移动机器人原理与设计

合集下载

导轨式自主移动机器人的设计研究

导轨式自主移动机器人的设计研究

导轨式自主移动机器人的设计研究随着科技的发展,机器人成为了人们生产和生活中不可缺少的一部分。

而导轨式自主移动机器人因其较高的精度和稳定性,被广泛应用于工业自动化领域。

本文将探讨导轨式自主移动机器人的设计研究。

一、引言导轨式自主移动机器人是一种能够独立完成各类工作任务的移动机器人。

它能够通过内置导轨系统实现自主移动和定位,具有精度高、稳定性好的特点。

本文将从机器人的设计和控制两个方面对其进行研究。

二、机器人的设计1.导轨系统导轨式自主移动机器人是通过内置导轨系统实现自主移动。

因此,导轨系统的设计至关重要。

导轨系统需要考虑机器人的定位精度、导轨系统的结构刚度和稳定性等因素。

同时,导轨系统的材料也需要选择具有较高刚度和耐磨性的材料。

2.移动系统导轨式自主移动机器人的移动系统需要对机器人进行跟踪和位置控制。

因此,移动系统需要使用高精度设备,例如使用特制的定位传感器和信号发生器实现对机器人位置的监控和控制。

3.控制系统导轨式自主移动机器人的控制系统是机器人能否正常工作的关键。

控制系统需要对机器人进行各种信息处理,同时实现对导轨系统和移动系统的精密控制。

因此,控制系统需要具备高精度、高稳定性和高响应速度的特点。

三、机器人的控制1.定位控制导轨式自主移动机器人的定位控制需要将机器人定位传感器监测到的位置信息映射到操作缸移动的空间中。

这一过程需要进行算法设计和优化,以确保机器人的定位精度和稳定性。

2.运动控制导轨式自主移动机器人的运动控制需要对机器人的运动进行监控和控制。

运动控制需要实现对移动系统和导轨系统的精密控制。

同时,运动控制还需要考虑到机器人的速度和加速度等因素。

3.姿态控制导轨式自主移动机器人的姿态控制需要实现机器人的转弯与倾斜等运动。

姿态控制需要在运动控制的基础上进行,通过控制机器人的动力单元完成机器人的转弯和倾斜。

四、总结本文探讨了导轨式自主移动机器人的设计和控制。

在机器人设计方面,需要关注导轨系统的设计、移动系统的设计以及控制系统的设计。

AGV交互移动机器人设计与制造

AGV交互移动机器人设计与制造

AGV交互移动机器人设计与制造AGV(Automated Guided Vehicle)交互移动机器人是一种能够在工业或商业环境中自主导航和交互的移动机器人。

它能够根据预先设定的路径或实时环境信息,进行自主导航和移动,同时还能够与周围环境和其他设备进行交互和协作。

AGV交互移动机器人在工厂物流、仓储管理、商场导购等领域有着广泛的应用,能够有效提高自动化程度和工作效率。

AGV交互移动机器人的设计与制造需要综合考虑机械、电子、控制等多个方面的技术,同时还需要充分考虑使用环境和需求,以确保机器人能够在具体场景中发挥最佳效果。

本文将从机器人的设计理念、关键技术和制造流程等方面进行详细介绍。

一、设计理念AGV交互移动机器人的设计理念主要包括以下几个方面:1. 自主导航:AGV交互移动机器人需要具备自主导航的能力,能够在复杂的环境中进行路径规划和避障,确保安全和高效地到达目的地。

为了实现自主导航,机器人需要搭载激光雷达、摄像头、惯性导航等多种传感器,并结合SLAM(Simultaneous Localization and Mapping)算法进行环境感知和地图构建。

2. 交互功能:AGV交互移动机器人需要能够与人和其他设备进行交互,能够接收指令、传递信息、实现协作等功能。

为了实现交互功能,机器人需要搭载语音识别、人脸识别、触摸屏等多种交互设备,并结合人机交互算法进行交互设计。

3. 智能决策:AGV交互移动机器人需要具备智能决策的能力,能够根据环境信息和任务需求进行智能化的路径规划和动作控制,实现高效的工作效率。

为了实现智能决策,机器人需要搭载物联网、云计算等技术,并结合机器学习算法进行智能化的决策设计。

设计理念的核心是以人为本,注重机器人与人和环境的交互,力求使机器人能够更加智能、灵活和人性化地服务于人类。

二、关键技术1. 传感器技术:激光雷达、摄像头、超声波传感器等多种传感器技术的应用,能够实现机器人的环境感知和障碍物检测,确保机器人能够安全地进行导航和移动。

《移动机器人原理与设计》第六章移动机器人感知

《移动机器人原理与设计》第六章移动机器人感知
《移动机器人原理与设 计》第六章移动机器人 感知
汇报人: 202X-01-05
目录
• 移动机器人感知概述 • 移动机器人感知技术 • 移动机器人感知应用 • 移动机器人感知面临的挑战与解决方案
移动机器人感知概
01

感知的定义与重要性
感知定义
感知是移动机器人通过传感器获取周 围环境信息,并对这些信息进行处理 和理解的过程。
移动机器人感知面
04
临的挑战与解决方

感知精度与实时性的挑战与解决方案
总结词
感知精度和实时性是移动机器人感知中的关键问题,直接影响到机器人的导航 、避障和任务执行。
详细描述
为了提高感知精度,可以采用高分辨率传感器和算法优化。同时,可以采用并 行处理和云计算技术来提高感知的实时性。
感知系统稳定性的挑战与解决方案
军事机器人感知应用
01 02 03 04
军事机器人需要具备高精度的感知能力,以便在战场环境中准确完成 各项任务。
军事机器人需要能够识别敌人和武器,以便更好地进行侦察、打击和 防御等任务。
军事机器人需要具备声呐感知能力,以便在水下环境中进行探测和攻 击等任务。
军事机器人需要具备红外感知能力,以便在夜间和恶劣天气条件下进 行侦察和攻击等任务。
磁场感知技术
地磁感应器
利用地球的磁场来检测方向和位置信息。
磁场特征分析
通过分析磁场的变化来识别物体或环境特征。
多模态感知融合技术
数据融合 以提高感知的准确性和可靠性。
多传感器协同工作
利用多个传感器同时工作,以实现更 全面的环境感知和信息获取。
移动机器人感知应
感知重要性
感知对于移动机器人的导航、避障、 目标识别等任务至关重要,是实现自 主移动的关键环节。

《移动机器人原理与设计》第八章多机器人系统

《移动机器人原理与设计》第八章多机器人系统

習題:
1、多機器人比單機器人有什麼優勢? 2、多機器人系統比單機器人系統複雜在哪些 方面? 3、查閱資料,總結機器人編隊問題的解決方 法。 4、查閱資料,總結幾種新的定位方 5、查閱資料,總結幾種新的導航方法。
第八章 多機器人系統
• 多機器人協作 • 多機器人定機器人協作的方法
生物學啟發方法 (Bio-inspired Method) 心理學方法 經濟學方法 其他方法 多機器人控制結構問題 多機器人任務分配問題 多移動機器人衝突消解問題 多機器人協作方法的系統可擴展性問題 多移動機器人協作方法的適應性問題
多機器人協作的關鍵問題
8.2 多機器人定位與建圖
多機器人 交替定位建圖方法
三邊法測量原理
基於柵格地圖的複雜環境建圖
兩個機器人協作建圖方法
基於PF-EKF的相對觀測定位方法
綜合利用粒子濾波器和擴展卡爾曼濾波器來實現相對 的定位
基於免疫機理的多機器人建圖方法
人工免疫演算法把抗原與抗體的親和力作為目標函數與 解的匹配程度,抗體間的親和力保證求解的多樣性,通過 計算抗體的期望生存率促進優良抗體的遺傳和變異,用記 憶細胞保存擇優後的可行解並抑制相似解。

基于变胞原理的移动机器人的设计与研究

基于变胞原理的移动机器人的设计与研究

基于变胞原理的移动机器人的设计与研究面对复杂的事故现场环境和艰巨的救援任务,为了使救援人员从危险的工作环境中解脱出来,机器人技术作为一种智能科技被深入研究和广泛应用,成为抢险救灾领域的研究热点。

但是,目前传统的机器人结构不足以保证通过事故现场的松软或陡坡路面。

因此将变胞机构引入到移动机器人的腿部结构中,基于变胞机构的变结构和变自由度的特性设计了一种变胞移动机器人,以适应多种事故现场环境,完成更多救援工作任务,满足人们对机器人工作的精准化、多元化的要求。

为求得合理的变胞机构,采用了邻接矩阵的描述方法,将变胞机构的空间结构变换与运动特性相结合,建立移动机构的空间运动学方程和动力学模型,根据旋量理论建立机构各个构态的运动旋量矩阵,最后通过仿真软件进行构态变换时的稳定性分析。

具体工作内容如下:(1)基于具体工作任务要求结合变胞理论设计了救援移动机器人的拓扑图,根据基本机构原理初步确定构件尺寸。

运用NX/UG软件进行三维建模,并分析了移动机器人的构态变换方式及其描述方法。

(2)基于D-H参数法构建移动机构的运动学模型,通过对运动学方程的建立、求解移动机构的相应位置,获得机构的正向运动学方程。

引入旋量理论进一步开展构态运动分析,通过运动螺旋矩阵和求得反螺旋系结果反映出了机构的可行性。

由MATLAB软件仿真得到三个构态下移动机器人的连杆关节的位置随时间变化曲线。

(3)建立单个移动腿部分支的静力学模型,分析腿部分支杆件在运动状态下的静力学特性,得到连杆间内应力的变化特性以及电机驱动力矩的变化规律。

基于Lagrange理论对移动机器人进行动力学建模。

根据机构等效阻力梯度模型对构态的随机性进行分析。

(4)应用ADAMS软件进行机器人的虚拟样机仿真分析,仿真结果表明预定的三个构态均可实现,证明了机构的可行性,同时获得了变胞移动机器人的杆件变换构态过程的位移、速度和加速度的变化曲线,结果表明了在变换构态瞬时会产生冲击振动,与基于等效梯度阻力的随机性分析结果一致,从而验证了仿真结果的正确性。

《移动机器人原理与设计》第四章驱动

《移动机器人原理与设计》第四章驱动

2、三相反應式步進電機原理
步進驅動原理 細分驅動技術
• 步進電機的基本參數
• 步距角:對應一個步進脈衝信號,步進電機轉過的角度。稱為固定步 距角。θ=360 /( J*m) • 步距角精度:步進電機每轉過一個步距角的實際值與理論值的誤差。 • 相數:是指電機內部的線圈組數 • 拍數:完成一個磁場週期性變化所需脈衝數或導電狀態,或指電機轉 過一個齒距角所需脈衝數 • 保持轉矩:是指步進電機通電但沒有轉動時,定子鎖住轉子的力矩 • 失步:步進電機運轉時運轉的步數,不等於理論上的步數,稱為失步 • 失調角:轉子齒軸線偏移定子齒軸線的角度 • 在某種測試條件下,電機運 行中輸出力矩與頻率關係的曲 線稱為運行矩頻特性
• 舵機的應答幀
• 舵機當前的工作狀態會通過位元組“ERROR”表示
• 指令
• 基本協議中定義了7條指令
• 記憶體控制表
• 記憶體控制表
• 記憶體控制表
• 記憶體控制表
• 部分記憶體控制表說明 • 0X04 保存串列傳輸速率計算參數。計算公式: Speed(BPS) = 2000000/(Address4+1)。 • 0x05: 設置返回延遲時間,即當舵機收到一條需要應答的指令後, 延遲應答的時間。 • 0x06~0x09: 設置舵機可運行的角度範圍。 順時針角度限制≤目標角度值≤逆時針角度限制值。
• 直流電機特性
機械特性
調節 特性
• 直流電機驅動電路 • 電晶體驅動電路
• 橋式電路
• 集成驅動 • L298系列 是一種二相和四相電機的專用驅動器, 內含二個H橋的雙全橋式驅動器
• MC33886
• • • • • 工作電壓:5-40V 導通電阻:120毫歐姆 輸入信號:TTL/CMOS PWM頻率:<= 10KHz 短路保護、欠壓保護、 過溫保護 • 具有錯誤狀態報告功能 (引腳/FS)

AGV交互移动机器人设计与制造

AGV交互移动机器人设计与制造

AGV交互移动机器人设计与制造AGV 是“Automated Guided Vehicle”的缩写,中文翻译为“自动引导车”,是一种能够实现自主移动和运输物品的机器人。

AGV通常配备传感器和导航系统,可以通过编程方式执行特定的任务,例如在工厂生产线上自动运送物料或在仓库中自动搬运货物。

下面将介绍AGV交互移动机器人的设计与制造。

1. 基本结构设计:AGV交互移动机器人通常由底盘、操控系统、导航系统、传感器和电源系统等组成。

底盘是机器人的基础,可以通过轮子或履带实现移动。

操控系统是机器人的大脑,主要负责接收任务信息和控制机器人的移动。

导航系统可以使用激光导航、视觉导航或者传感器导航等技术,以确定机器人的位置和路径。

传感器可以使用激光传感器、摄像头、超声波传感器等,用于感知周围环境。

电源系统可以使用电池或者充电系统,以供机器人长时间的使用。

2. 机器人交互设计:AGV交互移动机器人不仅要能够自主移动,还需要能够与人类进行交互。

机器人可以配备触摸屏或者语音识别系统,让人们可以通过触摸或者语音与机器人进行交互。

人们可以通过触摸屏或者语音命令指示机器人前往某一位置或者执行某个任务。

3. 安全设计:机器人在与人类进行交互时,需要确保安全。

AGV交互移动机器人可以配备防撞传感器和急停开关,以便在遇到障碍物或者紧急情况时能够停止移动。

机器人还可以通过导航系统规划安全路径,避免与人员或者设备发生碰撞。

4. 兼容性设计:AGV交互移动机器人可以与现有的生产线或者仓库系统进行兼容。

机器人可以通过无线通信技术与其他设备进行连接,以实现任务的协同执行。

机器人可以与生产线上的机器人或者仓库系统进行通信,实现物料的自动运输和搬运。

在制造AGV交互移动机器人时,需要进行以下几个步骤:1. 确定需求:首先需要确定机器人的使用场景和具体需求。

确定机器人需要在生产线上还是在仓库中使用,需要运输的物品是什么等。

确定需求后,可以根据需求来选择机器人的结构和功能。

《移动机器人原理与设计》第三章运动学

《移动机器人原理与设计》第三章运动学
假定目標在全局參考坐標系 的原點,差動驅動的機器 人的運動學模型
令 為機器人前進方向和機器人輪軸中心與目標點連線之間的角度,當前 位置在全局參考坐標系下的極座標為:
• 控制率設置 設計控制信號v和w, 閉環控制系統可表示為:
該閉環系統有一個唯一的平衡點 器人到達目標點。
YR

XR
XI
在局部參考坐標系下,沿XR的運動等於- ,沿YR的運動是 , 也就是說,機器人在局部參考坐標系下沿x軸的運動,相 當於在全局參考坐標系下沿y軸反方向的運動
• 運動學模型
假定差動機器人有2個動力輪,半徑均為r,給定點為兩輪之間的中點M, 輪距為d。給定r,d,θ和各輪的轉速 , 點M在XR正方向上的平移速度為:
• 活動性程度
• 可操縱度 對於 一個安裝有零個或多個可操縱標準輪的機器人有: 為零時,說明機器人底盤沒有 安裝可操縱標準輪;等於2時, 說明機器人沒有安裝固定標 准輪。
• 機動性 指機器人可以操縱的總的自由度,由直接操縱的自由度( 即活動性程度)和間接操縱的自由度(即可操縱度)兩個 部分構成。
• 移動機器人的運動控制 開環策略和閉環策略 點鎮定、路徑跟蹤、軌跡跟蹤
• 點鎮定舉例
• 在機器人局部參考坐標系下,給定實際位姿誤差向量為 x,y和θ是機器人的目標座標。如果存在一個控制矩陣K, ,
使得v(t)和w(t)的控制,
滿足
機器人在目標點是穩定的,即控制矩陣K可以使機器人到達該目標點。
• 運動學模型的建立
• 底盤的滑動約束
所用標準輪的滑動約束集合成一個單獨運算式:
也表示一個投影矩陣,它將機器人局部參考坐標系下的 運動投影到各個輪子的法平面內
• 例4
對兩輪差動驅動機器人,求滾動約束和滑動約束的聯合運算式。 解:聯立約束方程,得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

移动机器人原理与设计
移动机器人的原理与设计
移动机器人是一种能够自动执行特定任务的机器人,它能够在无人监督的情况下移动、导航和完成指定的工作。

为了实现这一目标,移动机器人通常借助多种传感器和智能控制系统。

移动机器人的基本原理是通过传感器获取环境信息,经过处理与分析后,控制机器人的运动和动作。

常用的传感器包括摄像头、超声波传感器、红外线传感器、激光雷达等。

这些传感器能够帮助机器人感知周围的障碍物、地形、光线等信息,从而实现导航和避障。

在设计移动机器人时,需要考虑机器人的结构和动力系统。

机器人的结构应该能够适应不同的环境和任务要求,同时具备稳定性和灵活性。

例如,一些机器人会采用四足或六足的结构,以便在不同地形上移动。

动力系统则决定了机器人的运动模式和工作持续时间,可以使用电池、燃料电池或者其他能源。

智能控制系统是移动机器人的核心部分,它负责处理传感器信息、制定运动策略、计算路径规划和执行动作。

这个系统通常使用嵌入式计算设备,如微处理器、单片机或者嵌入式系统。

控制系统需要结合自主导航算法、运动规划算法和决策算法,以最优的方式完成任务。

在实际应用中,移动机器人可以用于各种任务,例如巡检、清洁、货物搬运、协助手术等。

它们可以在医院、工厂、仓库、
公共场所等不同的环境中发挥作用,提高生产效率、减少人力成本,并且可以应对一些危险或繁重的工作。

总体来说,移动机器人的原理与设计是基于传感器、结构和控制系统的综合应用,通过智能控制和导航实现自主移动和任务执行。

通过不断的技术创新和应用探索,移动机器人将在未来的各个领域中发挥更重要的作用。

相关文档
最新文档