的重要思想方法.
典型例题
一、在数与式的运算中的应用
【例1】(07潍坊)已知代数式3x 2-4x+6的值为9,则2463
x x -+的值为 ( )
A .18
B .12
C .9
D .7
【例2】先化简,再求值: 222142442
a a a a a a a a +--⎛⎫-÷ ⎪--+-⎝⎭,其中a 满足a 2-2a -1=0.
【例3】计算:11111111123420082342007⎛⎫⎛⎫+++++++++- ⎪⎪⎝⎭⎝⎭
…… 11111111123420082342007⎛⎫⎛⎫+++++++ ⎪⎪⎝⎭⎝⎭
…+ 二、在方程中的应用
【例4】(08绍兴)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需__________元.
【例5】(08苏州)解方程:()2
221160x x x x
+++-=. 三、在几何计算中的应用
【例6】如图⊙A ,⊙B ,⊙C 两两不相交,且半径都是0.5 cm ,则图中的阴影部分的面积是( )
A .12πcm 2
B .8πcm 2
C .4πcm 2
D .6
πcm 2 综合训练
1.当代数式a +b 的值为3时,代数式2a +2b+1的值是
( )
A .5
B .6
C .7
D .8
2.用换元法解方程(x 2+x) 2+2(x 2+x)-1=0,若设y=x 2+x ,则原方程可变形为 ( )
A .y 2+2y+1=0
B .y 2-2y+1=0
C .y 2+2y -1=0
D .y 2-2y -1=0
3.当x=1时,代数式a x 3+bx+7的值为4,则当x=-l 时,代数式a x 3+bx+7的值为
A .7
B .10
C .11
D .12
( )
4.已知⎩
⎨⎧
x +2y =4k +1,2x +y =k +2,且0<x +y <3,则k 的取值范围是 _________. 5.(08芜湖)已知113x y -=,则代数式21422x xy y x xy y
----的值为_________. 6.已知x 2-2x -1=0,且x<0,则1x x
-=__________. 7.如果(a 2+b 2) 2-2(a 2+b 2)-3=0,那么a 2+b 2=_________.
8.如图,在高2米,坡角为30°的楼梯表面铺地毯,则地毯长度至少需
___米.
9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为_________cm 2.
10.如图,ABCD 是各边长都大
于2的四边形,分别以它的顶点为圆
心、1为半径画弧(弧的端点分别在四
边形的相邻两边上),则这4条弧长
的和是__________.
11.如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是________.
12.若买铅笔4支,日记本3本,圆珠笔2支共需10元,若买铅笔9支,日记本7本,圆珠笔5支共需25元,则购买铅笔、日记本、圆珠笔各一样共需_________元.
13.(08烟台)已知x(x -1)-(x 2-y)=-3,求x 2+y 2-2xy 的值.
14.(07泰州)先化简,再求值:
2224124422a a a a a a
⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程x 2+3x+1=0的根.
15(2011年四川南充)关于x 的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2.
(1)求k 的取值范围;
(2)如果x 1+x 2-x 1x 2<-1,且k 为整数,求k 的值.
16.阅读材料,解答问题.
为了解方程(x 2-1) 2-5(x 2-1)+4=0.我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则原方程可化为y 2-5y+4=0①.解得y 1=1,y 2=4.当y=1时,
x 2-1=1,∴x 2=2,∴x =当y=4时,x 2-1=4,∴x 2=5,∴x =∴1x =
2x =3x 4x =
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用_______法达到了降次的目的,体现了________的数学思想;
(2)用上述方法解方程:x 4-x 2-6=0.
参考答案
1.C 2.C 3.B 4.A 5.4 6.2 7.3 8.
2+2+ 9.49 10.2π
11.2
π 12.5 13.原题化简得x -y=3,∴x 2+y 2-2xy=(x -y) 2=32=9. 14.解:原式=()()()()()22222121222222a a a a a a a a a a a ⎡⎤+---+⎛⎫+⨯=+⨯⎢⎥ ⎪---⎝⎭-⎢⎥⎣⎦
()()231322
a a a a +==+ a 是方程x 2+3x+1=0的根,∴a 2+3a +1=0,∴a 2+3a =-1,∴原式=-
12. 15.(1)换元 整体
(2)设x 2=y 则原方程可化为y 2-y -6=0,解得y 1=3,y 2=-2<0(舍去) ∴当y=3时,x 2=3,
∴x =
x =。