2022年江苏省高考数学模拟应用题选编一-图文

合集下载

2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。

又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。

要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。

2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。

根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。

3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。

当n = 1时,a1 = (S1 + 1) / 2 = 1。

当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。

所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。

4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。

江苏省淮安市 2022 届高三模拟测试数学试卷含答案

江苏省淮安市 2022 届高三模拟测试数学试卷含答案

淮安市2022届高三模拟测试数学试题2022.5注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,若复数z 满足(1+i) 2i z =,则=||zA .1B C .2D .2.已知集合{}21|1,|log ()1A x B x x x ⎧⎫=<=-⎨⎬⎩⎭≤,则A B = A .(20]-,B .[02),C .(02),D .[20)-,3.已知||2=a ,b 在a 上的投影为1,则a +b 在a 上的投影为A .1-B .2C .3D .24.已知函数1||)()(--=-x e e x x f x x ,则()f x 的图象大致是A .B .C .D .5.已知等差数列}{n a 的前n 项和为n S ,若0,087<>S S ,则d a 1的取值范围是A.),3(+∞- B.7(,)(3,)2-∞--+∞ C.)327(--, D.27,(--∞6.已知函数),0(,2cos )(π∈=x x x f 在0x x =处的切线斜率为58,则=-00cos sin x x A .53-B .53C .553-D .5537.已知28280128(1)(1)(1)x x x a a x a x a x ++++++=++++ ,则2a 的值为A.64 B.84 C.94 D.548.已知偶函数)(x f 的定义域为R ,导函数为()f x ',若对任意),0[+∞∈x ,都有2()()0f x xf x '+>恒成立,则下列结论正确的是A.0)0(<f B .)1()3(9f f <- C.)1()2(4->f f D.)2()1(f f <)(1x X ϕ密度曲线的正态)(2x Y ϕ密度曲线的正态A B CD A 1B 1C 1D 1P 二、选择题:本题共4小题,每小题5分,共20分。

江苏省连云港市2022届高三下学期高考前模拟(一)数学试题(1)

江苏省连云港市2022届高三下学期高考前模拟(一)数学试题(1)

一、单选题二、多选题1. 设向量均为单位向量,则“”是“”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件2. 已知函数,,当时,,的值分别为( )A .1,0B .0,0C .1,1D .0,13. 已知圆锥的底面半径为R ,高为,它的内接圆柱的底面半径为,该圆柱的全面积为( )A.B.C.D.4. 已知,,若,则( )A .1或B.C.或D.5. 下列判断不正确的是( )A .“若,互为相反数,则”是真命题B .“,”是特称命题C .若,则x ,y 都不为0D .“且”是“”的充要条件6. 某地区某村的前三年的经济收入分别为万元,其统计数据的中位数为,平均数为;经过今年政府新农村建设后,该村经济收入在上年基础上翻番,则在这年里收入的统计数据中,下列说法正确的是A .中位数为,平均数为B .中位数为,平均数为C.中位数为,平均数为D .中位数为,平均数为7. 集合,集合,则集合( )A.B.C.D.8. 英国著名数学家布鲁克·泰勒(Taylor Brook )以微积分学中将函数展开成无穷级数的定理著称于世泰勒提出了适用于所有函数的泰勒级数,泰勒级数用无限连加式来表示一个函数,如:,其中.根据该展开式可知,与的值最接近的是( )A.B.C.D.9. 已知函数的部分图象如图所示,则下列说法正确的是()A.B.的最小正周期为C .的图象关于直线对称D .的图象关于点对称10.已知函数,则( )A .当时,江苏省连云港市2022届高三下学期高考前模拟(一)数学试题(1)江苏省连云港市2022届高三下学期高考前模拟(一)数学试题(1)三、填空题四、解答题B .,方程有实根C .方程有3个不同实根的一个必要不充分条件是“”D .若,且方程有1个实根,方程有2个实根,则11. 如图,已知,分别为双曲线C :(,)的左、右焦点,过作圆O :的切线,切点为A ,且在第三象限与C 及C 的渐近线分别交于点M ,N ,则()A .直线OA 与双曲线C 无交点B.若,则C .若,则C的渐近线方程为D .若,则C的离心率为12.若函数在定义域内给定区间上存在,使得,则称函数是区间上的“平均值函数”,是它的平均值点.若函数在区间上有两个不同的平均值点,则m 的取值不可能是( )A.B.C.D.13. 如图所示的平行四边形ABCD 中,为DC 的中点,则____________.14.在中,,,,则的面积为________.15. 已知定点,,,以为一个焦点作过,两点的椭圆,则椭圆的另一个焦点的轨迹方程是___________.16. 某农业大学组织部分学生进行作物栽培试验,由于土壤相对贫瘠,前期作物生长较为缓慢,为了增加作物的生长速度,达到预期标准,小明对自己培育的一株作物使用了营养液,现统计了使用营养液十天之内该作物的高度变化天数x 12345678910作物高度y /cm9101011121313141414(1)观察散点图可知,天数与作物高度之间具有较强的线性相关性,用最小二乘法求出作物高度关于天数的线性回归方程(其中用分数表示);(2)小明测得使用营养液后第22天该作物的高度为,请根据(1)中的结果预测第22天该作物的高度的残差.参考公式:.参考数据:.17. 已知椭圆:()的短轴长为2,离心率是.(1)求椭圆的方程;(2)点,轨迹上的点,满足,求实数的取值范围.18. 如图,在四棱柱中,底面和侧面都是矩形,是的中点,,.(1)求证:.(2)若平面与平面所成的锐二面角的大小为,求线段的长度.19. 【2018届浙江省杭州市学军中学5月模拟】如图,在四棱锥中,底面为直角梯形,,且中点.(1)求证:;(2)求直线与平面所成角的正弦值.20. 已知在区间上是增函数.(1)求实数的值组成的集合;(2)设关于的方程的两个非零实根为、.试问:是否存在实数,使得不等式对任意及恒成立?若存在,求的取值范围;若不存在,请说明理由.21. 为了助力北京2022年冬奥会、冬残奥会,某校组织全校学生参与了奥运会项目知识竞赛. 为了解学生的竞赛成绩(竞赛成绩都在区间内)的情况,随机抽取n名学生的成绩,并将这些成绩按照,,,,分成5组,制成了如图所示的频率分布直方图.其中,,三组的频率成等比数列,且成绩在的有16人.(1)求n的值;(2)在这n名学生中,将成绩在的学生定义为“冬奥达人”,成绩在的学生定义为“非冬奥达人”.请将下面的列联表补充完整,并判断是否有99%的把握认为“是否是冬奥达人与性别有关”?并说明你的理由.男生女生合计冬奥达30人非冬奥36达人合计参考公式:,其中.临界值表:0.0500.0250.0100.0013.841 5.024 6.63510.828。

江苏省2022-2022年高三招生考试模拟测试附加题数学试题(一)含解析

江苏省2022-2022年高三招生考试模拟测试附加题数学试题(一)含解析

普通高等学校招生考试高三模拟测试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,已知AB 为圆O 的直径,BC 切圆O 于点B ,AC 交圆O 于点P ,E 为线段BC 的中点.求证:OP ⊥PE.B. (选修4-2:矩阵与变换)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1.求实数a ,b 的值.C. (选修4-4:坐标系与参数方程)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =asin θ,y =3cos θ(θ为参数,a>0)有一个公共点在x轴上,P(m,n)为曲线C2上任一点,求m+n的取值范围.D. (选修4-5:不等式选讲)设a ,b ,c 均为正数,且a +b +c =1,证明:1a +1b +1c≥9.【必做题】 第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.(1) 求二面角ADFB 的大小;(2) 试在线段AC 上确定一点P ,使PF 与BC 所成的角是60°.23.设f(x ,n)=(1+x)n ,n ∈N *.(1) 求f(x ,6)的展开式中系数最大的项;(2) n ∈N *时,化简C 0n 4n -1+C 1n 4n -2+C 2n 4n -3+…+C n -1n 40+C n n4-1; (3) 求证:C 1n +2C 2n +3C 3n +…+nC n n =n ×2n -1.(一)21. A. 证明:连结BP ,因为AB 是圆O 的直径,所以∠APB =90°,从而∠BPC =90°.(2分)在△BPC 中,因为E 是边BC 的中点,所以BE =EC ,从而BE =EP ,因此∠1=∠3.(4分)因为B 、P 为圆O 上的点,所以OB =OP ,从而∠2=∠4.(6分)因为BC 切圆O 于点B ,所以∠ABC =90°,即∠1+∠2=90°,(8分)从而∠3+∠4=90°,于是∠OPE =90°.所以OP ⊥PE.(10分)B. 解:设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应变换下的像是P′(x′,y ′),则⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax bx +y =⎣⎢⎡⎦⎥⎤x′y′,(2分) 所以⎩⎪⎨⎪⎧ax =x′,bx +y =y′.(5分) 因为x′2+y′2=1,所以(ax)2+(bx +y)2=1,即(a 2+b 2)x 2+2bxy +y 2=1,(7分)所以⎩⎪⎨⎪⎧a 2+b 2=2,2b =2,由于a >0,得a =b =1.(10分) C. 解:曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t的直角坐标方程为y =3-2x ,与x 轴交点为⎝⎛⎭⎫32,0.(2分) 曲线C 2:⎩⎪⎨⎪⎧x =asin θ,y =3cos θ的直角坐标方程为x 2a 2+y 29=1, 与x 轴交点为(-a ,0),(a ,0),(4分)由a >0,曲线C 1与曲线C 2有一个公共点在x 轴上,所以a =32.(6分) 所以2m +n =3sin θ+3cos θ=32sin ⎝⎛⎭⎫θ+π4,(8分) 所以2m +n 的取值范围为[-32,32].(10分)[试题更正:题目中“求m +n 的取值范围”改为“求2m +n 的取值范围”]D. 证明:1a +1b +1c =1+b +c a +1+a +c b +1+a +b c(4分) =3+b a +a b +c a +a c +c b +b c(8分) ≥3+2+2+2=9.(10分)22. 解:(1) 以CD →,CB →,CE →为正交基底,建立空间直角坐标系,则E(0,0,1),D(2,0,0),F(2,2,1),B(0,2,0),A(2,2,0),BD →=(2,-2,0),BF →=(2,0,1).平面ADF 的法向量t =(1,0,0),(2分)设平面DFB 法向量n =(a ,b ,c),则n ·BD →=0,n ·BF →=0,所以⎩⎨⎧2a -2b =0,2a +c =0. 令a =1,得b =1,c =-2,所以n =(1,1,-2).(4分) 设二面角ADFB 的大小为θ⎝⎛⎭⎫0<θ<π2,从而cos θ=|cos 〈n ,t 〉|=12,∴ θ=60°, 故二面角ADFB 的大小为60°.(6分)(2) 依题意,设P(a ,a ,0)(0≤a ≤2),则PF →=(2-a ,2-a ,1),CB →=(0,2,0).因为〈PF →,CB →〉=60°,所以cos60°=2(2-a )2×2(2-a )2+1=12,解得a =22,(9分) 所以点P 应在线段AC 的中点处.(10分)23. (1) 解:展开式中系数最大的项是第四项为C 3n x 3=20x 3.(3分)(2) 解:C 0n 4n -1+C 1n 4n -2+C 2n 4n -3+…+C n -1n 40+C n n4-1 =14[C 0n 4n +C 1n 4n -1+C 2n 4n -2+…+C n -1n 4+C n n ] =14(4+1)n =5n 4.(7分) (3) 证明:因为kC k n =nC k -1n -1,所以C 1n +2C 2n +3C 3n +…+nC n n =n(C 0n -1+C 1n -1+C 2n -1+…+C n -1n -1)=n ×2n -1.(10分)。

江苏省普通高等学校2022年高三招生考试20套模拟测试附加题数学试题(一) Word版含解析

江苏省普通高等学校2022年高三招生考试20套模拟测试附加题数学试题(一) Word版含解析

江苏省一般高等学校招生考试高三模拟测试卷(一) 数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C ,D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,AB 为圆O 的一条弦,C 为圆O 外一点.CA ,CB 分别交圆O 于D ,E 两点.若AB =AC ,EF ⊥AC ,垂足为F ,求证:F 为线段DC 的中点.B. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤2 -21 -3,B =⎣⎢⎡⎦⎥⎤1 00 -1,设M =AB .(1) 求矩阵M ;(2) 求矩阵M 的特征值.C. (选修44:坐标系与参数方程)已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π6=m.若直线l 与曲线C 有且只有一个公共点,求实数m 的值.D. (选修45:不等式选讲) 解不等式:|x -1|+2|x|≤4x.【必做题】 第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在底面为正方形的四棱锥PABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,点E 是线段PC 的中点.(1) 求异面直线AP 与BE 所成角的大小;(2) 若点F 在线段PB 上,使得二面角FDEB 的正弦值为33,求PFPB的值.23. 甲、乙两人轮番投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1) 求甲获胜的概率;(2) 求投篮结束时甲的投篮次数X 的分布列与期望.(一)(南京市2022~2021学年第一学期高三期初调研试卷)21. A. 证明:由于点A ,D ,E ,B 在圆O 上,即四边形ADEB 是圆内接四边形,所以∠B =∠EDC.(3分)由于AB =AC ,所以∠B =∠C.(5分) 所以∠C =∠EDC ,从而ED =EC.(7分)又EF ⊥DC 于点F ,所以F 为线段DC 中点.(10分)B. 解:(1) M =AB =⎣⎢⎡⎦⎥⎤2 -21 -3⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤2 21 3.(5分)(2) 矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-2-1λ-3=(λ-2)(λ-3)-2.令f(λ)=0,解得λ1=1,λ2=4, 所以矩阵M 的特征值为1或4.(10分)C. 解:曲线C 的极坐标方程为ρ=2cos θ, 化为直角坐标方程为x 2+y 2=2x.即(x -1)2+y 2=1,表示以(1,0)为圆心,1为半径的圆.(3分)直线l 的极坐标方程是ρsin ⎝⎛⎭⎫θ+π6=m ,即12ρcos θ+32ρsin θ=m ,化为直角坐标方程为x +3y -2m =0.(6分) 由于直线l 与曲线C 有且只有一个公共点,所以|1-2m|2=1,解得m =-12或m =32.所以,所求实数m 的值为-12或32.(10分)D. 解:原不等式等价于 ⎩⎪⎨⎪⎧x ≤0,1-x -2x ≤4x 或⎩⎪⎨⎪⎧0<x ≤1,1-x +2x ≤4x 或⎩⎪⎨⎪⎧x >1,x -1+2x ≤4x.(6分) 解⎩⎪⎨⎪⎧x ≤0,1-x +2x ≤4x ,得x ∈∅; 解⎩⎪⎨⎪⎧0<x ≤1,1-x +2x ≤4x ,得13≤x ≤1; 解⎩⎪⎨⎪⎧x >1,x -1+2x ≤4x ,得x >1.所以原不等式的解集为⎣⎡⎭⎫13,+∞.(10分) 22. 解:(1) 在四棱锥PABCD 中,底面ABCD 为正方形,侧棱PD ⊥底面ABCD ,所以DA ,DC ,DP 两两垂直,故以{DA →,DC →,DP →}为正交基底, 建立空间直角坐标系Dxyz.由于PD =DC ,所以DA =DC =DP , 不妨设DA =DC =DP =2,则D(0,0,0),A(2,0,0),C(0,2,0),P(0,0,2),B(2,2,0).由于E 是PC 的中点,所以E(0,1,1).所以AP →=(-2,0,2),BE →=(-2,-1,1),所以cos 〈AP →,BE →〉=AP →·BE →|AP →|·|BE →|=32,从而〈AP →,BE →〉=π6.由于异面直线AP 与BE 所成角的大小为π6.(4分)(2) 由(1)可知,DE →=(0,1,1),DB →=(2,2,0),PB →=(2,2,-2). 设PF →=λPB →,则PF →=(2λ,2λ,-2λ),从而DF →=DP →+PF →=(2λ,2λ,2-2λ). 设m =(x 1,y 1,z 1)为平面DEF 的一个法向量,则⎩⎪⎨⎪⎧m ·DF →=0,m ·DE →=0,即⎩⎪⎨⎪⎧λx 1+λy 1+(1-λ)z 1=0,y 1+z 1=0,取z 1=λ,则y 1=-λ,x 1=2λ-1.所以m =(2λ-1,-λ,λ)为平面DEF 的一个法向量.(6分) 设n =(x 2,y 2,z 2)为平面DEB 的一个法向量,则⎩⎪⎨⎪⎧n ·DB →=0,n ·DE →=0,即⎩⎪⎨⎪⎧2x 2+2y 2=0,y 2+z 2=0,取x 2=1,则y 2=-1,z 2=1.所以n =(1,-1,1)为平面BDE 的一个法向量.(8分)由于二面角FDEB 的正弦值为33,所以二面角FDEB 的余弦值为63,即|cos 〈m ,n 〉|=63,所以|m·n||m|·|n|=63,|4λ-1|3·(2λ-1)2+2λ2=63,化简得4λ2=1.由于点F 在线段PB 上,所以0≤λ≤1,所以λ=12,即PF PB =12.(10分)23. 解:(1) 设甲第i 次投中获胜的大事为A i (i =1,2,3),则A 1,A 2,A 3彼此互斥. 甲获胜的大事为A 1+A 2+A 3.P(A 1)=25;P(A 2)=35×13×25=225;P(A 3)=⎝⎛⎭⎫352×⎝⎛⎭⎫132×25=2125.所以P(A 1+A 2+A 3)=P(A 1)+P(A 2)+P(A 3)=25+225+2125=62125. 答:甲获胜的概率为62125.(4分)(2) X 全部可能取的值为1,2,3.则P(X =1)=25+35×23=45;P(X =2)=225+35×13×35×23=425;P(X =3)=⎝⎛⎭⎫352×⎝⎛⎭⎫132×1=125.即X 的概率分布列为(8分)所以X 的数学期望E(X)=1×45+2×425+3×125=3125.(10分)。

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题(每小题5分,共60分)1. 若函数f(x) = x² 4x + 3的图像开口向上,则f(x)的对称轴为( )A. x = 2B. x = 2C. x = 1D. x = 12. 已知等差数列{an}的前n项和为Sn,若S4 = 20,则a3的值为( )A. 5B. 6C. 7D. 83. 若点A(2, 3)关于直线y = x的对称点为B,则点B的坐标为( )A. (2, 3)B. (3, 2)C. (3, 2)D. (2, 3)4. 已知函数f(x) = log₂(x 1),则f(2)的值为( )A. 0B. 1C. 2D. 35. 若三角形ABC的边长分别为a, b, c,且满足a² + b² = c²,则三角形ABC是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形6. 已知复数z = 2 + 3i,则|z|的值为( )A. 1B. 2C. 3D. 47. 若函数f(x) = ax² + bx + c在x = 1时取得最小值,则a的值为( )A. 正数B. 负数C. 零D. 无法确定8. 已知集合A = {x | x > 2},B = {x | x < 5},则A∩B表示( )A. x > 2 且 x < 5B. x > 2 或 x < 5C. x ≤ 2 且x ≥ 5D. x ≤ 2 或x ≥ 59. 若直线y = mx + b与x轴的交点为(1, 0),则m的值为( )A. 1B. 1C. 0D. 无法确定10. 已知等比数列{an}的首项为1,公比为2,则a5的值为( )A. 16B. 8C. 4D. 2二、填空题(每空5分,共20分)1. 若函数f(x) = x³ 3x² + 2x 1的图像在x = 1时取得极值,则f(1)的值为______。

江苏省盐城市、南京市2022届高三年级第一次模拟考试数学试题及答案解析

江苏省盐城市、南京市2022届高三年级第一次模拟考试数学试题及答案解析

高三数学试题第1页(共5页)盐城市、南京市2022届高三年级第一次模拟考试数学2022.01(总分150分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I 卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={y |y =sin x ,x ∈R },N ={y |y =2x ,x ∈R },则M ∩N =A .[-1,+ )B .[-1,0)C .[0,1]D .(0,1]2.在等比数列{a n }中,公比为q ,已知a 1=1,则0<q <1是数列{a n }单调递减的条件A .充分不必要B .必要不充分C .充要D .既不充分又不必要3.某中学高三(1)班有50名学生,在一次高三模拟考试中,经统计得:数学成绩X ~N (110,100),则估计该班数学得分大于120分的学生人数为(参考数据:P (|X -μ|<σ)≈0.68,P (|X -μ|<2σ)≈0.95)A .16B .10C .8D .24.若f (α)=cos α+isin α(i 为虚数单位),则[f (α)]2=A .f (α)B .f (2α)C .2f (α)D .f (α2)5.已知直线2x +y +a =0与⊙C :x 2+(y -1)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =A .-4或2B .-2或4C .-1±3D .-1±66.在平面直角坐标系xOy 中,设A (1,0),B (3,4),向量→OC =x →OA +y →OB ,x +y =6,则|→AC |的最小值为A .1B .2C .5D .25高三数学试题第2页(共5页)7.已知α+β=π4(α>0,β>0),则tan α+tan β的最小值为A .22B .1C .-2-22D .-2+228.已知f (x )x -4,x ≤4x -16)2-143,x >4,则当x ≥0时,f (2x )与f (x 2)的大小关系是A .f (2x )≤f (x 2)B .f (2x )≥f (x 2)C .f (2x )=f (x 2)D .不确定二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数f (x )=cos2x +sin x ,则关于f (x )的性质说法正确的有A .偶函数B .最小正周期为πC .既有最大值也有最小值D .有无数个零点10.若椭圆C :x 29+y 2b 2=1(b >0)的左右焦点分别为F 1,F 2,则下列b 的值,能使以F 1F 2为直径的圆与椭圆C 有公共点的有A .b =2B .b =3C .b =2D .b =511.若数列{a n }的通项公式为a n =(-1)n -1,记在数列{a n }的前n +2(n ∈N *)项中任取两项都是正数的概率为P n ,则A .P 1=13B .P 2n <P 2n +2C .P 2n -1<P 2nD .P 2n -1+P 2n <P 2n +1+P 2n +212.如图,在四棱锥P -ABCD 中,已知PA ⊥底面ABCD ,底面ABCD 为等腰梯形,AD ∥BC ,AB=AD =CD =1,BC =P A =2,记四棱锥P -ABCD 的外接球为球O ,平面P AD 与平面PBC 的角线为l ,BC 的中点为E ,则A .l ∥BC B .AB ⊥PCC .平面PDE ⊥平面PAD D .l 被球O 截得的弦长为1第II 卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=(x +3)5+(x +m )5是奇函数,则m =.ABDCEP(第12题图)高三数学试题第3页(共5页)14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3b ,则cos B 的最小值是.15.计算机是二十世纪最伟大的发明之一,被广泛地应用于人们的工作于生活之中,计算机在进行数的计算处理时,使用的是二进制.一个十进制数n (n ∈N *)可以表示成二进制数(a 0a 1a 2…a k )2,k ∈N ,则n =a 0⋅2k +a 1⋅2k -1+a 2⋅2k -2+…+a k ⋅20,其中a 0=1,当i ≥1时,a i ∈{0,1}.若记a 0,a 1,a 2,…,a k 中1的个数为f (n ),则满足k =6,f (n )=3的n 的个数为.16.已知:若函数f (x ),g (x )在R 上可导,f (x )=g (x ),则f′(x )=g′(x ).又英国数学家泰勒发现了一个恒等式e2x=a 0+a 1x +a 2x 2+…+a n x n +…,则a 0=,∑=+1011n nn na a =.(第一空2分,第二空3分)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)从①sin D =sin A ;②S △ABC =3S △BCD ;③→DB ·→DC =-4这三个条件中任选一个,补充在下面的问题中,并完成解答.已知点D 在△ABC 内,cos A >cos D ,AB =6,AC =BD =4,CD =2,若,求△ABC 的面积.注:选择多个条件分别解答,按第一个解答计分.18.(本小题满分12分)已知数列{a n }的通项公式为a n =2n +4,数列{b n }的首项为b 1=2.(1)若{b n }是公差为3的等差数列,求证:{a n }也是等差数列;(2)若{a b n}是公比为2的等比数列,求数列{b n }的前n 项和.高三数学试题第4页(共5页)19.(本小题满分12分)佩戴头盔是一项对家庭与社会负责的表现,某市对此不断进行安全教育.下表是该市某主干路口连续4年监控设备抓拍到的驾驶员不戴头盔的统计数据:年度2018201920202021年度序号x 1234不戴头盔人数y125010501000900(1)请利用所给数据求不戴头盔人数y 与年度序号x 之间的回归直线方程ŷ=bˆx +a ˆ,并估算该路口2022年不戴头盔的人数;(2)交警统计2018~2021年通过该路口的开电瓶车出事故的50人,分析不戴头盔行为与事故是否伤亡的关系,得到右表,能否有95%的把握认为不戴头盔行为与事故伤亡有关?参考公式:bˆ=∑∑==--ni ini iix n xyx n yx 1221=()()()∑∑==---n i ini ii x x y yx x 121,aˆ=y -x bˆ.P (K 2≥k )0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .不戴头盔戴头盔伤亡73不伤亡1327高三数学试题第5页(共5页)20.(本小题满分12分)在三棱柱ABC -A 1B 1C 1中,AA 1=13,AB =8,BC =6,AB ⊥BC ,AB 1=B 1C ,D 为AC 中点,平面AB 1C ⊥平面ABC .(1)求证:B 1D ⊥平面ABC ;(2)求直线C 1D 与平面A 1BC 所成角的正弦值.21.(本小题满分12分)(1)设双曲线C :x2a 2-y2b 2=1(a ,b >0)的右顶点为A ,虚轴长为2,两准线间的距离为263.(1)求双曲线C 的方程;(2)设动直线l 与双曲线C 交于P 、Q 两点,已知AP ⊥AQ ,设点A 到动直线l 的距离为d ,求d 的最大值.22.(本小题满分12分)设函数f (x )=-3ln x +x 3+ax 2-2ax ,a ∈R .(1)求函数f (x )在x =1处的切线方程;(2)若x 1,x 2为函数f (x )的两个不等于1的极值点,设P (x 1,f (x 1)),Q (x 2,f (x 2)),记直线PQ 的斜率为k ,求证:k +2<x 1+x 2.A BC 1D(第20题图)A 1CB 1高三数学试题第1页(共18页)盐城市、南京市2022届高三年级第一次模拟考试数学2022.01(总分150分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I 卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={y |y =sin x ,x ∈R },N ={y |y =2x ,x ∈R },则M ∩N =A .[-1,+ )B .[-1,0)C .[0,1]D .(0,1]2.在等比数列{a n }中,公比为q ,已知a 1=1,则0<q <1是数列{a n }单调递减的条件A .充分不必要B .必要不充分C .充要D.既不充分又不必要3.某中学高三(1)班有50名学生,在一次高三模拟考试中,经统计得:数学成绩X ~N (110,100),高三数学试题第2页(共18页)则估计该班数学得分大于120分的学生人数为(参考数据:P (|X -μ|<σ)≈0.68,P (|X -μ|<2σ)≈0.95)A .16B .10C .8D .24.若f (α)=cos α+isin α(i 为虚数单位),则[f (α)]2=A .f (α)B .f (2α)C .2f (α)D .f (α2)5.已知直线2x +y +a =0与⊙C :x 2+(y -1)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =A .-4或2B .-2或4C .-1±3D .-1±66.在平面直角坐标系xOy 中,设A (1,0),B (3,4),向量→OC =x →OA +y →OB ,x +y =6,则|→AC |的最小值为A .1B .2C .5D .25高三数学试题第3页(共18页)7.已知α+β=π4(α>0,β>0),则tan α+tan β的最小值为A .22B .1C .-2-22D .-2+228.已知f (x )x -4,x ≤4x -16)2-143,x >4,则当x ≥0时,f (2x )与f (x 2)的大小关系是A .f (2x )≤f (x 2)B .f (2x )≥f (x 2)C .f (2x )=f(x 2)D .不确定二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数f (x )=cos2x +sin x ,则关于f (x )的性质说法正确的有A .偶函数B .最小正周期为πC .既有最大值也有最小值D .有无数个零点高三数学试题第4页(共18页)10.若椭圆C :x 29+y 2b 2=1(b >0)的左右焦点分别为F 1,F 2,则下列b 的值,能使以F 1F 2为直径的圆与椭圆C 有公共点的有A .b =2B .b =3C .b =2D .b =511.若数列{a n }的通项公式为a n =(-1)n -1,记在数列{a n }的前n +2(n ∈N *)项中任取两项都是正数的概率为P n ,则A .P 1=13B .P 2n <P 2n +2C .P 2n -1<P 2nD .P 2n -1+P 2n <P 2n +1+P 2n +2高三数学试题第5页(共18页)12.如图,在四棱锥P -ABCD 中,已知PA ⊥底面ABCD ,底面ABCD 为等腰梯形,AD ∥BC ,AB=AD =CD =1,BC =P A =2,记四棱锥P -ABCD 的外接球为球O ,平面P AD 与平面PBC 的角线为l ,BC 的中点为E ,则A .l ∥BC B .AB ⊥PCC .平面PDE ⊥平面PAD D .l 被球O 截得的弦长为1ABDCEP(第12题图)高三数学试题第6页(共18页)高三数学试题第7页(共18页)第II 卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=(x +3)5+(x +m )5是奇函数,则m =.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3b ,则cos B 的最小值是.高三数学试题第8页(共18页)15.计算机是二十世纪最伟大的发明之一,被广泛地应用于人们的工作于生活之中,计算机在进行数的计算处理时,使用的是二进制.一个十进制数n (n ∈N *)可以表示成二进制数(a 0a 1a 2…a k )2,k ∈N ,则n =a 0⋅2k +a 1⋅2k -1+a 2⋅2k -2+…+a k ⋅20,其中a 0=1,当i ≥1时,a i ∈{0,1}.若记a 0,a 1,a 2,…,a k 中1的个数为f (n ),则满足k =6,f (n )=3的n 的个数为.16.已知:若函数f (x ),g (x )在R 上可导,f (x )=g (x ),则f′(x )=g′(x ).又英国数学家泰勒发现了一个恒等式e 2x=a 0+a 1x +a 2x 2+…+a n x n +…,则a 0=,∑=+1011n nn na a =.(第一空2分,第二空3分)高三数学试题第9页(共18页)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)高三数学试题第10页(共18页)从①sin D =sin A ;②S △ABC =3S △BCD ;③→DB ·→DC =-4这三个条件中任选一个,补充在下面的问题中,并完成解答.已知点D 在△ABC 内,cos A >cos D ,AB =6,AC =BD =4,CD =2,若,求△ABC 的面积.注:选择多个条件分别解答,按第一个解答计分.【解析】高三数学试题第11页(共18页)18.(本小题满分12分)已知数列{a n }的通项公式为a n =2n +4,数列{b n }的首项为b 1=2.(1)若{b n }是公差为3的等差数列,求证:{a n }也是等差数列;(2)若{a b n}是公比为2的等比数列,求数列{b n }的前n 项和.【解析】19.(本小题满分12分)佩戴头盔是一项对家庭与社会负责的表现,某市对此不断进行安全教育.下表是该市某主干路口连续4年监控设备抓拍到的驾驶员不戴头盔的统计数据:年度2018201920202021年度序号x 1234不戴头盔人数y125010501000900(1)请利用所给数据求不戴头盔人数y 与年度序号x 之间的回归直线方程ŷ=bˆx +a ˆ,并估算该路口2022年不戴头盔的人数;(2)交警统计2018~2021年通过该路口的开电瓶车出事故的50人,分析不戴头盔行为与事故是否伤亡的关系,得到右表,能否有95%的把握认为不戴头盔行为与事故伤亡有关?参考公式:bˆ=∑∑==--ni ini iix n xyx n yx 1221=()()()∑∑==---n i ini ii x x y yx x 121,aˆ=y -x b ˆ.不戴头盔戴头盔伤亡73不伤亡1327高三数学试题第12页(共18页)P (K 2≥k )0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .【解析】不戴头盔戴头盔总计伤亡7310不伤亡132740总计203050高三数学试题第13页(共18页)20.(本小题满分12分)在三棱柱ABC -A 1B 1C 1中,AA 1=13,AB =8,BC =6,AB ⊥BC ,AB 1=B 1C ,D 为AC 中点,平面AB 1C ⊥平面ABC .(1)求证:B 1D ⊥平面ABC ;(2)求直线C 1D 与平面A 1BC 所成角的正弦值.【解析】A BC 1D(第20题图)A 1CB 1高三数学试题第14页(共18页)21.(本小题满分12分)(1)设双曲线C :x2a 2-y2b 2=1(a ,b >0)的右顶点为A ,虚轴长为2,两准线间的距离为263.(1)求双曲线C 的方程;(2)设动直线l 与双曲线C 交于P 、Q 两点,已知AP ⊥AQ ,设点A 到动直线l的距离为d ,求d 的最大值.【解析】高三数学试题第15页(共18页)法二:高三数学试题第16页(共18页)22.(本小题满分12分)设函数f (x )=-3ln x +x 3+ax 2-2ax ,a ∈R .(1)求函数f (x )在x =1处的切线方程;(2)若x 1,x 2为函数f (x )的两个不等于1的极值点,设P (x 1,f (x 1)),Q (x 2,f (x 2)),记直线PQ 的斜率为k ,求证:k +2<x 1+x 2.【解析】法一:高三数学试题第17页(共18页)高三数学试题第18页(共18页)。

江苏省连云港市2022届高考考前模拟考试(一)数学试题及答案

江苏省连云港市2022届高考考前模拟考试(一)数学试题及答案

2022届高考考前模拟考试(一)数 学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回. 一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知函数=−y x x ln(3)2的定义域为A ,集合≤≤=B x x 14}{,则(∁R A )B =A .[0,4]B .(0,4]C .[1,3)D . [1,3]2.已知复数z 满足+=+z 1i 34i (),则⋅=z zA B .45 C .25 D .225 3. 若+x n (21)的展开式中x 3项的系数为160,则正整数n 的值为A .4B .5C .6D .74.某航母编队将进行一次编队配置科学演练,要求2艘攻击型核潜艇一前一后,2艘驱逐舰和2艘护卫舰分列左右,每侧2艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为 A .16 B .32 C .36 D .645.已知函数=−f x x xxe ()sin36的图象大致为A .B .C .D .6.已知双曲线−=>>x y a bC a b :1(0,0)2222的右焦点为F c ,0)(,一条渐近线被圆−+=y x c c ()222截得的弦长为b 4,则双曲线C 的离心率为A .2 B C D 7.现代研究结果显示,饮茶温度最好不要超过℃60.一杯茶泡好后置于室内,1分钟、2分钟后测得这杯茶的温度分别为℃80,℃65,给出三个茶温T (单位:℃)关于茶泡好后置于室内时间t (单位:分钟)的函数模型:①=+<T at b a 0)(;②=+T at bt 2;③=+⋅><<T b a b a t20(0,01).根据生活常识,从这三个函数模型中选择一个,模拟茶温T (单位:℃)关于茶泡好后置于室内时间t (单位:分钟)的关系,并依此计算该杯茶泡好后到饮用至少需要等待的时间为 (参考数据:≈≈lg 20.3,lg30.5)A .1分钟B .2分钟C .3分钟D .4分钟8.已知>>a b 0,且=a b ab11,则A. <<b e 01B.<<b 01 C. <<b 1e D. >b e二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项是符合题目要求.全选对的得5分,部分选对的得2分,有选错的得0分) 9.下列函数最大值为1的是A .=−−+y x x 4412B .=y x2()1 C .=−y x x sin cos 22 D . =−−−y x x 2e e10.医用口罩面体分为内、中、外三层.内层为亲肤材质,中层为隔离过滤层,外层为特殊材料抑菌层.根据国家质量监督检验标准,医用口罩的过滤率是重要的指标,根据长期生产经验,某企业在生产线状态正常情况下生产的医用口罩的过滤率xN 0.94,0.012)(,则(注:≤−<+=μσμσP x (22)0.954,≤−<+=μσμσP x (33)0.997,≈0.99850.86100) A .≤<P x 0.90.5)( B .>=P x 0.960.023)(C .<<>P x P x 0.4 1.5)()(D .记X 表示抽取的100只口罩中过滤率大于+μσ3的数量,则≥≈P X 01.14)( 11.“外观数列”是一类有趣的数列,该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将11描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为111221,…,这样每次从左到右将连续的相 同数字合并起来描述,给定首项即可依次推出数列后面的项.对于外观数列a n }{,下列说法正确的是A .若=a 31,则=a 1312135B .若=a 221,则=a 22100C .若=a 61,则a 100的最后一个数字为6D .若=a 1231,则a 100中没有数字4 12.已知正四棱台−ABCD A B C D 1111,下底面ABCD 边长为2,上底面边长为1,侧棱长,则A .它的表面积为+5BC .侧棱与下底面所成的角为︒60D 的正方体的体积大 三、填空题(本大题共4个小题,每小题5分,共20分)13.已知非零向量a ,b 满足a b =||||,且a b +()⊥b ,则a 与b 的夹角为_______.14.已知抛物线=>C y px p :2(0)2的焦点为F ,点P 是抛物线C 上的动点,过P 向动直线=<x t t (0)作垂线,垂足为Q .若△PQF p =_______.15.在四棱锥−P ABCD 中,底面ABCD 是矩形,侧面P AB 是等边三角形,侧面⊥PAB 底面ABCD ,=AB ,若四棱锥−P ABCD 存在内切球,则内切球的体积为_______,此时四棱锥−P ABCD 的体积为_______.16.若函数=f x x ()ln 的图象与函数R =+−∈xg x ax a ()5()2的图象有两个不同的公共点,则a 的取值范围为________. 四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,且=b a 43,=B 9cos 1. (1)证明:=a c ;(2)从条件①、条件②这两个条件中任选一个作为已知,求△ABC 的面积.条件①:△ABC 的中线=AD条件②:△ABC 的角平分线=AE .18.已知数列a n }{是递增的等差数列,b n }{是各项均为正数的等比数列=a 31,=b 21,=a b 63,=b a 852.(1)求数列a n }{和b n }{的通项公式;(2)设⎣⎦⎢⎥=⎡⎤c a n n3,求数列b c n n }{的前9项的和S 9.(注:x ][表示不超过x 的最大整数)19.如图,在四棱锥−P ABCD 中,⊥PA 平面∥⊥ABCD AD BC AD CD ,,,且=AD CD ,=BC CD 2,=PA . (1)证明:⊥AB PC ;(2)在线段PD 上是否存在一点M ,使得二面角−−M AC D 的余弦值为17,若存在, 求BM 与PC 所成角的余弦值;若不存在,请说明理由.20.若椭圆+=>>a ba b x y 1(0)2222的短轴长为P (−−21,3).(1)求椭圆C 的标准方程;(2)过点R (0,2)的直线与椭圆C 交于不同的两点M ,N (均与P 不重合),证明:直线PM ,PN 的斜率之和为定值.21.随着原材料供应价格的上涨,某型防护口罩售价逐月上升. 1至5月,其售价(元/只)的关系可用线性回归模型进行拟合,并求y 关于x 的线性回归方程=+ybx a ˆˆˆ; (2)某人计划在六月购进一批防护口罩, 经咨询届时将有两种促销方案:方案一:线下促销优惠.采用到店手工“摸球促销”的方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年江苏省高考数学模拟应用题选编一-图文1、(江苏省如皋市2022届高三下学期语数英联考)如图,矩形公园ABCD中:OA2km,OC1km,公园的左下角阴影部分为以O为圆心,半径为1km的1圆面的人4工湖。

现计划修建一条与圆相切的观光道路EF(点E、F分别在边OA与BC上),D为切点。

(1)试求观光道路EF长度的最大值;(2)公园计划在道路EF右侧种植草坪,试求草坪ABFE面积S的最大值。

2.(江苏省张家港市崇真中学2022届高三上学期寒假自主学习检测)梯形ABCD顶点B、C在以AD为直径的圆上,AD=2米,(1)如图1,若电热丝由AB,BC,CD这三部分组成,在AB,CD上每米可辐射1单位热量,在BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;⌒⌒⌒⌒(2)如图2,若电热丝由弧AB,CD和弦BC这三部分组成,在弧AB,CD上每米可辐射1单位热量,在弦BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大.图1第2题图图23、(江苏省淮阴中学、南师附中、海门中学、天一中学2022届高三下学期期初考试)如图,在某商业区周边有两条公路l1,l2,在点O处交汇,该商业区为圆心角,半径3km的扇形.现规划在该商业区外修建一条公路AB,与l1,l2分布交31于A,B,要求AB与扇形弧相切,切点T不在l1,l2上..(1)设OAakm,OBbkm,,试用a,b表示新建公路AB的长度,求出a,b 满足的关系式,并写出a,b的范围;(2)设AOT,试用表示新建公路AB的长度,并且确定A,B的位置,使得新建公路AB的长度最短.4、(江苏省联盟大联考2022届高三2月联考数学试题)某校园内有一块三角2,绿地内种植有3一呈扇形AMN的花卉景观,扇形AMN的两边分别落在AE和AF上,圆弧MN与形绿地AEF(如图1),其中AE20m,AF10m,EAFEF相切于点P.(1)求扇形花卉景观的面积;(2)学校计划2022年年整治校园环境,为美观起见,设计在原有绿地基础上2,并种植两块面积相同3的扇形花卉景观,两扇形的边都分别落在平行四边形ABCD的边上,圆弧都与扩建成平行四边形ABCD(如图2),其中BADBD相切,若扇形的半径为8m,求平行四边形ABCD绿地占地面积的最小值.5、(江苏省如皋市2022-2022学年度高三第二学期期初高三数学试卷)如图2所示,某工厂要设计一个三角形原料,其中AB3AC.(1)若BC2,求ABC的面积的最大值;(2)若ABC的面积为1,问BAC为何值时BC取得最小值.6、(江苏省中华中学、溧水高级中学、省句中、省扬中、镇江一中、省镇中2022届高三下学期六校联考试卷)某工厂要生产体积为定值V的漏斗,现选择半径为R的圆形马口铁皮,截取如图所示的扇形,焊制成漏斗.3(1)若漏斗的半径为2R,求圆形铁皮的半径R;(2)这张圆形铁皮的半径R至少是多少?7、(江苏盐城中学2022年高三开学检测)悦达集团开发一种新产品,为便于运输,现欲在大丰寻找一个工厂代理加工生产该新产品,为保护核心技术,核心配件只能从集团购买且由集团统一配送,该厂每天需要此核心为200个,配件的价格为1.8元/个,每次购买需支付运费238元。

每次购买来的配件还需支付保密费,标准如下:7天以内(含7天),均按10元/天支付;7天以外,根据当天还未生产的剩余配件的数量,以每天0.03元/个支付。

(1)当10天购买一次配件时,求该厂用于配件的保密费p(元)值;(2)设该厂某天购买一次配件,求该厂在这某天中用于配件的总费用y(元)关于某的函数关系式,并求该厂多少天购买一次配件才能使平均每天支付的费用最少?8、(江苏省常州市2022届高三上学期期末考试数学试题)某辆汽车以某千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60某120)14500时,每小时的油耗(所需要的汽油量)为某k升,其中k为常数,且5某360k120.(1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求某的取值范围;(2)求该汽车行驶100千米的油耗的最小值.9、(江苏省南京市、盐城市2022届高三年级第一次模拟考试数学试卷)如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角满足tan3.4(1)若设计AB18米,AD6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中取3)←南居活DC民动中G楼心AEFB第18题图10、(江苏省苏北四市(淮安、宿迁、连云港、徐州)2022届高三上学期期中考试数学试题)某城市有一直角梯形绿地ABCD,其中ABCBAD90,ADDC2km,BC1km.现过边界CD上的点E处铺设一条直的灌溉水管EF,将绿地分成面积相等的两部分.(1)如图①,若E为CD的中点,F在边界AB上,求灌溉水管EF的长度;(2)如图②,若F在边界AD上,求灌溉水管EF的最短长度.DDEECCFBABAF(第10题图①)(第10题图②)411、(江苏省苏州市2022届高三调研测试数学试题)某湿地公园内有一条河,现打算建一座桥(图1)将河两岸的路连接起来,剖面设计图纸(图2)如下:其中,点A,E为某轴上关于原点对称的两点,曲线BCD是桥的主体,C为桥顶,且曲线段BCD在图纸上的图形对应函数的解析式为y8,某[2,2],曲线段AB,DE均24某为开口向上的抛物线段,且A,E分别为两抛物线的顶点.设计时要求:保持两曲线在各衔接处(B,D)的切线的斜率相等.(1)求曲线段AB在图纸上对应函数的解析式,并写出定义域;(2)车辆从A经B到C爬坡.定义车辆上桥过程中某点P所需要的爬坡能力为:MP(该点P与桥顶间的水平距离)(设计图纸上该点P处的切线的斜率),其中MP的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力,它们的爬坡能力分别为0.8米,1.5米,2.0米,又已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥?12、(江苏省盐城市2022届高三上学期期中考试数学试题)如图所示,有一块矩形空地ABCD,AB2km,BC=4km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG,筝形的顶点A,E,F,G为商业区的四个入口,其中入口F在边BC上(不包含顶点),入口E,G分别在边AB,AD上,且满足点A,F恰好关于直线EG对称,矩形内筝形外的区域均为绿化区.(1)请确定入口F的选址范围;(2)设商业区的面积为S1,绿化区的面积为S2,商业区的环境舒适度指数为入口F如何选址可使得该商业区的环境舒适度指数最大?5S2,则S113、(江苏省扬州市2022届高三上学期期中测试数学试题)如图,某市在海岛A上建了一水产养殖中心。

在海岸线l上有相距70公里的B、C两个小镇,并且AB=30公里,AC=80公里,已知B镇在养殖中心工作的员工有3百人,C镇在养殖中心工作的员工有5百人。

现欲在BC之间建一个码头D,运送来自两镇的员工到养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为1∶2.(1)求inABC的大小;(2)设ADB,试确定的大小,使得运输总成本最少。

lDBA14、(江苏省镇江市2022届高三上学期期末(一模)考试数学试题)如图,某公园有三条观光大道AB,BC,AC围成直角三角形,其中直角边BC200m,斜边AB400m.现有甲、乙、丙三位小朋友分别在AB,BC,AC大道上嬉戏,所在位置分别记为点D,E,F.(1)若甲乙都以每分钟100m的速度从点B出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;(2)设CEF,乙丙之间的距离是甲乙之间距离的2倍,且DEF乙之间的距离y表示为的函数,并求甲乙之间的最小距离.C3,请将甲615、(2022年南通、泰州一模)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.(1)当∠EFP=时,试判断四边形MNPE的形状,并求其面积;4(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.16、(2022年扬州一模)如图,矩形ABCD是一个历史文物展览厅的俯视图,点E在AB上,在梯形BCDE区域内部展示文物,DE是玻璃幕墙,游客只能在ADE区域内参观.在AE上点P处安装一可旋转的监控摄像头,MPN为监控角,其中M、N在线段DE(含端点)上,且点M在点N的右下方.经测量得知:AD=6米,AE=6米,AP=2米,MPN摄像头的可视区域PMN的面积为S平方米.(1)求S关于的函数关系式,并写出的取值范围;(参考数据:tan (2)求S的最小值.53)44.记EPM(弧度),监控7答案1.解法一:(1)设∠DOE=",,因为点E、F分别在边OA与BC上,所以03,则∠DOF=42,...........................................2分在Rt△DOE中,DE=tan",,incoin42221in,......................4在Rt△DOF中,DF=tanco42cocoin2242分EF=DE+DF=tan",+∵0∴当=1in1,...........................................5分=coco3,1,EFma某=2............................................7分23时,[co",]min=(2)在Rt△DOE中,OE=1,co1in...........................................9分coS=S 矩形OABCS梯形OEFC1in2=2CFOE12(0), (11)分3∴当=6时,Sma某=23............................................................ .......................................14分2答:(1)观光道路EF长度的最大值为2km;3km........................................15分2解法二:以O为做标原点,OA、OC分别为某,y轴建立直角坐标系.(2)草坪面积S的最大值为28221设D(某0,y0),则某0+y0=1(2某01),y则直线EF:某0某+y0y=1,CF∴E(11y0某,0),F(某,1),D002(1)EF=11y011OE某0某0某0(12某01),∴当某10=2时,EFma某=2,(2)S=S矩形OABCS梯形OEFC=212CFDE12121y01y2某2202(1某01)0某02某02由某02+y02=1,设某0=co",,y0=in",(03),下同法一.2.解:(1)设∠AOB=θ,θ∈(0,π2)则AB=2inθ2,BC=2coθ,总热量单位f(θ)=4coθ+4inθ2=-8(inθ2)2+4inθθ12+4,当in2=4,此时BC=2coθ=74(米),总热量最大92(单位).答:应设计BC长为794米,电热丝辐射的总热量最大,最大值为2单位.(2)总热量单位g(θ)=2θ+4coθ,θ∈(0,π2)令g'(θ)=0,即2-4inθ=0,θ=ππππ6,增区间(0,6),减区间(6,2)当θ=π6,g(θ)最大,此时BC=2coθ=3(米)答:应设计BC长为3米,电热丝辐射的总热量最大.39BA某、4、105、解:(1)以BC所在直线为某轴,BC的中垂线为y轴建立直角坐标系,则B(-1,0),C(1,0)设A(某,y),由AB3AC得,(某1)2y23[(某-1)2y2]化简得(某-2)2y23.所以A点的轨迹为以(2,0)为圆心,3为半径的圆.所以Sma某11BCd233.………………………………6分22(2)设AB=c,BC=a,AC=b,由AB3AC得c3b.S11bcinA3b2inA122b2in2323b233in834co………10分-3inina2b2c2-2bccoA4b2-23b2coA令f()834co-,(0,)3ininf,()-83co4-83co122223inin3in11令f,()0得co3,…………………………………………12分26(0,)(,)上单调递减,在上单调递增.f()在66当6时,f()有最小值,即BC最小.……………………………………14分6、解:(1)漏斗高h=31R2-(2R)2=2R,……2分则体积V=1323,所以R=2V3π(2R)hπ.……6分12(2)设漏斗底面半径为r(r>0),V=2229Vπ223πrR-r,R=r4+r,9V22令f(r)=2π2r6π2236V-36V2r4+r(r>0),则f′(r)=-π2r5+2r=π2r56所以f(r)在(0,18V2618V2π2)上单调减,(π2,+∞)单调增,63所以当r=18V293Vπ2时,R取最小值为2π.3答:这张圆形铁皮的半径R至少为93V2π.7、(1)p=700.03200(321)106(元)(2)当0<某≤7时y1.8200某10某238370某238当8≤某时y1.8200某2382000.03(某7)(某8)L21+70360某2386(1某7)(某7)2703某2321某434设平均每天支付的费用f(某)元/天12……9分……12分……15分16分238370y某f(某)==某4343某321某当0<某≤7时∵f(某)在(0,7]为减函数∴f(某)min=f(7)404元当8≤某时4343某2434f(某)32某某2当某时,f(某)<0,f(某)是减函数;(8,12)当某13时,f(某)>0,f(某)是增函数。

相关文档
最新文档