向量的正交分解与向量的直角坐标运算PPT

合集下载

空间向量的正交分解及其坐标表示 课件

空间向量的正交分解及其坐标表示   课件

2.向量可以平移,向量p在坐标系中的坐标惟一 吗?
提示:惟一.在空间直角坐标系中,向量平移后, 其正交分解不变,故其坐标也不变.
典例精析
类型一 基底的概念
[例1] 设x=a+b,y=b+c,z=c+a,且{a,b, c}是空间的一组基底,给出下列向量组:①{a,b,x}, ②{x,y,z},③{b,c,z},④{x,y,a+b+c},其中 可以作为空间一组基底的向量组有( )
类型三 求向量的坐标 [例 3] 如图 5 所示,已知点 P 为正方形 ABCD
所在平面外一点,且 PA⊥平面 ABCD,M、N 分别 是 AB、PC 的中点,且 PA=AD,求向量M→N的坐标.
图5
[分析] 空间向量的坐标源于向量的正交分解,如 果把向量a写成xi+yj+zk,则a的坐标为(x,y,z);还 可利用表示向量的有向线段的起点与终点坐标写出向 量的坐标.
图4
[解] 选取{C→B,C→D,C→C1} 作为空间向量的一个基底, 设C→B = a,C→D= b,C→C1= c,则 C→M=C→C1+C→1M=C→C1+12(C→1B1+C→1D1) =12(C→B +C→D)+C→C1 =12a+12b+ c, C→N=C→C1+C→1D1+D→1N
=C→C1+C→D+12(D→1D+D→1A1)
空间向量的正交分解及其坐标表示
新知视界
1.空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向 量p,存在有序实数组{x,y,z},使得p=xa+yb+zc.
2.基底的概念
如果三个向量a、b、c不共面,那么空间所有向量 组成的集合就是{p|p=xa+yb+zc,x、y、z∈R}这个 集合可以看作是由向量a、b、c生成的,我们把{a,b, c}叫做空间的一个基底.a、b、c叫做基向量.空间任 何三个不共面的向量都可构成空间的一个基底.

平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示课件(共25张PPT)

平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示课件(共25张PPT)
∴ = (1,5), = (4, −1), = (−5, −4),
∴ + = (1,5) + (4, −1) = (5,4),
− = (−5, −4) − (1,5) = (−6, −9).
(3)设向量,的坐标分别是(−1,2),(3, −5),则 + , − 的坐标分
(1)相等向量的坐标相同,且与向量的起点、终点无关.( √ )
(2)当向量的起点在坐标原点时,纵坐标为0,与轴平行的向量的横坐标为0.
(√ )
知识点二 平面向量加、减运算的坐标表示
设向量 = (1 , 1 ), = (2 , 2 ),则有下表:
A.(−2,4)

)
B.(4,6)
C.(−6, −2)
D.(−1,9)
[解析] 在平行四边形中,因为(1,2),(3,5),所以
= (2,3),又 = (−1,2),所以 = + = (1,5),
= − = (−3, −1),所以 + = (−2,4).故选A.
6.3 平面向量基本定理及坐标表示
6.3.2 平面向量的正交分解及坐标表示
6.3.3 平面向量加、减运算的坐标表示
【学习目标】
1.借助平面直角坐标系,理解平面向量坐标的概念,掌握平面向量
的正交分解及坐标表示.
2.掌握平面向量的坐标运算,会用坐标表示平面向量的加、减运算.
知识点一 平面向量的正交分解及坐标表示
互相垂直
1.正交分解:把一个向量分解为两个__________的向量,叫作把向量
作正交分解.
2.平面向量的坐标表示如图,在平面直角坐标系中,
设与轴、轴方向相同的两个单位向量分别为,,

空间向量的正交分解及其坐标表示、运算 人教课标版精品课件

空间向量的正交分解及其坐标表示、运算 人教课标版精品课件

(3)当cos a , b 0 时,a b 。
思考:当 0 cos a , b 1及 1 cos a , b 0时,
的夹角在什么范围内?
六、应用举例
例1 已知 A(3 , 3 ,1)、B(1, 0 , 5) ,求:A (1)线段 AB 的中点坐标和长度;
(2)空间两点间的距离公式
在空间直角坐标系中,已知 A(x1 , y1 , z1)、
B(x2 , y2 , z2 ) ,则 AB ( x2 x1 , y2 y1 , z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
是的,折枝的命运阻挡不了。人世一生,不堪论,年华将晚易失去,听几首歌,描几次眉,便老去。无论天空怎样阴霾,总会有几缕阳光,总会有几丝暗香,温暖着身心,滋养着心灵。就让旧年花落深掩岁月,把心事写就在素笺,红尘一梦云烟过,把眉间清愁交付给流年散去的烟山寒色,当冰雪消融,自然春暖花开,拈一朵花浅笑嫣然。
听这位老友,絮絮叨叨地讲述老旧的故事,试图找回曾经的踪迹,却渐渐明白了流年,懂得了时光。过去的沟沟坎坎,风风雨雨,也装饰了我的梦,也算是一段好词,一幅美卷,我愿意去追忆一些旧的时光,有清风,有流云,有朝露晚霞,我确定明亮的东西始终在。静静感念,不着一言,百转千回后心灵又被唤醒,于一寸笑意中悄然绽放。
回忆的老墙,偶尔依靠,黄花总开不败,所有囤积下来的风声雨声,天晴天阴,都是慈悲。时光不管走多远,不管有多老旧,含着眼泪,伴着迷茫,读了一页又一页,一直都在,轻轻一碰,就让内心温软。旧的时光被揉进了岁月的折皱里,藏在心灵的沟壑,直至韶华已远,才知道走过的路不能回头,错过的已不可挽留,与岁月反复交手,沧桑中变得更加坚强。

空间向量的正交分解及其坐标表示 课件

空间向量的正交分解及其坐标表示  课件

1.空间向量基本定理的证明
剖析:(1)存在性:分四步,如图所示.
①平移:设 a,b,c 不共面,过点 O作 =a, =b, =c, =p;
②平行投影:过点 P 作直线 PP'∥OC,交平面 OAB 于点 P',在平
面 OAB 内过点 P'作 P'A'∥OB,P'B'∥OA,分别与直线 OA,OB 交于点
垂直,且长都为1个单位,那么这个基底叫做单位正交基底,用{i,j,k}
或{e1,e2,e3}表示.
(2)空间直角坐标系.在空间选定一点O和一个单位正交基底
{i,j,k},以点O为原点,分别以i,j,k的方向为正方向画三条数轴:x轴、
y轴、z轴,它们都叫做坐标轴,则建立了一个空间直角坐标系Oxyz,
点O叫原点,向量i,j,k都叫做坐标向量.
构成空间的一个基底.
其中真命题的个数是(
)
A.0 B.1
C.2 D.3
解析:①②正确,③中,由平面向量的基本定理可知向量a,b,c共面,
故③为假命题.
答案:C
【做一做3】 设{i,j,k}是空间向量的一个单位正交基底,a=3i+2jk,b=-2i+4j+2k,则向量a,b的坐标分别是
.
答案:(3,2,-1),(-2,4,2)
三个不共面的向量都可构成空间的一个基底.
4.设e1,e2,e3为有公共起点O的三个两两垂直的单位向量(我们称
它们为单位正交基底),以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3
的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz.那么,
对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O

课件9:2.2.2 向量的正交分解与向量的直角坐标运算

课件9:2.2.2 向量的正交分解与向量的直角坐标运算

()
A.12a-32b
B.-12a+32b
C.32a-12b
D.-32a+12b
(2)已知点 P,A(3,7),B(4,6),C(1,-2)是一个平行四边形的四
个顶点,则点 P 的坐标为________.
【解析】 (1)设 c=xa+yb,x,y∈R, ∴(-1,2)=x(1,1)+y(1,-1),∴xx+-yy==-2,1, 解得 x=12,y=-32,∴c=12a-32b,故选 A.
自我尝试 题型一 平面向量的坐标表示 例 1 在直角坐标系 xOy 中,a,b 如图所示,分别求出 a,b 的坐标.
【分析】 本题主要考查向量的正交分解,把它们分解成横、 纵坐标的形式.
【解】 设 a=(a1,a2),b=(b1,b2), 则 a1=|a|cos45°=4× 22=2 2,a2=|a|sin45°=4× 22=2 2.
b 向量相对于 x 轴正方向的转角为 120°. ∴b1=|b|cos120°=3×-12=-32, b2=|b|sin120°=3× 23=323.∴a=(2 2,2 2),b=-32,323.
【知识点拨】 (1)向量的坐标就是向量在 x 轴和 y 轴上的分量,而与向量的位 置无关,如图所示,A→B的坐标为(B2-A2,B1-A1).
即 xy+ -21= =1212
(x-1) (y-4)
, ,
解得xy==--52,, 即 C(-5,-2).又 E 在 DC 延长线上, ∴C→E=14D→E,设 E(a,b),则(a+5,b+2)=14(a-4,b+3), 解之得 a=-8,b=-53.
∴E-8,-53. 答案:-8,-53
5.已知 A(-2,4),B(3,-1),C(-3,-4),设A→B=a,B→C=b, C→A=c 且 a=mb+nc,求 m-n 的值. 解:A→B=(5,-5),B→C=(-6,-3),C→A=(1,8), 由 a=mb+nc, 得(5,-5)=m(-6,-3)+n(1,8), ∴--63mm++n8=n=5,-5, 解得mn==--11., ∴m-n=-1+1=0.

空间向量的正交分解及其坐标表示 .ppt

空间向量的正交分解及其坐标表示 .ppt

用基底表示向量
N向在量BaC,上b,,且c表空B示间N=四2面NC体,,O设AA→BNC. 中M=,→NaMO→,在A OA=上bO,→,BOM==Oc3→,MCA用,
解析:A→N=-a+13b+23c, M→N=-34a+13b+23c.
跟踪训练
=b,O2→.P四=棱c,锥EP、—FO分A别BC是的P底C和面P为B一的矩中形点,,设用aO→,Ab=,ac,表O→示C
(1)(2)式为直线的向量表达式.
7.共面向量
(1)空间任意两个向量______;
(2)若向量a,b不共线,则a,b,c共面 ⇔______________,________________;
(3)若三个向量中有两个向量共线,则三个向量 ______.
7.(1)共面 (2)存在唯一实数对x、y
使c=xa+yb (3)共面
2.课本及我们研究所建坐标系均为右手系.
3.空间中任意一点P的坐标的确定方法:过P分别作三 个坐标平面的平行平面分别交坐标轴于A、B、C三点,x= OA,y=OB,z=OC,当OA与i方向相同时x>0,反之x<0, 同理可确定y、z.


空间向量与立体几何
3.1 空间向量及其运算
3.1.4 空间向量的正交分解及其坐标表示
1.掌握空间向量基本定理及其推论,理解空间任 意一个向量可以用不共面的三个已知向量线性表示,而 且这种表示是唯一的.
2.在简单问题中,会选择适当的基底来表示任一 空间向量.
3.空间向量的基本定理及其推论.
基础梳理
C.a+2b
D.a+2c
基底的判断
设x=a+b,y=b+c,z=c+a,且{a,b,c} 是空间的一个基底,给出下列向量组:①{a,b,x},② {x,y,z},③{b,c,z},④{x,y,a+b+c},其中可以 作为空间的基底的向量组有( )

向量的正交分解与向量的直角坐标运算PPT教学课件_1

向量的正交分解与向量的直角坐标运算PPT教学课件_1

三、苔藓植物 1.主要特征:有茎和叶 的分化,没有真正的根,假根起固着作用。 2.生活环境: 阴湿 的环境。 3.举例:地钱、葫芦藓 、墙藓等。 四、蕨类植物 1.主要特征:有真正的 根、茎、叶 ,而且分化出了能运输水分和 养料的 输导组织。 2.生活环境:阴湿的环境。 3.举例: 满江红、桫椤、肾蕨等。
方向了。
(1)阴湿 (2)背光面 (3)北
关闭
答案
受有毒气体的伤害,所以不能生活在污染比较严重的环境中。
关闭
D
解析 答案
1
2
3
4
5
3.在千姿百态的绿色植物中,没有根、茎、叶等器官分化的类群是
() A.藻类植物 C.苔藓植物
B.种子植物 D.蕨类植物
关闭
藻类植物无根、茎、叶的分化,苔藓植物有茎和叶的分化,蕨类植物和种
子植物都有根、茎、叶的分化。
关闭
ja
点A的坐标(x,y)也就是向量OA
Oix
x 的坐标。因此,在平面直角坐标
系内,每一个平面向量都可以用
一对实数唯一表示。
例1 如图,用基底i,j分别表示向量a、b、c、 d ,并求出它们的坐标。
y
A2
解:由图3可知a=AA1+AA2=2i+3j,
b
A j Oi
a A1
x
∴ a=(2,3)
同理,b=-2i+3j=(-2,3) c=-2i-3j=(-2,-3)
例2 已知平行四边形ABCD的三个定点A、 B、C的坐标分别为(-2,1)、(-1, 3)、(3,4),求顶点D的坐标
平行四边形ABCD的对角线交于点O,且 知道AD=(3,7), AB=(-2,1),求OB 坐标。

高中数学第二章平面向量2.2.2向量的正交分解与向量的直角坐标运算课件新人教B版必修452

高中数学第二章平面向量2.2.2向量的正交分解与向量的直角坐标运算课件新人教B版必修452

求点和向量坐标的常用方法 (1)求一个点的坐标,可以转化为求该点相对于坐标原 点的位置向量的坐标. (2)在求一个向量时,可以首先求出这个向量的起点坐 标和终点坐标,再运用终点坐标 O 是坐标原点,点 A 在第一象限,|OA|=4 3,∠xOA=60°, (1)求向量OA的坐标; (2)若 B( 3,-1),求BA的坐标. 解:(1)设点 A(x,y),则 x=4 3cos 60°=2 3, y=4 3sin 60°=6,即 A(2 3,6),OA=(2 3,6). (2) BA=(2 3,6)-( 3,-1)=( 3,7).
平面向量坐标运算的技巧 (1)若已知向量的坐标,则直接应用两个向量和、差 及向量数乘的运算法则进行. (2)若已知有向线段两端点的坐标,则可先求出向量 的坐标,然后再进行向量的坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行.
[活学活用]
1.设平面向量 a=(3,5),b=(-2,1),则 a-2b=
=(3+8,15-2) =(11,13). BC -2 AB=(-5,-4)-2(1,5) =(-5-2,-4-10) =(-7,-14). [答案] (11,13) (-7,-14)
(2)解:a+b=(-1,2)+(3,-5)=(2,-3), a-b=(-1,2)-(3,-5)=(-4,7), 3a=3(-1,2)=(-3,6), 2a+3b=2(-1,2)+3(3,-5) =(-2,4)+(9,-15) =(7,-11).
(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的
坐标.
()
(3)两向量差的坐标与两向量的顺序无关.
()
(4)点的坐标与向量的坐标相同.
()
答案:(1)√ (2)√ (3)× (4)×
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们知道,在平面直角坐标系, 每一个点都可用一对有序实数(即它 的坐标)表示,对直角坐标平面内的 每一个向量,如何表示?
a=xi+yj
y yj
→ → a
j
O → i xi
图 1
我们把(x,y)叫做向量a 的 (直角)坐标,记作 a=(x,y), 其中x叫做a 在x轴上的坐标, x y叫做a在y轴上的坐标,(x ,y) 叫做向量的坐标表示。
也就是说,a//b(b≠0)的等价表示是
x1y 们所在平面内所有向量的基底,正确 的有( )
(1)e1=( -1 , 2 ),e2=( 5 , 7 )
(2)e1=( 3 , 5 ),e2=( 6 , 10 ) (3)e1=( 2 , -3 ),e2=( 1/2 , -3/4 )
→ →
i= (1,0) j= (0,1) 0= (0,0)
→ → 其中i,j为向量 i,j

y yj a x
j O i xi
图 1
→ → 其中xi为x i,yj为y j
如图,在直角坐标平面内,以原 点O为起点作OA=a,则点A的位 y y A(x,y) 置由a唯一确定。 设OA=xi+yj,则向量OA的坐标 (x,y)就是点A的坐标;反过来, x
1、平面向量的坐标表示与平面向量分 解定理的关系。 2、平面向量的坐标是如何定义的? 3、平面向量的运算有何特点?
类似地,由平面向量的分解定理,对于平面上的
任意向量
和 λ→ a
2 2

a1 a ,均可以分解为不共线的两个向量 λ1→

→ → a 使得 a =λ λ + 1 1 2 a2
在平面上,如果选取互相垂直的向量作为 基底时,会为我们研究问题带来方便。
设a=(x1,y1),b=(x2,y2),其中b是 共线向量如何用坐标来表 非零向量 ,那么可以知道,a//b的充 要条件是存在一实数 λ ,使 示呢? a= λb 这个结论如果用坐标表示,可写为 (x1,y1)= λ(x2,y2) 即 x1= λx2 y1= λy2
问题:
消去λ后得
x1y2-x2y1=0
你能在图中标出坐标为 (x2 - x1 ,y2 - y1 ) 的P点吗?
y A(x1,y1) B(x2,y2) O x
P
已知a=(x,y)和实数λ,那么 λ a= λ(x, y) 即 λa=(λx, λy)
这就是说,实数与向量的积的坐
标等用这个实数乘以原来向量的 相应坐标。
例2 已知a=(2,1),b=(-3, 4),求a+b,a-b,3a+4b
a j O i x
点A的坐标(x,y)也就是向量OA
的坐标。因此,在平面直角坐标 系内,每一个平面向量都可以用 一对实数唯一表示。
例1 如图,用基底i,j分别表示向量a、b、c、 d ,并求出它们的坐标。
y b A i d A2 解:由图3可知a=AA1+AA2=2i+3j, ∴ a=(2,3)
a
A1 x
同理,b=-2i+3j=(-2,3)
c=-2i-3j=(-2,-3)
j O c
d=2i-3j=(2,-3)
已知

a=(x1 ,y1 ) , b=(x 2 ,y2 )
→ →

你能得出
a+b
,a b
→ →
→ , λ a
的坐标吗?
已知,a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j 即 a+b=(x1+x2,y1+y2) 同理可得 a-b=(x1-x2,y1-y2)
例5、已知 a=(4,2), b=(6,y), 且 a//b ,求 y 的值。
例6、已知A(-1,-1),B(1,3),C(2, 5),判断A、B、C三点的位置关系。
C B A
例3 已知平行四边形ABCD的三个定点A、 B、C的坐标分别为(-2,1)、 (-1,3)、(3,4),求顶点D的坐标
例4 已知平行四边形ABCD的三个定点A、 B、C的坐标分别为(-2,1)、(-1, 3)、(3,4),求顶点D的坐标
平行四边形ABCD的对角线交于点O,且 知道AD=(3,7), AB=(-2,1),求OB 坐标。
这就是说,两个向量和与差的坐标分别等 于这两个向量相应坐标的和与差。
结论: 一个向量的坐标等于表示此向量 的有向线段的终点的坐标减去始点的 坐标。
y
A(x1,y1)
如图,已知A(x1,y1),B(x2,y2), 则 AB= OB - OA
B(x2,y2) x
O
= (x2,y2) - (x1,y1) = (x2-x1,y2-y1)
相关文档
最新文档