平面电磁波

合集下载

平面电磁波

平面电磁波

例如铜:
f 1MHz, c 66106 m
f 30GHz, c 0.38106 m
4.4 电磁波的极化

本节要点
极化 线极化 圆极化 椭圆极化

1. 极化(polarization)
金属导体 金属导体
导体上的感应电 动势等于零
导体上的感应电 动势最大
无耗媒质中电场、磁场与功率流
4.2 无限大导电媒质中的平面电磁波
本节要点
复介电常数 导电媒质中的平面波 色散及其对通信的影响

1.复介电常数(complex permittivity)

无限大导电媒质中复介电常数
~ 1 j
实部代表位移电流的贡 献,不会引起能量消耗。
+z轴方向传播的均匀平面波 -z轴方向传播的均匀平面波
4. 均匀平面波的基本概念

如果电介质区无限延伸,则电场矢量可一般地表示为 E ax E0e jkz 时域表达式为 Ex z, t E0 cost kz 0
下面,我们对平面波进行较为详细的分析。


代表场的波动状态,称为电磁波的相位。它由三部分构成:
~ 将无耗媒质的相位常数及波阻抗中的 均以 来取代,即 得导电媒质中的复相位常数为

~ ~ k j
~ 1 j
2 1 1 1 2 1 2
~ 1 j


2
2.导体中均匀平面电磁波
导体中均匀平面波的电磁场及平均坡印廷矢量为
Ex E0ez e jz
Hy
E0e z e jz e j / 4

9. 平面波解析

9. 平面波解析

的存在与否,将波分为三种类型 和H 根据 E
z
z
1.TEM 波
( Ez 0, H z 0,
Kc 0)
说明任一时刻,在xoy平面上场的分布与稳态场相同
0, H 0 ),亦称横电波 2.TE 波( E
z z
3.TM 波(
z 0, H z 0 E
),亦称横磁波
(9 - 2 - 1)
图 9-1 均匀平面电磁波的传播
综上可见,可取:
E e x Ex ( z, t )
E x ( z, t ) 1 E x ( z, t ) 2 0 2 2 z t
2 2
(9-2-2)
此方程的通解为
Ex ( z, t ) f1 ( z t ) f 2 ( z t )
E E E 2 t t
2 2
(9-1-2)
类似的推导可得
H H H 2 t t
2 2
(9-1-3)
相量形式的波动方程:
E +k E 0
2 2 2
H +k H 0
2
(9-1-4)
其中:
k c
2
c j 1 j
Z(z)=A+ ez + A-ez
2 T E0 ( x, y )+K c 2 E0 ( x, y ) 0 2 T H0 ( x, y )+K c 2 H0 ( x, y ) 0
(9-1-5)
K c c +
2 2
2
(9-1-5)分成纵向成分和横向成分:
2 T E0T ( x, y )+Kc 2 E0T ( x, y ) 0 2 T H0T ( x, y )+Kc 2 H0T ( x, y ) 0 2 T E0z ( x, y )+Kc 2 E0z ( x, y ) 0 2 T H0z ( x, y )+Kc 2 H0z ( x, y ) 0

平面电磁波

平面电磁波

这些方程称为齐次标量亥姆霍兹方程。 这些方程称为齐次标量亥姆霍兹方程。 齐次标量亥姆霍兹方程 由于各个分量方程结构相同,其解具有同一形式。 由于各个分量方程结构相同,其解具有同一形式。 结构相同 同一形式
变量有关, 若场量仅与 z 变量有关,则可证明 E z = H z = 0 。 无关, 若场量与变量 x 及 y 无关,则
效应。 效应。 由 Hy
=
j ∂E x ωµ ∂z
可得
H y0 =
Hy =
ε E x 0 e − jkz = H y 0 e − jkz µ
ε Ex0 µ
可见, 理想介质中 电场与磁场相位相同 介质中, 相位相同, 可见 , 在 理想 介质中 , 电场与磁场 相位相同 , 且两者空间相位均与变量z有关 空间相位均与变量 有关, 振幅不会改变 不会改变。 且两者空间相位均与变量 有关,但振幅不会改变。
第八章
主 要
平面电磁波
内 容
理想介质中的平面波、平面波极化特性、 理想介质中的平面波、平面波极化特性、平面边界 上的正投射、任意方向传播的平面波的表示、 上的正投射、任意方向传播的平面波的表示、平面边界 上的斜投射、 上的斜投射、各向异性介质中的平面波 1. 2. 3. 4. 5. 波动方程 理想介质中平面波 导电介质中平面波 平面波极化特性 平面波对平面边界正投射
Ex
Hy
O
z
时刻,电场及磁场的空间变化特性。 上图表示 t = 0时刻,电场及磁场的空间变化特性。 电场强度与磁场强度之比称为电磁波的波阻抗, 电场强度与磁场强度之比称为电磁波的 波阻抗, 波阻抗 表示, 以 Z 表示 即
Z= Ex = Hy
µ ε
实数
当平面波在真空中传播时,波阻抗以 表示, 当平面波在真空中传播时,波阻抗以Z0表示,则 真空中传播时

电磁场-平面电磁波

电磁场-平面电磁波

入射波电场垂直于入射面 (即垂直极化)
注:入射面即y=0的平面,不是分界面
将 H 分解为界面的切线 t 向,上下边界应相等
• .
• 联解(1)(2)得到菲涅耳公式(设μ1 = μ2=μ)
• 考虑到
在介质1中合成波场的分量为:
讨论: 1)场的每一个分量都有因子 向传播,相位沿x方向变化。
,表示合成波也沿x方
第四章 平面电磁波
无线广播,通讯的载波,激光器发出的激光,都 接近正弦电磁波,称谐和波或单色场。
• 通常正弦电流用复数表示:
称为电场的 x(或y, z)分量的复振幅, 复振幅和幅角都是坐标的函数
.
• 利用复指数后,场量对时间的偏导数变得简单。
。将复数表达式代入正弦电磁场情况下的麦克斯韦方程组得:
时称为理想导体。
• (3)0.01 < < 100 称半导体, • 半导体材料对传导电流和位移 电流都必须考虑。
• .注意: 某种材料是导体还是绝缘体或半导体,
• 不但与ζ 还与工作频率 ω有关。 • 例铜的电导率ζ =5 .7x 107 S/m , 在光频以下为良导体 • 对 x射线(设波长为0.1nm), 铜却不是良导体。
电场瞬时值表达式:
为沿 -z 方向传播的平面波
电磁波的极化
• 平面电磁波是横波,它的 E矢量可以在垂直于传 播方向(波矢 K 的方向)的任意方向振动,如 果在垂直于传播方向的平面内,E 的振动限于 某一固定的方向,则称为线偏振或平面偏振,E 的振动方向称为偏振方向或极化方向。 • 沿z轴方向传播的电磁波的电场矢量E 可以分解 为两个互相正交的分量Ex , Ey 它们的振幅分别为 E1、 E2,相位差为φ=φ1-φ2
• .良导体的条件

平面电磁波的性质

平面电磁波的性质

uv E
'
积分并取积分常数为0
v k
×
uv E
=
uv kv B
v k
×
uv B
=
−με
uv kv E
结论:E、B、k三个矢量互相垂直,并顺序组成右手坐标系。 电场波E和磁场波B都是横波


1.3.2 电磁波的矢量性质
分析:电磁波是由高频振荡的电场E和磁场B按一定的规 律随空间坐标r和时间t传播而形成的。电磁波的波函数描 述了E、 B随r、t的变化规律。在一般情况下,E、B的大 小和方向均随r、t的变化而变化,总是发生在垂直波传播 方向的平面内(横波)。
由于 : k × E = kν B
Qk ⊥ E
且 k = k ⇒ E =νB = 1 B = c B με n
E和B之间的数值关系
r E Qr= B
1 =v
εμ
两波振幅之比是一个正实数, ∴ Er、Br两矢量位相相同。
回 顾
• 平面电磁波的能量传播特性
1.能流密度矢量(各向同性)
电场:u E
=
1 2
•光波在折反射过程中振动分量的状态不变。入射波为s分量时,反射 波和折射波也是s分量,不会出现p分量,反之亦然
这种方向只是一种人为的规定,改变这种规定,并不影响结果的 普遍适用性。
③非铁磁性媒质: μ1 = μ2 = μ0

uv E
的正方向的规定:S分量
为正, 为负;P分量:在界面的投影向
右为正,左为负
• 在光学中,常常要处理光波从一种介质到另 一种介质的传播问题,由于两种介质的物理 性质不同(分别以ε1、μ1 和ε2、μ2 表征), 在两种介质的分界面上,电磁场将不连续,

平面电磁波

平面电磁波
• 考虑到真空的介电常数为ε0. 磁导率为μ0. 得:
上一页 下一页 返回
7. 2 自由空间中的平面波
• 式(7 -30) 中 • 为真空中的光速. 由于一切媒质的相对介电常数εr >1. 而且一般媒
质的相对磁导率μr≈1. 因此. 理想电介质中均匀平面波的相速通常 小于真空中的光速. 但是要注意. 电磁波的相速有时可以超过光速. 可 见. 相速不一定代表能量传播速度. • 式(7 -30) 中 • 是频率为f 的平面波在真空中传播时的波长.
上一页 下一页 返回
7. 2 自由空间中的平面波
• 式(7 -9) 是一个二阶常微分方程. 其通解为: • 式中第一项代表沿正z 方向传播的波. 第二项代表沿负z 方向传播的
波. 为了便于讨论平面波的波动特性. 仅考虑沿正z 方向传播的波. 令 上式第二项为零. 即 • 式中. Ex0为z =0 处电场强度的有效值. Ex (z) 对应的瞬时值为:
上一页 下一页 返回
7. 2 自由空间中的平面波
• 媒质电场强度与磁场强度的振幅之比称为波阻抗. 也称为媒质的特征 阻抗. 或者本征阻抗. 以Zc表示. 即
• 由上述讨论可知. 平面波的波阻抗为复数. 电场强度与磁场强度的空间 相位不同. 复能流密度的实部及虚部均不会为零. 意味着平面波在传播 过程中. 既有能量的单向传播. 又有能量的双向或交换传播.
上一页 下一页 返回
7. 2 自由空间中的平面波
• 将ω =2πf 和式(7 -19) 代入式(7 -20). 得: • 式(7 -21) 描述了平面波的相速vp、频率f 与波长λ 之间的关系.
平面波的频率是由波源决定的. 它与源的频率始终相同. 但是平面波的 相速与媒质特性有关. 因此. 平面波的波长也与媒质特性有关. • 将式(7 -14a) 代入式(7 -18) 中. 得:

平面电磁波

平面电磁波

平面电磁波1时变电磁场以电磁波的形式存在于时间和空间这个统一的物理世界。

2研究电磁波在特定情况下的激发和传播规律,就是从数学上求解麦克斯韦方程组或该特定条件下的波动方程组。

在某些特定条件下,可以将麦克斯韦方程组或波动方程组简化为简化模型,如传输线模型、集总参数等效电路模型等。

4最简单的电磁波是平面波。

等相面(波阵面)为无限大平面电磁波称为平面波。

如果平面波等相面上场强的幅度均匀不变,则称为均匀平面波。

许多复杂的电磁波,如柱面波和球面波,可以分解为许多均匀平面波的叠加;反之亦然因此,均匀平面波是最简单、最基本的电磁波模式,所以我们从均匀平面波开始。

§6.1波动方程2.EJ2.1.电场波动方程:?Ett22h2j磁场波动方程?ht2??2如果媒质导电(意味着损耗),有j??e代入上面,则波动方程变为2.EE2e 2.tt2hh2h20T如果t是时谐电磁场,则场量用复矢量表示,然后2e?j???e??2??e?2.HJHH02采用复介电常数,j???(1?j22??,上面也可写成)??23在线性、均匀、各向同性非导电媒质的无源区域,波动方程成为齐次方程。

2.E2e 2.0t2h2h20T4在线性、均匀、各向同性和导电介质的被动区域,波动方程变为均匀方程。

2e?e?2e2?02.HH2小时2.0tt如果是时谐电磁场,用场量用复矢量表示,并采用复介电常数,2.J2.(1?j2?e e?02??,上面也可写成)??22?h?h?????02注意,介电常数是一个复数,代表损耗。

5学习要求:推导,数学形式与物理意义的对应。

§6.2均匀平面电磁波1波动方程的均匀平面波解在真实的物理世界中没有均匀的平面波。

它需要无限的理想介质和无限的能量。

然而,远离场源的局部区域内的电磁波可被视为均匀平面波。

2.从均匀平面波的定义出发,我们可以假定电场只与同一坐标分量有关,如直角坐标系中的Z坐标。

接下来,我们首先用麦克斯韦方程证明均匀平面波电磁场的纵向分量(平行于传播方向的电磁场分量,此时为Z分量)等于零;其次,给出了具有非零场分量的波动方程的通解,解释了波动的本质;然后推导了均匀平面波的传播特性。

平面电磁波知识点

平面电磁波知识点

平面电磁波知识点电磁波是一种在空间中传播的波动现象,它由电场和磁场相互作用而产生。

平面电磁波作为电磁波的一种形式,具有特定的特性和应用。

本文将介绍平面电磁波的基本知识点,包括定义、特性、产生和传播、应用等内容。

一、平面电磁波的定义平面电磁波是指电场和磁场在空间中沿着一定方向传播的电磁波。

它的波动方向垂直于电场和磁场的传播方向,且电场和磁场的变化情况具有一定的关系。

平面电磁波包含了无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等多个频段。

二、平面电磁波的特性1. 频率和波长:平面电磁波的频率和波长间存在确定的关系,即波长等于光速除以频率。

波长越短,频率越高,能量越大。

不同频段的电磁波对应着不同的波长和频率范围。

2. 周期和振幅:平面电磁波的周期指一个完整波形所经历的时间,振幅指波峰或波谷与波中心的距离。

波形的周期和振幅决定了平面电磁波的能量和强度。

3. 速度:平面电磁波在真空中的传播速度是一个恒定值,即真空中的光速。

它的数值约为299,792,458米每秒,通常记作c。

不同介质中的传播速度与光速有关,由该介质的折射率决定。

4. 方向性:平面电磁波的传播方向是垂直于电场和磁场方向的。

电场和磁场的方向彼此垂直,并且与传播方向形成右手定则。

三、平面电磁波的产生和传播1. 产生:平面电磁波可以通过加速带电粒子、振动电荷或电流等方式产生。

当带电粒子或电流经过加速、振动时,会产生电场和磁场的变化,从而产生平面电磁波。

2. 传播:平面电磁波的传播遵循麦克斯韦方程组。

根据这些方程,平面电磁波在真空中以光速传播,不受介质的影响。

当平面电磁波遇到介质时,会发生折射、反射或透射等现象,具体情况取决于介质的性质。

四、平面电磁波的应用1. 通信:平面电磁波广泛应用于无线通信领域。

不同频段的电磁波用于无线电、电视、手机、卫星通信等通信系统,实现声音、图像和数据的传输。

2. 医学:平面电磁波在医学诊断、治疗和影像技术中起到重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面电磁波1 时变电磁场以电磁波的形式存在于时间和空间这个统一的物理世界。

2 研究某一具体情况下电磁波的激发和传播规律,从数学上讲就是求解在这具体条件下Maxwell equations 或wave equations 的解。

3 在某些特定条件下,Maxwell equations 或wave equations 可以简化,从而导出简化的模型,如传输线模型、集中参数等效电路模型等等。

4 最简单的电磁波是平面波。

等相面(波阵面)为无限大平面电磁波称为平面波。

如果平面波等相面上场强的幅度均匀不变,则称为均匀平面波。

5 许多复杂的电磁波,如柱面波、球面波,可以分解为许多均匀平面波的叠加;反之亦然。

故均匀平面波是最简单最基本的电磁波模式,因此我们从均匀平面波开始电磁波的学习。

§ 波动方程1 电场波动方程:ερμμε∇+∂∂=∂∂-∇t J tE E ρρρ222 磁场波动方程 J t H H ρρρ⨯-∇=∂∂-∇222με 2 如果媒质导电(意味着损耗),有E J ρρσ=代入上面,则波动方程变为ερμεμσ∇=∂∂-∂∂-∇222tE t E E ρρρ 0222=∂∂-∂∂-∇tH t H H ρρρμεμσ 如果是时谐电磁场,用场量用复矢量表示,则ερμεωωμσ&&ρ&ρ&ρ∇=+-∇E E j E 22 022=+-∇H H j H &ρ&ρ&ρμεωωμσ 采用复介电常数,εμωωεσμεωωμσμεω&222)1(=-=-j j ,上面也可写成 3 在线性、均匀、各向同性非导电媒质的无源区域,波动方程成为齐次方程。

0222=∂∂-∇tE E ρρμε 0222=∂∂-∇t H H ρρμε 4在线性、均匀、各向同性、导电媒质的无源区域,波动方程成为齐次方程。

0222=∂∂-∂∂-∇tE t E E ρρρμεμσ 0222=∂∂-∂∂-∇tH t H H ρρρμεμσ 如果是时谐电磁场,用场量用复矢量表示,并采用复介电常数,εμωωεσμεωωμσμεω&222)1(=-=-jj ,上面也可写成 022=+∇E E &ρ&&ρεμω 022=+∇H H &ρ&&ρεμω 注意,介电常数是复数代表有损耗。

5 学习要求:推导,数学形式与物理意义的对应。

§ 均匀平面电磁波1 波动方程的均匀平面波解真实的物理世界不存在均匀平面波,它需要无限大的理想介质和无穷大的能量。

但离场源很远的局部区域的电磁波可以看成均匀平面波。

2 由均匀平面波的定义,我们可以设电场只与同一坐标分量有关,如直角坐标系中的z 坐标。

3 下面我们首先用Maxwell 方程证明均匀平面波电磁场的纵向分量(平行于传播方向的电磁场分量,此时为z 分量)等于零;其次我们给出非零场分量wave 方程的一般解,由一般解说明波的本质;然后导出均匀平面波的传播特性。

4 把,0,0,0,0=∂∂=∂∂=∂∂=∂∂yH x H y E x E ρρρρ代入Maxwell 两个旋度方程,可得 0,0=∂∂=∂∂tH t E z z因此z z H E ,是不随时间变化的常量,相互没有耦合,既与时变电磁场无关,又不包含信息,在时变电磁场中,可令它们为零。

故均匀平面波电磁场的纵向分量(平行于传播方向的电磁场分量,此时为z 分量)等于零。

5 现在电场矢量位于x -y 平面,不失一般性,可令x x E a E ρρ=,这时电场波动方程可以简化为02222=∂∂-∂∂t E z E x x με 其一般解为)()(21vt z f vt z f E x ++-= 式中με1=v 为波速6 波动的本质:令 vt z c -=场量仅仅与c 有关,c 的值决定场量的处于上面状态。

因此c 的值称为相位,上述方程称为等相位面方程。

从等相位面方程看,空间坐标的变化与时间坐标的变化可以相互补偿以保持相位或者说场量的恒定,这就是波动的本质。

7电磁波传播方向的判定:利用等相位面方程判定。

如果等相位面方程是vt z c -=,时间t 增加,欲保持相位不变,z 必须增加,因此等相位面是向z 增加方向移动,也就是电磁波传播方向是z +方向。

8 均匀平面波为横电磁波(TEM )由5可知,电磁波传播方向为z +和z -方向。

电场没有传播方向的分量。

电磁波的传播方向通常称为纵向,如果电场和磁场没有传播方向的分量,则该电磁波称为TEM 波(横电磁波)。

9 磁场、磁场与电场的关系、波阻抗:由Maxwell 磁场旋度方程可得)]()([21vt z f v vt z f v tE z H x y+'+-'--=∂∂-=∇∂∂εε 两边积分可得()()])([1])([2121vt z f vt z f Z vt z f vt z f v H y +--=+--=ε 式中εμεμεε===-1)(v Z 为波阻抗。

它仅仅与媒质的参数有关,也称为媒质的本征阻抗。

在真空中)(37712000Ω≈==πεμZ 。

10 均匀平面波中电场、磁场及电磁波传播方向三者之间的关系:前面的式中包含着两个方向传播的电磁波,如果只考虑向一个方向,比如z +方向传播的电磁波,则有)(1)(11vt z f Za H a H vt z f a E a E y y y x x x -==-==ρρρρρρ 因此在真空中的均匀平面波,其电场方向、磁场方向及电磁波传播方向三者之间相互正交,满足右手螺旋关系;电场与磁场相位相等;电场与磁场的幅度之比等于波阻抗。

11 电磁能量:m e H ZH E ωμεεω====22221)(2121故电场能量密度与磁场能量密度相等。

(如果不相等会怎样)空间任一点电磁波的瞬时能量密度等于电场能量密度与磁场能量密度之和。

12 坡印亭矢量与电磁能量的传播:v v a E a E a Z E a H a E a H E S z x z x z x z y y x x ρρρρρρρρρρωωμεεεμ=====⨯=⨯=222)()( 故均匀平面波电磁波能量沿传播方向以波速传播。

§ 正弦均匀平面波在无限大均匀媒质中的传播1无限大均匀媒质中的正弦均匀平面波除了具有前面均匀平面波的全部特性之外,还有一些特点:1)正弦意味着时谐电磁波,此时的波形函数1f 或2f 变为正弦类函数,有正弦函数就会出现频率变量ω,也可以引入场量的复数表示式;2)媒质既可以无耗,也可以有耗。

这样就更接近实际世界。

一 在理想介质:2 波动方程及其解场量用复数表示,无源区复数形式的波动方程为022=+∇E k E &ρ&ρ与§ 同样的假定和推理,有x x E a E &ρ&ρ=和0222=+∂∂x xE k z E &&式中μεω22=k ,k 为传播常数,简称为波数。

上面方程的解为e j jkz x jkz x x e E e E E φ+--==00&&其瞬时值为)cos(),(0e x x kz t E a t z E φω+-=ρρ(注:教科书(6.3.4a)式笔误,应与前面复数表示式规定一致)同样利用Maxwell 磁场旋度方程可得y y H a H &ρ&ρ=)cos()cos(),(00e xy e y y kz t Z E a kz t H a t z H φωφω+-=+-=ρρρ3 等相位面方程、波的相速及波长。

等相位面方程是:c kz t =-ω,在时谐电磁波条件下k ,ω为恒定量,由此可得0=-kdz dt ω。

相速p v 为μεμεωωω1====k dt dzv p与§ 中的结论一致。

但这里的方法更具有一般性。

波长:在传播方向上相位差为π2的两点之间的距离 k πλ2=4 复数坡印亭矢量Z E a H E S x z 22121ρ&ρ&ρ&ρ=⨯=*二 在导电媒质中5 波动方程及其解场量用复数表示,无源区复数形式的波动方程为022=+∇E k E &ρ&&ρ 式中)(222ωσεμωεμωj k -==&&。

因此只要把前面的实数k 改为复数k &,解的形式不变。

6 传播常数、波阻抗:αβωσεμωj j k -=-=)(& 传播常数为复数意味着沿传播方向电磁波有衰减。

这时称为β相位常数,α为衰减常数。

φωσεμεμj e Z j Z =-==)(&& 波阻抗的相角)40(πφφ<<表示磁场滞后于电场。

波阻抗为复数表示电场与磁场在时间上不同步。

x x E a E &ρ&ρ=和y y H a H &ρ&ρ=,电场、磁场的复数表示式为e e j z j z x j z k j x z k j x x e e E e E e E E φβαφ+--+--===000&&&& e e e j z j z x j z j z y j z k j y z k j y y e e ZE e e H e H e H H φβαφβαφ+--+--+--====&&&&&0000 电场、磁场的瞬时值为)cos(),(0e z x x z t e E a t z E φβωα+-=-ρρ)cos()cos(),(00e z x y e z y y z t e ZE a z t e H a t z H φβωφβωαα+-=+-=--&ρρρ 7 坡印亭矢量z x z e ZE a H E S α2202121-*=⨯=&ρ&ρ&ρ&ρ 由此可见在导电媒质中电磁波功率流密度按指数规律衰减。

8 不良导体与良导体:导电媒质中不良导体与良导体的划分不仅与媒质的电导率有关,而且与其中传播的电磁波的频率有关。

9不良导体,传导电流大大小于位移电流,ωεσ<<,也称为弱损耗媒质。

波阻抗 εμωεσεμ≈-=)1(j Z & 传播常数 αβωεσμεωωεσμεωj j j k -=-≈-=)211()1(& (注意:相位比幅度敏感,故传播常数近似的精度比阻抗近似精度高一阶)这样有 μεωβ≈Z σεμσα2121=≈ 这是用纯数学方法导出的衰减常数近似式。

10我们也可以用物理方法导出弱损耗媒质电磁波的衰减常数的近似式(参考教科书163页)。

相关文档
最新文档