6 折叠式共源共栅运算放大器设计实验汇总

合集下载

6折叠式共源共栅运算放大器设计实验之欧阳法创编

6折叠式共源共栅运算放大器设计实验之欧阳法创编

6折叠式共源共栅运算放大器设计实验之欧阳法创编欧阳法是一种常用的运算放大器设计方法,它在设计中充分利用了共源共栅结构的优点,既能实现放大器的高增益、高输入阻抗和低输出阻抗,又能保证输出波形的线性度。

在设计6折叠式共源共栅运算放大器之前,首先需要明确一些设计参数,例如设计的输入电压范围、输出电压范围、增益要求等。

接下来,我们按照以下步骤进行设计实验。

第一步:确定输出电流偏置在共源共栅运算放大器中,偏置电流决定了放大器的输入阻抗和输出电压范围。

为了实现输出电压范围的最大化,一般选择输出电流的一半作为偏置电流。

假设输出电流为Iout,则偏置电流为Ibias=0.5*Iout。

第二步:确定放大器的增益根据设计要求确定放大器所需的增益。

对于共源共栅结构,其放大倍数可以通过控制输入电流和输出电流之间的比值来实现。

输出电流为Iout,输入电流为Iin,则放大倍数Av=Iout/Iin。

第三步:确定放大器的工作电压根据设计要求确定放大器的工作电压。

将放大器的工作电压设为VDD/2,这样可以最大程度地利用电源电压范围。

第四步:确定电阻值根据欧阳法的设计准则,可选择如下电阻值:R1=R2=RL=1.2*VDD/(Ibias*Av)R3=R4=2*RL第五步:确定电容值选择合适的电容值可以提高放大器的频率响应。

一般选择的电容值为:Cgs=Cgd=2*Iout/(Av*VDD*fL)Cdb=Cgd/5其中,fL为放大器的最低截止频率。

第六步:确定晶体管尺寸根据电阻和电容的选择,可以反推出晶体管的尺寸。

根据晶体管的工作点,选择适当的W/L比值来满足电流需求。

完成以上步骤后,可以利用电路设计软件进行模拟仿真,并根据仿真结果进行优化调整。

最后,可以进行实验验证,并对实验结果进行分析。

以上是关于6折叠式共源共栅运算放大器设计实验的欧阳法创编的详细步骤。

在实际设计中,还需要注意噪声和功耗等因素,并进行合理的折衷考虑。

希望以上内容能对你的实验展开有所帮助。

折叠式共源共栅运算放大器设计说明

折叠式共源共栅运算放大器设计说明

折叠式共源共栅运算放大器设计说明一、设计原理二、设计步骤1.确定规格要求:根据实际应用需求确定输入阻抗、输出阻抗、增益、带宽等参数。

2.选择管子:根据需求选择合适的场效应管。

通常选择具有良好参数的MOS管,如低频用的2N7000,高频用的BF861A等。

3.设计共源级:首先设计共源级,这是整个电路的放大核心。

根据增益要求和输入阻抗要求,确定共源电阻的值,再根据场效应管的参数计算源极电流和电压。

同时,要保证共源级的电流和电压工作在合适的范围内,不引起过大的功耗和失真。

4.设计共栅级:共栅级起到输出驱动的作用,可以提供较低的输出阻抗。

根据输出阻抗和带宽要求,选择合适的共栅电阻值和驱动电路的参数。

同时要注意共栅级的工作点和共源级的匹配,以保证电路的整体性能。

5.接入电源电压:根据电路需求,确定合适的电源电压。

注意电源电压的选择要与场效应管的参数相匹配,避免电压过高或过低导致管子失效或工作不稳定。

6.进行仿真和调试:在完成电路设计后,进行电路仿真和调试,检查电路的增益、带宽等参数是否满足设计要求。

可以使用SPICE电路仿真软件进行仿真,根据仿真结果对电路进行调整和优化。

7.布局和绘制电路板:根据电路设计,进行布局和绘制电路板。

布局过程中要注意相邻元件的干扰和电路的稳定性。

绘制电路板时要保持线路的规整和排布的合理性。

8.组装和测试:完成电路板制作后,进行元件的组装和焊接。

然后进行电路的测试和调试,检查电路的工作状态和各项指标是否满足要求。

三、注意事项1.设计时要考虑到电压的限制,避免电路失效或工作不稳定。

2.选择合适的场效应管,根据具体需求选择低频或高频的管子。

3.设计时要注意电路整体性能,使其在增益、带宽等方面满足要求。

4.在进行仿真时,要根据仿真结果对电路进行调整和优化,确保电路性能达到最佳状态。

5.布局和绘制电路板时要注意干扰和稳定性,保持线路的规整和排布的合理性。

6.组装和测试时要仔细检查,确保电路的工作状态和各项指标达到要求。

折叠式共源共栅cmos运算放大器的设计与优化

折叠式共源共栅cmos运算放大器的设计与优化

折叠式共源共栅cmos运算放大器的设计与优化下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!折叠式共源共栅CMOS运算放大器的设计与优化1. 引言在集成电路领域,CMOS运算放大器一直是研究的热点之一。

折叠式共源共栅放大器设计

折叠式共源共栅放大器设计

折叠式共源共栅放大器设计
下面是一个折叠式共源共栅放大器的设计示例:
1.选择合适的工作频率:首先确定设计的工作频率范围,根据应用需
求选择合适的频率。

2.确定器件参数:根据工作频率选择适合的MOSFET器件,并确定器
件的尺寸和工作点。

3.进行小信号分析:通过小信号等效电路分析,得到输入输出阻抗、
增益和带宽等参数。

4.设计输入匹配网络:设计输入匹配网络,使得输入阻抗与传输线匹配,以最大化输入信号的传输。

5.设计输出匹配网络:设计输出匹配网络,使得输出阻抗与负载匹配,以最大化输出信号的传输。

6.进行直流仿真:通过仿真软件,对折叠式共源共栅放大器的直流偏
置和工作点进行仿真和优化。

7.进行射频仿真:通过射频仿真软件,对折叠式共源共栅放大器的增益、带宽等性能进行仿真和优化。

8.PCB布局和封装:设计合适的PCB布局,使得折叠式共源共栅放大
器具有良好的抗干扰能力和稳定性。

选择合适的封装,以满足散热和尺寸
要求。

9.进行实验验证:通过PCB制作和实验验证,对设计的折叠式共源共
栅放大器进行性能测试和调整。

10.进行优化调整:根据实验结果,对折叠式共源共栅放大器进行优化和调整,以达到设计要求。

总结:折叠式共源共栅放大器设计需要从选择工作频率、器件参数确定到小信号分析、匹配网络设计、仿真优化、PCB布局和实验验证等多个步骤。

通过科学合理的设计和优化调整,可以实现折叠式共源共栅放大器的高效、低功耗和稳定工作。

一种折叠共源共栅运算放大器的设计

一种折叠共源共栅运算放大器的设计

一种折叠共源共栅运算放大器的设计关键词:运算放大器,ADC, DAC,模拟集成电路,混合信号集成电路,跨导运算放大器,共源共栅1 引言随着集成电路技术的不断发展,高性能运算放大器广泛应用于高速模/数转换器(ADC)、数/模转换器(DAC)、开关电容滤波器、带隙电压基准源和精密比较器等各种电路系统中,成为模拟集成电路和混合信号集成电路设计的核心单元电路,其性能直接影响电路及系统的整体性能,高性能运算放大器的设计一直是模拟集成电路设计研究的热点之一,以折衷满足各种应用领域的需要。

许多现代集成CMOS运算放大器被设计成只驱动电容负载。

有了这样只有电容的负载,对于运放放大器,就没有必要使用电压缓存器来获得低输出阻抗,因此,有可能设计出比那些需要驱动电阻负载的运算放大器具有更高速度和更大的信号幅度的运算放大器。

通过在一个只驱动电容负载的运算放大器输出端只有一个高阻抗节点,可以获得这些提高,这些运算放大器在其他节点看到的导纳与MOS管的跨导在一个量级上,因此他们具有低阻抗。

有了所有相对低阻抗的内部节点,运算放大器的速度得到最大化,这里还应该提到的是:这些低节点阻抗使得所有节点而不是输出节点的电压信号降低,然而,各种晶体管的电流信号可能非常大,对这些运算放大器,应看到补偿通常是由负载电容达到的,这样,当负载电容变大,运算放大器通常变得更稳定也更慢,这些现代晶体管最重要的参数之一是他们的跨导值(即输出电流和输入电流的比)。

因此,一些设计者称这些现代运算放大器为跨导运算放大器或者运算跨导放大器(OTA)。

在各种OTA结构中,折叠共源共栅运放结构的运算放大器可以使设计者优化二阶性能指标,这一点在传统的两极运算放大器中是不可能的,特别是共源共栅技术对提高增益、增加PSRR值和在输出端允许自补偿是有用的。

这种灵活性允许在CMOS工艺中发展高性能无缓冲运算放大器,目前,这样的放大器已被广泛应用无线电通信的集成电路中。

本文介绍的运放是一种采用TSMC 0.18 μm Mixed Signal SALICIDE(1P6M,1.8V/3.3V)CMOS工艺的折叠共源共栅运放,并对其进行了DC,AC及瞬态分析,最后与设计指标进行比较。

折叠共源共栅单级运算放大器设计

折叠共源共栅单级运算放大器设计

折叠共源共栅单级运算放大器设计折叠共源共栅单级运算放大器(FCSG)是一种常用的放大器电路,在电子电路设计和微电子技术中具有广泛的应用。

它是由共源放大器和共栅放大器组成的,可以实现高放大增益、宽带、低噪声和低功耗等特性。

FCSG电路的基本原理是,共源放大器用来实现信号的放大和匹配,而共栅放大器则承担了放大器的输出任务。

在FCSG电路中,信号来源将直接连接到共源极,而输出信号则从共栅极获取。

折叠共源共栅单级运算放大器的设计是一个复杂的过程,需要注意以下几个关键因素:1.电路的电流:FCSG电路的电流是非常重要的参数,因为它决定了电路的增益和功耗。

因此,在设计FCSG电路时,必须考虑到电流大小及其对电路性能的影响。

2.电路的电容:FCSG电路的电容也是关键的因素,它决定了电路的带宽和响应速度。

在FCSG电路设计时,需要合理地规划电容大小和放置位置,以确保电路性能的最佳效果。

3.电路的阻抗匹配:FCSG电路需要从信号源中获取信号,因此必须考虑电路的阻抗匹配问题。

如果电路的输入阻抗和信号源的输出阻抗不匹配,将会影响电路性能。

因此,在FCSG电路设计中,需要使用适当的匹配电路来解决这个问题。

4.电路的噪声:FCSG电路中的噪声也是设计考虑的重要因素之一。

由于FCSG电路通常用于低噪声电路设计,因此需要对电路的噪声进行特殊处理,例如选择低噪声元器件和合理的电路布局等。

总的来说,折叠共源共栅单级运算放大器的设计需要综合考虑电路的电流、电容、阻抗和噪声等因素,以最大程度地实现电路性能的优化。

在实际应用中,还需要结合具体的应用场景和要求,进行合理的电路设计和优化。

采用折叠式共源共栅结构实现高速CMOS全差分运算放大器的设计

采用折叠式共源共栅结构实现高速CMOS全差分运算放大器的设计

采用折叠式共源共栅结构实现高速CMOS全差分运算放大器的设计折叠式共源共栅结构是一种常用于高速CMOS全差分运算放大器设计的电路结构。

它结合了共源和共栅结构的优点,在设计高速差分运算放大器时具有重要的应用价值。

在设计高速CMOS全差分运算放大器时,首先需要确定电路的工作频率和增益要求。

然后,根据设计要求选择合适的MOS管尺寸以及电路拓扑结构。

在采用折叠式共源共栅结构之前,我们先来了解一下共源和共栅结构的特点。

共源结构是一种常见的差分放大器结构,它提供了较大的增益和较高的输入阻抗,但由于电流镜电路(如PMOS电流镜)的引入,使得其增益和频率特性受到限制。

共栅结构是一种常见的高速差分放大器结构,它具有良好的增益和频率特性,但输入阻抗较低。

因此,为了综合考虑增益、频率特性和输入阻抗,我们可以采用折叠式共源共栅结构。

折叠式共源共栅结构的基本原理是将两个共源结构和两个共栅结构连接在一起形成一个差分放大器。

其中,一个共源结构用作输入级,另一个共源结构用作输出级。

同时,一个共栅结构用于提供增益,另一个共栅结构用于提供带宽。

具体来说,折叠式共源共栅结构的输入级包含一个共源结构和一个共栅结构。

其中,共源结构的输入端连接输入信号,输出端通过一个电流源连接到共源结构的源极。

共栅结构通过一个电流源连接到共源结构的源极。

这样,共源结构和共栅结构共同构成输入级。

折叠式共源共栅结构的输出级也包含一个共源结构和一个共栅结构。

其中,共源结构的源极通过一个电流源连接到地,栅极接受输入信号。

共栅结构的源极通过一个电流源连接到共源结构的源极。

这样,共源结构和共栅结构共同构成输出级。

在折叠式共源共栅结构中,输入级的共源结构和共栅结构提供了较大的增益和较高的输入阻抗,输出级的共源结构和共栅结构提供了较大的带宽和较低的输出阻抗。

通过适当选择MOS管的尺寸和电流源的电流,可以实现高速差分运算放大器的设计要求。

综上所述,采用折叠式共源共栅结构可以实现高速CMOS全差分运算放大器的设计。

折叠式共源-共栅运算跨导放大器的设计

折叠式共源-共栅运算跨导放大器的设计

《IC课程设计》报告折叠式共源-共栅运算跨导放大器的设计姓名:王志伟学号:U200713959班级:0707院系:控制系专业:自动化同组人姓名:田绍宇胡月目录1设计目标 (1)2相关背景知识 (2)3设计过程 (2)3.1 电路结构设计 (2)3.2 主要电路参数的手工推导 (2)3.2.1直流工作点分析 (2)3.2.2带宽分析及原件参数计算 (3)3.2.3直流增益的小信号模型分析 (4)3.3 计算参数验证 (5)4电路仿真 (5)4.1交流特性仿真 (7)4.2最大输出摆幅仿真 (9)4.3共模输出的仿真验证 (11)5讨论 (12)6收获和建议 (13)7参考文献 (14)摘要:折叠式共源共栅结构的运算放大器不仅能提高增益、增加电源电压噪声抑制比、而且在输出端允许自补偿。

1设计目标设计一款折叠式共源-共栅跨导运算放大器(Design a Folded Cascode OTA),其设计指标见表1,参考电路原理图如下图所示,用0.35um coms工艺。

图:折叠式共源-共栅跨导运算放大器设计步骤与要点:1.直流工作点的分析与设计(DC operation point design and analysis)1) 假设所有的MOS管均工作在饱和区,VGS-VT=200mV,VDD=3V,VSS= 0V,计算OTA的最大输出摆幅。

2) 基于0.35 um CMOS工艺,计算和设计MOS管的尺寸,使OTA电路满足最大输出摆幅的要求。

3) 以下数据可供设计参考L1,2,3,4 = Lmin; Lmin= 1μm。

2.在HSpice电路仿真软件,对所设计的电路进行模拟仿真与设计2相关背景知识随着集成电路技术的不断发展,高性能运算放大器得到广泛应用,其性能直接影响电路及系统的整体性能。

折叠式共源共栅运算放大器具有二阶优化性能,因此设计一个实用价值的折叠式共源共栅运算放大器是非常有现实意义的。

CMOS管的参数并不能通过简单的理论计算进行准确的预测,在给定的工艺条件下,理论计算出的管子宽长不考虑实际情况下工艺条件等诸多外界因素,仿真的结果会和设计指标有很大的差距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:a)在调节mos管的宽长比时,只能在原来的宽长比的基础上对宽度作适当调整,不能不考虑原来的值,大幅度调整,这样将会和你的设计完全不符的情况。
b)如果当所有的mos管都已达到饱和,但是对于放大器的增益还是不满足时可以将输出端两端的mos管的宽长同时加大,这样可以使增益大幅度增加。这是由于当宽长同时加大时,电流、跨导等量由于宽长比的值没有变化,所以它们的值也不改变。但是由于长度L增大一倍,使λ值减小,从而使这个mos管的输出电阻增大,输出两端的mos管的宽长同时加大,即M2,M3,M4,M5的宽长同时加大,使输出电阻ro2,ro3,ro4,ro5增大,从而使增益加大。
vi).nmos管M9的过驱动电压为VOD9=0.4V,而Vth=0.713V,则偏置电压源电压为
V0=0.7V+0.4V=1.113V。
根据给定的初始的偏置电压给各个偏置电压源加值。
4.生成symbol图形
Symbol的生成过成:我们选择在已经制作好的cell view中建立它的symbol,点击Design->Create Cell View->from Cell View,这样就直接从已经建好的cell view的schematic中建立了它的symbol文件。
ii).直接用电压源给出偏置电压。
3.参数计算
完成了电路图的基本结构之后,接下来就是给每个元件加入设计量,这样就需要对各个器件的参数进行分配和计算。从图中的mos管的标号定义:总的尾电流源pmos管为M0,M1;pmos共栅管为M2,M3;nmos共源共栅管从上到下依次为M4,M5,M6,M7;输入管为M8,M10;输入端的尾电流源mos管为M9。pmos管的model name取p33,nmos管为n33。
Analyses->Choose,选择dc分析,如图所示:
设置DC参量时,首先,要选择Save DC Operating Point项,此项是为了保存静态工作点的;然后在Sweep Variable区域选择Design Variable项,选取变量名称,可以直接输入你所定义的变量名,也可以从下面的Select Design Variable中选择需要扫描的变量,我们这里扫描差动信号的直流分量vdm1。在Sweep Range中选择扫描变量的范围,定义起始点为0V,终止点为3.3V,而且采取线性扫描方式,扫描的步长设为0.01V。
ii).变量的设置
首先,需要导入要设置的变量名进入Design Variable中,点击Variables->Copy From Cellview导入变量,如下图所示:
注意:此处设定参数时,在Design Variables图形框中双击要设置的参量后,设定其值。
设定负载电容的值时,先假定给cap=1pF,后面还要根据题目要求更改cap的值,以满足单位增益带宽和稳定性的要求。vdm1,vdm2的值是根据输入端的偏置电压值设定的,即初始值vdm1=vdm2=1.413V。
2)过驱动电压的分配
根据题目的要求,输出摆幅要为1.95V,以此为标准分配过驱动电压。M0,M1获得的电流较大,给他们分配相对较大的过驱动电压,即VOD0=VOD1=0.4V;而M9管同时流过M8,M10管的电流,也同样具有较大的过驱动电压,给它分配过驱动电压为VOD9=0.4V;而对于其他mos管的过驱动电压的分配考虑pmos管的up一般小于nmos管的un,所以分配给pmos管的过驱动电压一般要大于分配给nmos管的过驱动电压,此处给pmos管分配0.35V过驱动电压,而给nmos管分配0.3V过驱动电压,恰好使输出摆幅为1.95V。
参数给定:COX=(εsiεo)/tox
其中εsi=8.85*10-12,εo=3.9,tox=6.62nm;
un=350cm2,up=92.5cm2。
2.
1.启动cadence工具
在Terminal中输入cds.setup
icfb&
2.电路设计
按照下图进行电路设计,运放采用折叠式共源共栅电路。
注意:i).所有的pmos管的衬底都必须接电源;所有nmos管的衬底都必须接地
3)宽长比的确定
通过电流与过驱动电压的关系式确定宽长比,由于所有mos管都必须工作在饱和区,所以使用饱和区的电流-过驱动电压的关系:
Nmos管:IDS=1/2unCOX(W/L)(VGS-Vth)2=1/2unCOXVOD2
=>(W/L)=(unCOXVOD2) /(2 IDS)
Pmos管:IDS=1/2upCOX(W/L)(VGS-Vth)2=1/2upCOXVOD2
3.
1.仿真环境的建立
在设置完图形变量之后,就可以对图形进行仿真了。点击Tools->Analog Environment进入仿真环境。
2.仿真环境参数设置
i).确定spice模型库文件
库文件路径是:
/cad/smic018_tech/Process_technology/Mixed_Signal/SPICE_model/ms018_v1p6_spe.lib;section定义为tt,最后点Add添加库文件。
根据打印出的mos管状态图中的Vth值,通过V0=VOD+Vth+Vs来修正偏置电压的值,再进行仿真。在此过程中,由于M0,M1,M6,M7,M9不存在衬偏效应所以他们的阈值电压值的改变可能会小一些,所以先调整这些管子的偏置电压值比较合适;而对于M2,M3,M4,M5,M8,M10这些mos管而言,都存在衬偏效应,所以他们的值改变的比较大,需要不断的修正仿真,直到这些值都基本不变化即可。这样就完全确定了偏置电压的值。
注意:乘号的意思代表宽度的乘数*倍数,即在multiplier处添加倍数值。
4)分配初始偏置电压值
mos管阈值电压的初始值由工艺库中给定,pmos管的阈值电压为Vth=-0.663V,nmos管的阈值电压为Vth=0.713V,这些值将在仿真过程中修正。
i). pmos管M0,M1的过驱动电压为VOD0=VOD1=0.4V,而|Vth|=0.663V,则偏置电压源电压为V0=3.3V-(0.663V+0.4V)=2.237V。
从上面的叙述可知,电容的值是一个根据要求而变化的值,所以我们把电容值设为一个参数cap,在仿真过程中再添加其值。这样只是为了方便更改而已,你也可以直接对负载电容赋值,在仿真时,再根据情况更改电容值。
负载电容的值设为参变量cap,在仿真过程中给定值。
注意:在作仿真图形时,还需要有一个用来规定电源电压值的电路,这是为了防止多个电路中有多个电源电压的情况,这样只需设定一个电源电压来规定电源电压的值,而不会发生冲突。
3.设定仿真类型
i).tran(瞬态)分析设定
Analyses->Choose,选择tran分析,如图所示:设置仿真时间为1ms。
注意:设定的瞬态仿真时间一般是频率倒数的1-10倍即可,过大可能无法看出细微图形,太小根本看不到一个周期的情况。此处设的1ms就是频率的倒数。
ii). DC(直流)分析设定
建立的symbol的图形(可以改变图形形状),如下图所示:
5.加入激励
对于已经生成symbol的图形,需要给输入端加入激励之后才能够进行仿真。需要生成一个新的cell view作仿真,此处起名为sim_pucker-SG,易于统一名称。
Cell view的生成同上所述,在cell view的设计过程中加入刚刚设计的折叠式共源共栅放大器作为仿真模型,对其输入端加激励。
=>(W/L)=(upCOXVOD2) /(2 IDS)
根据公式可得所有mos管的宽长比,分别为:
(W/L)0-1=388.62;(W/L)2-3=253.75;(W/L)4-7=91.3;
(W/L)8=(W/L)10=91.3;(W/L)9=102.7。
根据上面求出的宽长比确定宽度和长度。由于使用工艺库,取L=1.4um(取L的值较大是为了达到大的增益的要求),同样可以得到各种W值W0,1=136*4um,W2,3=88.82*4um,W4,5,6,7=63.92*2um,W8,10=63.92*2um,W9=71.88*2um。
iv).nmos管M6,M7的过驱动电压为VOD6=VOD7=0.3V,而Vth=0.713V,则偏置电压源电压为V0=0.713V+0.3V=1.013V。
v).nmos管M8,M10的过驱动电压(输入管的偏置直流电压部分)为VOD8=VOD10=0.3V,而Vth=0.713V,则偏置电压源电压为V0=0.713V+0.3V+0.4V=1.413V。
1)电流的分配
由于VDD=3.3V,功率P=10mW,则总的电流为IDS=10mW/3.3V=3mA。其次两条支路是完全对称的,所以给每条之路分配1.5mA的电流。而对于折叠电路部分和本身的共源共栅电路部分将每条支路的电流再次分割,这里我们全部采用平分的方式,即M0,M1的电流均为1.5mA;其余mos管(除M9外)的电流均为0.75mA,是每条支路的二分之一;而对于M9的电流值为两个输入支路电流之和,即为1.5mA。
负载电容值的确定:
对于负载电容值的确定是有要求的,因为题目要求单位增益带宽尽可能的大,所以在满足了增益的情况下,需要主极点越大越好,只有主极点越大才能保证单位增益带宽越大。主极点与输出阻抗和负载电容的乘积的倒数有关,而输出阻抗的值影响增益的大小,如果输出阻抗越大,则增益越大,但是主极点越小,从而使单位增益带宽越小,所以只有在增益一定的情况下改变负载电容的值来增加单位增益带宽。
图形如下图所示:
激励加入后需对所加入的电压源的参数作说明。由于设计的放大器是差动式共源共栅放大器,所以差动电路的输入为两个方向相反的Vsin信号分别加在输入两端。为了使用方便将Vsin电压源的DC部分设定为参变量,分别为vdm1,vdm2。在仿真的时候再给其赋值,而对于Vsin信号还需要设定一些AC(交流)分析和tran(瞬态)分析的变量,如下图所示:
相关文档
最新文档