人教版八年级上册数学《分式的综合运算、化简及比较大小》专题讲义(含答案)
人教版八年级数学上册《分式》知识点复习及典例解析

人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册

第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
新人教版-八年级(初二)数学上册-分式章节-分式的化简求值(1).讲义教师版

内容 基本要求略高要求较高要求分式的概念 了解分式的概念,能确定分式有意义的条件能确定使分式的值为零的条件分式的性质 理解分式的基本性质,并能进行简单的变型能用分式的性质进行通分和约分分式的运算 理解分式的加、减、乘、除运算法则会进行简单的分式加、减、乘、除运算,会运用适当的方法解决与分式有关的问题一、比例的性质: ⑴ 比例的基本性质:a cad bc b d=⇔=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩交换内项 交换外项 同时交换内外项⑶ 反比性(把比例的前项、后项交换):a c b db d a c=⇒=⑷ 合比性:a c a b c d b d b d ±±=⇒=,推广:a c a kb c kdb d b d±±=⇒=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m ab d n b+++=+++(...0b d n +++≠)二、基本运算分式的乘法:a c a cb d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c⋅÷=⨯=⋅乘方:()n nn nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数) 整数指数幂运算性质:⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)知识点睛中考要求分式的化简求值(1)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a-=(0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a bc c c+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、化简后直接代入求值【例1】 先化简再求值:2111x x x---,其中2x = 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南郴州【解析】原式()()111x x x x x =---()111x x x x-==-当2x =时,原式112x ==【答案】12【例2】 已知:2221()111a a a a a a a ---÷⋅-++,其中3a =【考点】化简后直接代入求值 【难度】2星 【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【巩固】先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =- 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考例题精讲【解析】()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭- 当1a =-时,原式112123a a -===---【答案】13【例3】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式()()()111121x x x x x +-=⋅+-+-+ ()()12x x x =-+-22x =-当x 时,原式224=-=.【答案】4【例4】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +- 当5-=x 时,原式21x x =+-521512+-=-=-. 【答案】12【巩固】先化简,再计算:231124a a a +⎛⎫+÷ ⎪--⎝⎭,其中3a =. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南省岳阳市中考试题【解析】原式2223221a a a a a a +--⎛⎫=+⨯⎪--+⎝⎭()()22121a a a a a +-+=⨯-+ 2a =+【答案】2a +【例5】 当12x =-时,求代数式22226124111x x x x x x x x ⎛⎫++-+-+÷ ⎪--+⎝⎭的值 【考点】化简后直接代入求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(1)1(1)(1)2413x x x x x x x x x x -++=⨯==+--+- 【答案】13【例6】 先化简分式22222936931a a a a a a a a a ---÷-+-+-,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,广东省深圳市中考试题【解析】原式()()()()223332313a a a a a a a a a a a a +-+-=⋅-=+=--+ 当0123a =,,,时,原式0246=,,, 【答案】0,2,4,6【巩固】先化简:22222a b ab b a a ab a⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,再从22a -<<的范围内选取一个合适的整数a 代入求值.【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,贵州省贵阳市中考试题【解析】原式()()()()22221a b a b a ab b a b a a a b a a a ba b +-+++=÷=⋅=-++在22a -<<中,a 可取的整数为101-,,,而当1b =-时,①若1a =-,分式222a b a ab--无意义;②若0a =,分式22ab b a +无意义;③若1a =,分式1a b+无意义. 所以a 在规定的范围内取整数,原式均无意义(或所求值不存在)【答案】a 在规定的范围内取整数,原式均无意义(或所求值不存在)【巩固】已知212242xA B C x x x ===--+,,将它们组合成()A B C -÷或A B C -÷的形式,请你从中任选一种进行计算,先化简,再求值其中3=x . 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,河南省中考试题【解析】选一:()()()21221242222x x x A B C x x x x x x x +⎛⎫-÷=-÷=⨯= ⎪--++--⎝⎭ 当3x =时,原式1132==- 选二:()21212124222x A B C x x x x x x x -÷=-÷=-=--+--,当3x =时,原式13=【答案】选一:当3x =时,原式1132==- 选二:当3x =时,原式13=【例7】 先化简,再求值:224125(2)2[2()](34)(2)a a a a a a a a +++÷--÷-+,其中4a =【考点】化简后直接代入求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(3)5(2)(2)[2](34)(2)a a a a a a a a +++=÷--÷-+4(3)(2)(2)5(34)(2)2a a a a a a +-+-=÷-++ 4(3)2(34)(2)(3)(3)a a a a a a ++=⋅-+-+4(34)(3)a a =-- 当4a =时,原式441(34)(3)(344)(43)2a a ===--⨯--本题含分式乘方、加、减、乘、除混合运算;与分式四则混合运算类似,分式的四则混合运算 的顺序是:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 【答案】12【例8】 已知22a b ==a bb a-的值. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖北荆门市中考试题【解析】∵22a b =+=∴4a b +=,a b -=,1ab =而a b b a -22()()a b a b a b ab ab -+-==∴a b b a -=()()a b a b ab+-==【答案】【例9】 先化简,再求值:()()x yy x y x x y -++,其中11x y ==,. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南湘潭市中考试题【解析】原式()()22x y xy x y xy x y =-++ ()22x y xy x y -=+()()()x y x y xy x y -+=+x y xy-=当 11x y ==,时,11221x yxy--=== 【答案】2【例10】 化简,再求值:11-a b b a ⎛⎫+ ⎪+⎝⎭ab a b ÷+.其中1a =, b =. 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,黄石市中考试题【解析】原式()()()()()2b a a b a b a b b a ab a b b++-+=⋅=-+-∵1a b ==,∴原式1b ==,∴=【巩固】先化简,再求值:22112b a b a b a ab b⎛⎫-÷ ⎪-+-+⎝⎭,其中11a b ==-【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,宣武一模试题【解析】原式()()()()()()22a b a b a b a b a b a b b a b+----=⋅=-++当11a b ==-==【答案】【例11】 先化简,再求值:22211x yx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中11x y ==, 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,广西桂林中考试题 【解析】原式2222222x y x y x yx y x y x y ⎛⎫+-=+÷ ⎪---⎝⎭ 22222x y x y x y x y x y++--=⨯- 222x x y xy==当11x y ==,原式22131xy====-【答案】1【例12】 求代数式()()22222222222a b c a b c ab ac a a ab ab a b a b -----+⋅÷-++-的值,其中1a =,12b =-,23c =- 【考点】化简后直接代入求值 【难度】3星 【题型】解答 【关键词】【解析】()()22222222222a b ca b c ab ac a a ab ab a b a b -----+⋅÷-++-()()()()2a b c a a b c a b c a b a b a a b a b c a b c a b -+-+--+-=⋅⋅-+--++a b ca b --=+. ∴当1a =,12b =-,23c =-时,原式12123112++=-1313263=⨯=. 【答案】133二、条件等式化简求值1. 直接换元求值【例13】 已知:2244a b ab +=(0ab ≠),求22225369a b a b ba b a ab b a b--÷-++++的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答【关键词】2010年,石景山二模【解析】由2244a b ab +=得2b a =原式2a ba b-=+当2b a =时,原式42a aa a-=+1=-【答案】1-【例14】 已知:34x y =,求2222222x y xy y x xy y x xy -+÷-+-的值【考点】直接换元求值(分式)【难度】3星 【题型】解答 【关键词】【解析】2222222()()()32()()4x y xy y x y x y y x y x x xy y x xy x y x x y y -++-+÷=÷==-+--- 【答案】34【巩固】已知x y z ,,满足235x y z z x ==-+,则52x yy z-+的值为( ) A.1 B.13C.13-D.12【考点】直接换元求值(分式) 【难度】4星 【题型】选择【关键词】2007年,全国初中数学联赛试题【解析】B ;由235x y z z x ==-+得332y x z x ==,,∴55312333x y x x y z x x --==++ 【答案】13【例15】 已知12=x y ,求2222222-⋅+-++-x x y y x xy y x y x y 的值. 【考点】直接换元求值(分式)【难度】2星 【题型】解答【关键词】2010年,海淀一模【解析】y x y y x y x y xy x x-++-⋅+-2222222 22()()2()x x y x y yx y x y x y -+=⋅++--22()x y x y x y =+--2()()x y x y +=-.当21=y x 时,x y 2=. 原式2(2)6(2)x x x x +==--.【答案】6-【例16】 已知221547280x xy y -+=,求xy的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答 【关键词】【解析】221547280x xy y -+=,∴(37)(54)0x y x y ++=,∴370x y +=或540x y +=,由题意可知:0y ≠,73x y =-或45x y =-. 【答案】45-【巩固】已知22690x xy y -+=,求代数式 2235(2)4x yx y x y+⋅+-的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答【关键词】2010年,海淀二模【解析】22690x xy y -+=,2(3)0x y -=.∴ 3x y =. ∴原式35(2)(2)(2)x yx y x y x y +=⋅++-352x yx y +=-3(3)52(3)y yy y+=-145=. 【答案】145【例17】 已知x =,求351x x x ++的值.【考点】条件等式化简求值 【难度】4星 【题型】解答【关键词】降次,整体置换【解析】21x -=21x x =+,0x ≠.则()233245555111x x x x x x x x x x x++++=====【例18】 已知123a b c a c ==++,求ca b+的值. 【考点】直接换元求值(分式) 【难度】4星 【题型】解答【关键词】第8届,华罗庚金杯复赛【解析】23b c a a c a +=⎧⎨+=⎩22b c a c a +=⎧⇒⎨=⎩02b c a =⎧⇒⎨=⎩,所以220c aa b a ==++.【答案】2【例19】 已知22(3)0x y a b -+-=,求32223322232332a x ab y b xya x ab y b xy++++的值.【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】第9届,华罗庚金杯总决赛1试【解析】由已知可得:2y x =,3a b =,故原式7297=. 【答案】7297【巩固】已知2232a b ab -=,0a >,0b >,求证:252a b a b +=- 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】由已知可得22230a ab b --=,则(3)()0a b a b -+=,所以3a b =或a b =-∵0a >,0b >,∴3a b =,则23255322a hb b b a b b b b ++===-- 【答案】52【巩固】已知分式1x y xy+-的值是m ,如果用x ,y 的相反数代入这个分式,那么所得的值为n ,则m 、n 是什么关系?【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】 【解析】由题可知:()()()1.1x y m xy x y n x y +⎧=⎪-⎪⎨-+-⎪=⎪---⎩,①② 由②得:11x y x y n m xy xy--+==-=---. ∴m n =-,∴0m n +=.所以m n ,的关系为互为相反数.【答案】m n ,的关系为互为相反数【例20】 已知:233mx y +=,且()22201nx y x y -=≠≠-,.试用x y ,表示m n. 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】∵0x ≠,∴由233mx y +=,得:()()231133y y y m x x +--==.由222nx y -=,得:222122y y n x x ++==. ∵1y ≠-,∴0n ≠, ∴()()()231121y y y m n x x +-+=÷()()()231121y y x x y +-=⋅+()312x y -=. 【答案】()312x y -【例21】 已知:230a b c -+=,3260a b c --=,且0abc ≠,求3332223273a b c ab bc a c-++-的值. 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】由题意可知:2303260a b c a b c -+=⎧⎨--=⎩,解得43a c b c =⎧⎨=⎩,333322233215173453a b c c ab bc a c c -+-==-+- 【答案】13-【巩固】已知方程组:230230x y z x y z -+=⎧⎨-+=⎩(0xyz ≠),求:::x y z 【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】【解析】把z 看作已知数,解关于x 、y 的方程组,解得5y z =,7x z =,所以::7:5:1x y z =.【答案】::7:5:1x y z =【例22】 设自然数x 、y 、m 、n 满足条件58x y m y m n ===,求的x y m n +++最小值. 【考点】直接换元求值(分式)【难度】5星【题型】解答【关键词】黄冈市初中数学竞赛 【解析】58x y =,58y m =,85m y =,864525n m y ==,从而y 是825200⨯=的倍数,当200y = 586412520032051211578525x y m n y y y y +++=+++=+++= 【答案】1157【例23】 设有理数a b c ,,都不为0,且0a b c ++=, 则222222222111b c a c a b a b c +++-+-+-的值为___________。
分式的化简(含答案)

如何列分式方程解应用题列分式方程解简单的实际应用问题的方法和步骤是:(1) 设 弄清题意和题目中的数量关系,用字母(如x )表示题目中的一个未知数;(2) 找 找到能够表示应用题全部含义的一个相等的关系;(3) 列 根据这个相等的数量关系式,列出所需的代数式,从而列出分式方程;(4) 解 解这个所列的分式方程,求出未知数的值;(5) 检 检验;(6) 答 写出答案(包括单位名称).这六个步骤关键是“列”,难点是“找”.例题便民服装店的老板在株洲看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍每件进价比第一次多了4元,服装店仍按每件58元出售,全部售完,问该服装店这笔生意盈利多少元?解:设从株洲第一次进货每件为x 元,则第二次进货每件为(x +4)元.由题意可得2×8000x =176004x +. 去分母,整理,得16000(x +4)=17600 x .解得 x =40.经检验,x =40是原方程的解. 所以共进衬衫数为:8000176004044+=600, 所以盈利数为600×58-(8000+17600)=9200(元).答:该服装店这笔生意盈利9200元.说明:这是一道与市场营销有关的问题,常见的数量关系有:商品单价×销售数量=销售额;销售利润=(商品售价-进货价)×销售量;利润率=商品净利润这批商品的进价×100%;商品打折销售中,a 折销售价=原价×10a (0<a <10,a 取整数).1、 炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.则乙队每天安装( C )台A.60 B.40 C.30 D.202、 甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( D )天A.6天 B.4 C.3 D.23、 轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,求轮船在静水中的速度是每小时多少千米?设轮船在静水中的速度是每小时x 千米,则列方程为: XX X 80334346=-++4、 南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,求现在计划每天加固河堤多少m ?若设现在计划每天加固河堤x m ,则得方程为 .22402240220x x-=- 5、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价为多少元?设每盒粽子的进价为x 元,则得方程为 .20%x ×50-(x2400-50)×5=3506、 今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得: x 1500-401500+x =815,………………………7、甲、乙两个建筑队完成某项工程,若两队同时开工,12天就可以完成工程;乙队单独完成该工程比甲队单独完成该工程多用10天.问单独完成此项工程,乙队需要多少天? 设设乙单独完成工程需x 天,则甲单独完成工程需(10x -)天;甲做1天的工作量+乙做1天的工作量=甲、乙两人合做1天的工作量; 根据题意,得1111012x x +=-;1、温(州)福(州)铁路全长298千米,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 解这个方程,得14991x =. 8分 经检验14991x =是原方程的解. 9分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、 南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率=污水处理量污水排放量).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于...70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少..还需要增加多少万吨,才能符合国家规定的要求?解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分 341040%1.05x x-= 4分 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分 1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.3、 张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.4、 有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.解:设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程9001500300x x =+ 解得x=45. 经检验x=45是原方程的解.5、 进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =. 6分检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解. 7分答:该地驻军原来每天加固300米. 8分6、 甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, ……………………1分 根据题意,得 10x +1245x =1 ………………………………… 4分 解这个方程,得x =25 ………………………………………6分经检验,x =25是所列方程的根 ……………………………7分当x =25时,45x =20 …………………………………………9分 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.通过这段对话,请你求出该地驻军原来每天加固的米数.……………10分7、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分8、 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .240024008(120)x x-=+%…………………… 7分9、 某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 4分 解得:5x =经检验5x =是原方程的解 6分 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元) 8分答:该老板两次售书总体上是赚钱了,共赚了520元. 9分10、 甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.11、 某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 3分 解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分12、 A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道? 解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 ………………………1分根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x ………………………6分经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ………………………7分∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.………………………8分13、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
八年级数学上册15.3《分式方程》分式相关专题总结及应用素材新人教版

分式相关专题总结及应用一、识性专题专题1 分式基本性质的应用【专题解读】分式的基本性质是分式的化简、计算的主要依据。
只有掌握好分式的基本性质,才能更好地解决问题.例1 化简(1)2610xy x ; (2) 21xy y x --; 解:(1)26233.10255xy x y y x x x x == (2)2(1)1(1)(1)1xy y y x y x x x x --==-+-+. 【解题策略】化简一个分式时,主要是根据分式的基本性质,把分式的分子与分母同时除以它们的公因式,当分式的分子或分母是多项式时,能分解因式的一定要分解因式. 例2 计算2312212422a a a a ⎛⎛⎫⎫+÷-⎪⎪ ---+⎭⎭⎝⎝解:2312212422a a a a ⎛⎛⎫⎫+÷-⎪⎪ ---+⎭⎭⎝⎝3(2)122(2)2(2)(2)(2)(2)(2)(2)(2)(2)3186(2)(2)(2)(2)3.a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤++-=+÷-⎢⎥⎢⎥+-+-+-+-⎣⎦⎣⎦++=÷+-+-= 【解题策略】异分母分式相加减,先根据分式的基本性质进行通分,转化为同分母分式,再进行相加减。
在通分时,先确定最简公分母,然后将各分式的分子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性质化为最简形式。
专题2 有关求分式值的问题【专题解读】对于一个分式,如果给出其中字母的值,可以先将分式进行化简,然后将字母的值代入,求出分式的值。
但对于分式的求值问题,却没有直接给出其中字母的值,而只是给出其中的字母所满足的条件,这样的问题复杂,需根据其转点采用相应的方法.例3 已知13x x+=,求2421x x x -+的值。
解: 因为0x ≠,所以用2x 除所求分式的分子、分母。
原式22221111113361()21x x x x ====--++--。
第15章 分式的计算与化简求值 人教版八年级上册数学讲义

第15章分式的计算与化简求值 人教版八年级上册数学讲义一、内容复习1、最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.2、通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.通分:,.二、知识点一 分式的乘、除法法则【知识梳理】1. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示为b a ·d c =bdac . 2. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为b a ÷d c =b a ·c d =bcad . 【提醒】1. 分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解因式,看能否约分,然后再相乘.2.当整式与分式相乘时,要把整式(看做是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母不变.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘.3.分式的除法运算可以转化为分式的乘法运算,若除式(或被除式)是整式时,可以看做是分母是1的式子,然后按照分式除法法则计算.4.分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式.5.分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.【例题精讲】例1、计算2x 3÷的结果是( )A .2x 2B .2x 4C .2xD .4【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=2x 3•x=2x 4,故选:B .【强化练习】1、(1)x m 86·m x 32 (2)3ab 2÷ab 62、化简的结果是( )A .B .C .D .知识点二 分式的乘方法则【知识梳理】分式的乘方法则:分式乘方要把分子、分母分别乘方。
初二数学分式的综合运算、化简及比较大小

分式的综合运算、化简及比较大小中考要求重难点1.会进行简单的分式加减乘除综合运算;2.利用分式的基本性质进行分式化简求值;3.会用作差法比较分式大小.课前预习趣味小故事:《棋盘上的麦粒问题》在印度有一个古老的传说:国王打算奖赏国际象棋的发明人——宰相西萨·班·达依尔。
国王问他想要什么。
他对国王说:陛下,请您在这个棋盘的第一个小格里给我一粒麦子,第二个小格2粒,第三个小格4粒,以后每一个小格都比前一个加倍。
国王认为太容易就答应了他。
当人们把一袋袋麦子搬来后,才发现就是全印度的麦子都不能满足。
那么宰相的要求是多少呢?123426641+2+2+2+2++2=2-1=18446744073709551615(粒),人们估计全世界两千年也难以产这么多麦子。
分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用公式表示为a b a b c c c+±=.异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=.分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.例题精讲模块一 分式的加减运算☞分式分母相同或互为相反数 【例1】 (2010福建泉州)计算:111a a a +=++ .【难度】1星【解析】根据分式的加减运算法则可知,分式的分母相同,分子相加减,即11+1111a a a a a +==+++ 【答案】1【巩固】计算:9333a b a bab ab++-【难度】1星【解析】9393623333a b a b a b a b b ab ab ab ab a +++---===【答案】2a【巩固】计算:2222135333x x x x xx x x +--+-++++ 【难度】2星【解析】22221352623333x x x x x x x x x x +--++-+==++++【答案】2【巩固】计算:22222621616x x x x x +-++-- 【难度】2星【解析】22222262282(4)2=161616(4)(44x x x x x x x x x x x +-+--+==----++)【答案】24x +☞分式分母不相同【例2】 (2010延庆一模)计算:21211x x --- 【难度】2星【解析】分母不同,能分解因式先分解因式再通分。
第十五章 第2讲 分式的运算 讲义 (知识精讲+典题精练)2023—2024学年人教版八年级数学上册

第2讲分式的运算【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的运算分式的乘除和加减√分式综合运算√分式的化简求值和大小比较√分式的乘除和加减分式的运算分式的综合运算分式的化简求值分式的大小比较1【知识精讲】一、分式的乘除法1、分式的乘除法:b d bd ac ac ⋅=,b d b c bca c a d ad÷=⋅=2、分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.3、分式的乘方法则:分式乘方要把分子、分母分别乘方.4、注意:a 、b 、c 、d 仅仅是一个符号,它们可以表示数,也可以表示式子(单项式、多项式等),但必须要使分式有意义,所以很多时候需要考虑字母的取值范围.二、分式的加减法:1、分式的加减法则:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=2、知识规律小结:分式的加减法是分式运算中的重点与难点,怎样合理的通分是化解这一难点的关键,需要注意的技巧包括分步通分,分组通分,先约分后再通分,换元后通分等.三、分式的综合运算分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.注意:在进行分式的综合运算时,要注意合理的通分、约分、分解因式,尽量用最简单的方法和步骤完成答题过程.【经典例题】【例1】下列等式从左到右的变形正确的是().A.11b b a a -=- B.22b b a a = C.2ab a b b= D.b bm a am=【例2】计算:()2222x xy y xy x xy-+-÷.【例3】计算:22281644a a a a a-++⋅+.【例4】计算:()22266344124x x x x x x x-+-÷+⋅-+-.【例5】计算:()22224444282a a a a a a a --+÷-⋅+--.【例6】计算:2221111a a a a a a a -+⎛⎫÷⋅ ⎪---⎝⎭.【例7】若a 满足33a -≤≤,请你选择一个合适的数a ,使得代数式2111a a a -⎛⎫÷- ⎪⎝⎭的值为一个奇数.【例8】计算:()22222x xy y x yxy x xy x++++÷⋅.【例9】已知实数a ,b ,c 满足0a b c ++=,4abc =,那么111a b c++的值().A.是正数B.是零C.是负数D.可正可负【例10】已知:113x y -=,则分式2322x xy y x xy y+---的值是_________.【例11】计算:2411241111x x x x +++-+++.【例12】计算:()()()()()()()11111122399100x x x x x x x x +++++++++++ .【例13】已知2a x +与2b x -的和等于244x x -,则a =________,b =________.【例14】已知x 为整数,且222218339x x x x ++++--为整数,则所有符合条件的x 值的和为__________.【例15】已知1abc =,则关于x 的方程2004111x x xa ab b bc c ca++=++++++的解是__________.【例16】已知1xy x y =+,2yz y z =+,3zxz x=+,则x =__________.【例17】计算:2222223223x y x y x yx y x y y x ++------.【例18】计算:26333a a a a a a+-+--.【例19】计算:2224421142x x x x x x x-+---+-+.【例20】计算:22214(244x x xx x x x x+---÷--+.【例21】计算:352242a a a a -⎛⎫÷-- ⎪--⎝⎭.【例22】计算:2235325953x x x x x ⎛⎫÷⋅- ⎪--+⎝⎭.2【知识精讲】分式的化简与求值分式的化简求值分为有条件和无条件两类有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件分式的化简与求值常用方法和技巧:1、分步或者是分组通分2、拆项相消或拆分变形3、整体代入4、取倒数或者利用倒数关系5、换元6、先约分后通分【经典例题】【例23】先化简,再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中12x =.【例24】先化简,再求值:22222116()2444x x x x x x x x x+---÷--++,其中3x =.【例25】化简,求值:22214()2442a a a a a a a a ----÷++++,其中a 满足2210a a +-=.【例26】如果11ab +=,21b c +=,那么2c a+等于().A.1B.2C.3D.4【例27】已知a ,b ,c 均为实数,且()()25711212x a b cx x x x x -=++-+---,求abc 的值.【例28】已知22690x xy y -+=,求代数式2235(2)4x yx y x y +⋅+-的值.【例29】已知210x x --=,则4521x x x ++=__________.【例30】若22004a m +=,22003b m +=,22002c m +=,且24abc =,则111a b c bc ca ab a b c++---的值为__________.【例31】已知2410a a ++=,且42221533a ma a ma a++=++,则m =__________.【例32】已知1110n m n m --=+,则2m n n m ⎛⎫+ ⎪⎝⎭的值是__________.【例33】已知x y za b b c c a==---,则x y z ++=__________.【例34】已知x ,y ,z 均不为零,且满足4360x y z --=,270x y z +-=则22222223657x y z x y z ++++的值是____________.【例35】设a ,b ,c 是三个互不相同的正数,a c c bb a b a-==+,那么().A.32b c= B.32a b= C.2b c = D.2a b=【例36】已知1110a b c++=,且2221a b c ++=,则a b c ++的值等于().A.1B.1-C.1或1-D.0【例37】设a ,b ,c 满足0abc ≠且a b c +=,则222222222222b c a c a b a b c bc ca ab+-+-+-++的值等于().A.1- B.1 C.2 D.3【例38】已知15a a +=,则4221a a a ++=_________.【例39】已知:2710x x -+=,求(1)1x x +;(2)221x x +;(3)441x x+的值.3【知识精讲】一、分式的大小比较(1)作差:若110a b->,则11a b>(2)作商:若10a>,10b>且111ab>,则11a b>;若10a<,10b<且111ab>,则11a b<注意:分式的大小比较主要思想是作差和0比较大小,作商和1比较大小,对于稍复杂的题目往往先对分式做一些变形,常用的技巧有添项、换元、通分,在进行作差或者作商;用作商法比较分式的大小时,要注意符号的问题【经典例题】【例40】已知01a <<,按照从小到大的顺序排列下列式子:1a ,21a ,11a +,211a +.【例41】已知a ,b ,c 为正数,且a b ≠,若111xa b c =++,y =+,则x 与y 的大小关系是().A.x y> B.x y< C.x y= D.随a ,b ,c 的取值而变化【例42】已知a ,b ,m 都是正数,且a b >,试证明分式a mb m ++的值总小于ab的值.【例43】设a ,b ,c 都是正数,若c a ba b b c c a<<+++,则a ,b ,c 三个数的大小关系是().A.c a b<< B.b c a << C.a b c << D.c b a<<【例44】已知a ,b ,c 是ABC 中三边长,则c x a b =+与()22c y a b =+的大小关系是().A.x y> B.x y< C.x y= D.随a ,b ,c 的取值而变化【例45】A ,B 两个家庭同去一家粮店购买大米两次,两次大米的售价有变化,但两个家庭购买的方式不同.其中A 家庭每次购买25千克,B 家庭每次用去25元,且不问购买大米各多少,问谁的购买方式合算?【随堂练习】【习题1】化简:22221369x y x yx y x xy y+--÷=--+_________________.【习题2】已知114a b-=,则2227a ab ba b ab---+的值等于().A.6B.6-C.215D.27-【习题3】若13xx+=,则2421xx x++的值为().A.10B.8C.110D.18【习题4】当16m=-时,代数式2221539933m m m mm m m m---÷---++的值是().A.1-B.12- C.12D.1【习题5】若a,b,c满足1111a b c a b c++=++,则a,b,c中().A.必有两个数相等B.必有两个数互为相反数C.必有两个数互为倒数D.每两个数都不相等【习题6】已知甲乙两位采购员同去一家饲料购买两次饲料.两次的价格有变化,两位采购员的采购方式也不同,其中甲每次购买1000千克,乙每次都用800元.问:(1)甲、乙所购买饲料的平均单价各是多少?(2)谁的购买方式更合算?【课后作业】【作业1】已知:222222M xy y x yx y x y x y--=+--+,则M =__________.【作业2】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是________.【作业3】计算:()()()()()()c a a b b ca b b c b c c a c a a b ---++------.【作业4】先化简,再求值2242442x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭,其中12x =-.【作业5】若实数x ,y ,z 满足14x y +=,11y z +=,173z x +=,则xyz =__________.【作业6】任何一个单位分数1n都可以写成两个单位分数的和:111n p q =+(,,m p q 都是正整数),显然,这里的,p q 都大于n 如果设,p n a q n b =+=+,那么有111n n a n b=+++.(1)探索上式中的正整数a ,b 与正整数n 之间存在什么关系?(2)写出16等于两个单位分数之和的所有可能的情况.【作业7】已知a ,b 为整数,且满足221111121111113a b a b a b a b a b ⎛⎫ ⎪⎛⎫-⋅-⋅= ⎪ ⎪⎝⎭ ⎪-++ ⎪⎝⎭,求a b +的值.【作业8】用水清洗蔬菜上残留的农药.设用x (1x ≥)单位量的水清洗一次后蔬菜上残留的农药量与本次清洗前残留的农药量之比为11x +.现有a (2a ≥)单位的谁,可以一次清洗也可以把水平均分成两份后清洗两次,试问用哪种方法清洗后蔬菜上残留的农药量较少?说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的综合运算、化简及比较大小重难点1.会进行简单的分式加减乘除综合运算;2.利用分式的基本性质进行分式化简求值;3.会用作差法比较分式大小.分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用公式表示为a b a b c c c+±=.异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=.分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.例题精讲模块一分式的加减运算☞分式分母相同或互为相反数【例1】计算:111aa a+=++.【难度】1星【解析】根据分式的加减运算法则可知,分式的分母相同,分子相加减,即11+1 111a aa a a+== +++【答案】1【巩固】计算:93 33a b a b ab ab ++-【难度】1星【解析】939362 3333a b a b a b a b bab ab ab ab a +++---===【答案】2 a【巩固】计算:222 2135333 x x x x x x x x+--+-++++【难度】2星【解析】2222135262 3333x x x x x xx x x x+--++-+== ++++【答案】2【巩固】计算:22222621616x x xx x +-++--【难度】2星【解析】22222262282(4)2=161616(4)(44x x x x x x x x x x x +-+--+==----++)【答案】24x +☞分式分母不相同 【例2】 计算:21211x x --- 【难度】2星【解析】分母不同,能分解因式先分解因式再通分。
212(1)211=11(1)(1)(1)(1)(1)(1)1x x x x x x x x x x x +--=-=---+-+-++ 【答案】11x +【巩固】计算:22b aa ab b ab+--. 【难度】2星【解析】2222()()()()()()b a b a b a b a b a a ba ab b ab a a b b b a ab a b ab a b ab -+-++=+===-------【答案】a bab+-【巩固】计算:2216322a a a a a --++-- 【难度】3星【解析】2221616(1)(2)6(2)322(1)(2)(2)(1)(1)(2)(2)910(1)(10)10(1)(2)(2)(1)(2)(2)(2)(2)a a a a a a a a a a a a a a a a a a a a a a a a a a a a a -----+-=-=++--++-+++---+--===++-++-+- 【答案】10(2)(2)a a a -+-【总结】在进行分式的加减运算时,先观察分母是否相同,当分母相同时分子直接相加减,当分母互为相反数时,通过改变分式的符号,把它们变为分母相同的分式。
异分母分式加减的关键是通分,通分的关键 是确定最简公分母。
【易错】(1)计算的最终结果一定要化为最简分式,当然也可以是整式; (2)要注意分式的运算顺序;(3)在处理符号变化时要考虑分子或分母的整体性,当去掉分数线时要加上括号; (4)在分式的计算中切不可以“去分母”,相当一部分同学把分式的运算与解方程混淆了,应当引起重视;(5)在分式的运算中遇到多项式要先因式分解,以利于通分.模块二 分式的综合运算【例3】 化简293()33a a a a a++÷--的结果为 ( ) A .a B .a - C .()23a + D .1【难度】2星【解析】先算括号里,293(3)(3)()3333a a a a aa a a a a a ++-+÷=⋅=---+.【答案】A【巩固】(2010黄冈)化简:211()(3)31x x x x +-⋅---的结果是( )A .2B .21x - C .23x - D .41x x -- 【难度】2星【解析】2111132()(3)=()(3)1313(1)(1)11x x x x x x x x x x x x ++--⋅--⋅-=-=---+--- 【答案】B【巩固】(2008黄冈)计算()a b a bb a a+-÷的结果为( )A .a b b -B .a b b +C .a b a -D .a ba+ 【难度】2星【解析】()()()a b a b a b a b a a bb a a ab a b b++---÷=⋅=+ 【答案】A【巩固】(2010江苏南京)计算2211()a b a b ab--÷【难度】2星【解析】22111()()()a b b a ab a b ab ab a b a b a b ---÷=⋅=--++【答案】1a b-+【例4】 (2010门头沟二模)计算:22282()24a a a a a a+-+÷-- 【难度】3星【解析】2222228228()[]24(2)(2)(2)2(2)8(2)1=(2)(2)2(2)(22a a a a a a a a a a a a a a a a a a a a a a a a +-++÷=+⋅---+--+--=⋅=-+--++)【答案】12a +【解析】22211211(1)()(1)()11x x x x x xx x x x x x x x --+---÷-=÷=⋅=--【答案】B【解析】2222242(2)(2)22()[]4422(2)2(2)(2)2828(2)(2)(2)(2)2x x x x x x x x x x x x x xx x x x x x x x x x x x ---+--+÷=+⋅-++--++----=⋅=⋅=-+-++ 【答案】D【总结】对于分式混合运算,其实也就是在同一个算式中,综合了分式的加减、乘除及乘方中的一种或几种运算,关键是要注意各种运算的先后顺序.【易错】在运算过程中,能分解因式的要先分解因式,然后进行化简约分,减少运算错误.模块三 分式的化简求值1. 化简后直接代入求值【例5】 (2010湖南郴州)先化简再求值:2111x x x---,其中2x = 【难度】2星【解析】先讲原式化简得:211111(1)x x x x x x x--==---,再讲2x =代入1x 得12.【答案】12【巩固】(2010安徽)先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-【难度】2星【解析】先化简得:2221442(1)(1)11(2)2a a a a a aa a a a a a -+---÷=⋅=-----,再将1a =-代入2a a -得13 【答案】13【巩固】(2010湖南长沙)先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【难度】2星【解析】先化简得:2291(3)(3)113333(3)x x x x x x x x x x x ⎛⎫-+-⋅=⋅= ⎪--+-+⎝⎭,再将13x =代入1x 得3 【答案】3【巩固】(2010十堰)先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =.【难度】2星【解析】先化简得:2211(1)(2)(1)(1)(2)2111x x x x x x x x x -÷+-=⋅-++-=-+-+,再将x =22x -得4 【答案】4【巩固】(2010武汉)先化简,再求值:532224x x x x -⎛⎫--÷⎪++⎝⎭,其中3x =.【难度】2星【解析】先化简得:25392(2)22(3)22423x x x x x x x x x --+⎛⎫--÷=⋅=+ ⎪+++-⎝⎭,再将3x 代入2(3)x +得【答案】【巩固】当12x =-时,求代数式22226124(1)11x x x x x x x x++-+-+÷--+的值.【难度】3星【解析】先化简得:2222222222261246(1)1(1)24(1)(1)11124(1)(1)241x x x x x x x x x x x x x x x x x x x x x x x x x x ++-++-++-+-++-+÷=⋅=⋅=--+--+-+-+-,再将12x =-代入1x x -得13【答案】13【总结】分时化简求值时,先将分式化简,再将已知值代入化简结果。
【易错】不要将已知条件直接代入分式中,这样会给计算过程带来不便。
2.条件等式化简求值☞直接换元求值【例6】 (2010丰台·一模)已知:220x -=,求代数式222(1)11x x x x -+-+的值.【难度】2星【解析】先将分式化简整理得:2222(1)1111x x x x x x x -+-+=-++,由已知条件可得22x =代入化简式中得211111x x x x x +-+==++【答案】1【巩固】(2010海淀一模)已知12x y =,求2222222x x y yx xy y x y x y-⋅+-++-的值.【难度】2星【解析】化简得:22222222()()22()2()x x y y x x y x y y x y x xy y x y x y x y x y x y x y--++⋅+=+=-++--+--,由已知可得:2y x =,代入2()x y x y +-中得2()2(2)62x y x x x y x x++==--- 【答案】6-【巩固】(2010海淀二模)已知22690x xy y -+=,求代数式 2235(2)4x yx y x y +⋅+-的值.【难度】3星【解析】将分式化简得:223535(2)42x y x yx y x y x y ++⋅+=--,再将已知条件整理得:2(3)0x y -=,即3x y =,将3x y =代入352x y x y +-中得:951465y y y y +=- 【答案】145【巩固】(2010石景山二模)已知:2244a b ab +=(0ab ≠),求22225369a b a b ba b a ab b a b--÷-++++的值.【难度】3星【解析】将分式化简得:2(3)53523()()a b a b b a b b a ba b a b a b a b a b a b-++--⋅-==+-++++,由已知条件可得:2(2)0a b -=,即2a b =.将2a b =代入2a b a b -+中得:412a aa a-=-+ 【答案】1-【巩固】已知2232a b ab -=,0a >,0b >,求证:252a b a b +=- 【难度】4星【解析】由已知条件可得:(3)()0a b a b -+=,所以有3a b a b ==-或,又0a >,0b >,a b ∴=-不成立,即有3a b =.将3a b =代入25522a b b a b b +==- 【答案】52【总结】条件等式化简求值中,依然先化简,然后观察已知条件,找出未知数之间的关系,最后进行替换. 【易错】已知条件中等号左边一般可以进行因式分解,若没有很清楚找清未知数之间的关系,则很难求出最后结果。