2020年中考数学质检试题分类汇编 数与式

合集下载

(人教版)2020年中考数学质检试题分类汇编 数与式

(人教版)2020年中考数学质检试题分类汇编 数与式

数与式模块一、选择题:1.(2019 厦门质检第 1 题)计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 答案:A2.(2019 龙岩质检第 1 题)计算-1-1的结果等于A.-2 B.0 C.1 D.2 答案:A3.(2019 南平质检第1 题)下列各数中,比-2 小3 的数是( ).(A)1 (B) -1 (C)- 5 (D)- 6答案:C4.(2019 福州质检第 1 题)- 3 的绝对值是A.13答案:D B.-13C. - 3D.35.(2019 泉州质检第1 题)化简|-3|的结果是().(A)3 (B)-3 (C)±3(D)13答案:A6.(2019 宁德质检第 1 题)-2019 的值是A.12019 B.2019 C.-12019D.-2019答案:B7.(2019 莆田质检第 1 题) 2019 的相反数为(A) 2019 (B) 答案:C1(C)2019- 2019(D) -120198.(2019 三明质检第 1 题)-1的值为(▲)9A.1B.-1C.9 D.-9 9 9答案: A9.(2019 福州质检第 4 题)如图,数轴上 M,N,P,Q 四点中,能表示A.M B.N C.P D.Q 答案:C的点是().※推荐※下载※10.(2019 漳州质检第 1 题)如图,数轴上点 M 所表示的数的绝对值是().A .3B . - 3C .±3D . -1 3答案:A11.(2019 漳州质检第 1 题)“中国天眼”FAST 射电望远镜的反射面总面积约 250 000m 2,数据 250 000 用科学记数法表示为().A .25×104B .2.5×105C .2.5×106D .0.25×106答案: B12.(2019 三明质检第 2 题)港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道, 全长约 55000 米,把 55000 用科学记数法表示为(▲)A .55×103B .5.5×104C .5.5×105D .0.55×105答案:B13.(2019 泉州质检第 3 题)从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到 2019 年 3 月,我市电商从业人员已达 873 000 人,数字 873 000 可用科学记数法表示 为 ( ).(A)8.73×103 (B)87.3×104 (C)8.73×105 (D)0.873×106答案:C14.(2019 南平质检第 2 题)我国南海总面积有 3 500 000 平方千米,数据 3 500 000 用科学记数法表示为(). (A)3.5×106 (B)3.5×107(C)35×105(D)0.35×108答案:A15.(2019 福州质检第 3 题)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为 4 400 000 000 人,将 4 400 000 000 科学记数法表示,其结果是( ).A .44×108B .4.4×109C .4.4×108D .4.4×1010答案:B16.(2019 漳州质检第 4 题)下列计算,结果等于 x 5 的是A .x 2+x 3B .x 2•x3 C .x10 ÷x2 D .(x 2)3答案:B17.(2019 泉州质检第 4 题)下列各式的计算结果为 a 5 的是( ) (A)a 7-a 2(B)a 10÷a2(C)(a 2)3 (D)( -a )2·a 3答案:D18.(2019 三明质检第 4 题)下列运算中, 正确的是(▲)A .(ab 2)2=a 2b4B .a 2+a 2=2a4 C . a 2 ⋅ a 4 =a 8答案: A19.(2019 莆田质检第 2 题)下列式子运算结果为 2a 的是 D .a 6÷a 3=a 2(A) 答案: Ca ⋅a(B) 2 + a(C)a + a(D)a 3 ÷ a20.(2019 福州质检第 5 题)下列计算正确的是(). A . 8a - a = 8B . (-a )4 =a 4C . a 3 ⋅ a2 =a 6D . (a - b )2 = a2 - b 2答案: B21.(2019 龙岩质检第 2 题)下列计算正确的是A . 4= ± 2B . 2x (3x -1) = 6x2 -1C. a 2 +a 3 =a 5答案: DD. a 2 ⋅ a 3 =a 522.(2019 厦门质检第 5)若 967×85=p ,则 967×84 的值可表示为A. p -1B. p -85C. p -967D.8584 p答案: C23.(2019 龙岩质检第 9 题)已知k =4x + 3,则满足k 为整数的所有整数 x 的和是 2x -1A .-1B .0C .1D .2 答案: D 二、填空题:1.(2019 福州质检第 11 题) 2-1=.1答案: 22.(2019 莆田质检第 11 题) 计算: 答案: 2 =.3. (2019 泉州质检第 11 题)已知 a 1-1ab (填“>”,“<”或“=”) .答案:>=( )°,b=2 2,则4.(2019 厦门质检第 11 题)分解因式: m 2-2m =.答※精品※试卷※案:m(m-2)5.(2019 三明质检第11 题)分解因式:a3 -a =▲. 答案:a(a +1)(a -1)※推荐※下载※6.(2019 宁德质检第11 题)因式分解:2a2 - 2 = . 答案:2(a +1)(a -1)7.(2019 漳州质检第11 题)因式分解:ax2 -a = . 答案:a(x+1)(x-1);8.(2019 宁德质检第 11 题)2017 年10 月18 日,中国共产党第十九次全国代表大会在北京隆重召开.从全国近 89 400 000 党员中产生的 2 300 名代表参加了此次盛会.将数据 89 400000 用科学记数法表示为. 答案:8.94 ⨯1079.(2019 莆田质检第 12 题)我国五年来(2013 年—2019 年)经济实力跃上新台阶,国内生产总值增加到827000 亿元.数据827000 亿元用科学记数法表示为亿元.答案: 8.27 ⨯10510.(2019 龙岩质检第12 题)2019 年春节假期,某市接待游客超3360000 人次,用科学记数法表示3360000,其结果是.答案: 3.36⨯10611.(2019 龙岩质检第 11 题)使代数式答案:x≥ 2有意义的x 的取值范围是.12.(2019 漳州质检第 15)“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组数a,b,c 的值依次为. 答案:14.答案不唯一.13.(2019 厦门质检第15)已知a+1=20002+20012,计算:2a+1=答案:4001.14.(2019 莆田质检第 16 题)2010 年8 月19 日第26 届国际数学家大会在印度的海德拉巴市举行,并首次颁出陈省身奖,该奖项是首个以中国人名字命名的国际主要科学奖.根据蔡勒公式可以得出2010 年8 月19 日是星期.(注:蔡勒(德国数学家)公式:W =⎡c ⎤- 2c +y +⎡y ⎤+⎡26(m +1) ⎤+d -1 ⎢⎣4⎥⎦⎢⎣4 ⎥⎦⎢⎣10 ⎥⎦其中:W——所求的日期的星期数(如大于 7,就需减去 7 的整数倍),c——所求年份的前两位,y——所求年份的后两位,m——月份数(若是 1 月或2 月,应视为上一年的 13 月或14 月,即3 ≤m ≤14 ),d——日期数,[a]——表示取数a 的整数部分.) 答案:四三、解答题:1.(2019 宁德质检第 17 题)(本题满分 8 分)计算: 4cos30︒ + 2-1 -12 . 解:原式= 4 ⨯ 3 + 1 - 2 2 2················· 6 分= 1 ··························· 8 分 2 2.(2019 漳州质检第 17 题)(本小题满分 8 分)计算: 3-1+ π 0-.解:原式= 1 +1- 13 3……………………………………………………………………6 分=1. ........................................................................ 8 分 3.(2019 南平质检第 17 题)(8 分)先化简,再求值:(a + 2b )2- 4a (b - a ),其中 a =2,b=,解:原式= a 2 + 4ab + 4b 2 - 4ab + 4a 2 ......................... 2 分= 5a 2 + 4b 2 , ................................... 4 分 当a = 2,b =时,原式= 5⨯ 22 + 4⨯( 3)2 .............................6 分= 20 +12 = 32 . ................................. 8 分4.(2019 三明质检第 17 题) (本题满分 8 分)先化简,再求值: x (x + 2y ) -(x +1)2 + 2x ,其中 x = +1, y = ..................................................... -1 . 解: 原式=x 2+2xy - (x 2+2x +1)+2x ................................. 2 分= x 2+2xy -x 2-2x -1+2x ....................... 4 分 =2xy -1. ................................... 5 分当 x = 3+1,y =-1时,原式=2(3+1)(-1)-1 ................... 6 分=2(3-1)-1 .......................... 7 分 =3. ..................................... 8 分5.(2019 福州质检第 17 题)( 8 分)先化简,再求值:(1 -2) ÷x 2 - 2x +1※精品※试卷※※推荐※下载※1,其中x= +1x +1 2(x-1)2x +1 x + 1解:原式= (x +1 -x +)÷x+1·················· 2 分a⎪ ⎝ ⎭= x +1 - 2 ⋅ x +1 x + 1 (x -1)2= x -1 ⋅ x + 1x + 1 (x -1)2··················· 4 分= 1 ,······················· 6 分 x - 1 当 x = +1时,原式= 1 2 + 1 -1············· 7 分= 12= 2 . ················· 8 分26.(2019 龙岩质检第 17 题)(本小题满分 8 分)先化简,后求值:x -3 x2-1x 2 + 2x+1⋅-1,其中 x =x - 32 +1.x - 3(x +1)2解:原式= ⋅ -1 ………………2 分(x +1)(x -1) x - 3 = x +1 -x -1………………4 分 x -1 =2 x -1 x -1………………6 分 当 x = 2 +1时,原式= 2 = 2 =………………8 分⎛ 2 7.(2019 泉州质检第 18 题)(8 分)先化简,再求值: -9 ⎫ a2+ 3a ÷,其中 a =.a - 3 a - 3 ⎪ a 3 28.(2019 莆田质检第 17 题)(本小题满分 8 分)先化简,再求值: a ÷ (1-1) ,其中 a = -1.解:原式= = a (a +1)2 a(a +1)2a 2 + 2a +1 ÷a +1-1a +1 ⨯ a +1 a a +1┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 分┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 分=∵a = 1 a +1-1.┄ ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 分∴原式=1= 1 =3 . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 分39.(2019 宁德质检第 22 题)(本题满分 10 分)若正整数 a ,b ,c 满足 1 + 1 = 1,则称正整数a b ca ,b ,c 为一组和谐整数.(1) 判断 2,3,6 是否是一组和谐整数,并说明理由;(2) 已知 x ,y ,z (其中 x <y ≤z )是一组和谐整数,且 x = m +1 , y = m + 3 ,用含 m 的代数式表示 z ,并求当 z = 24 时 m 的值.解:(1)是 1 分理由如下:∵ 1 + 1 = 1 ,满足和谐整数的定义,3 6 2∴2,3,6 是和谐整数. ···················· 4 分 (2) 解:∵ x <y ≤z ,依题意,得 1 + 1 = 1 .y z x∵ x = m +1 , y = m + 3 ,∴ 1 = 1 - 1 = 1 - 1 = 2 . z x y m +1 m + 3 (m +1)(m + 3)∴ z = (m +1)(m + 3) . ···················· 7 分2 ∵ z = 24 ,∴ (m +1)(m + 3) = 24 .2解得 m = 5,m = -9 . ··················· 9 分 ∵x 是正整数,※精品※试卷※∴m 5 .·························10 分※推荐※下载※。

2020年中考数学数与式专题卷(附答案)

2020年中考数学数与式专题卷(附答案)

2020年中考数学数与式专题卷(附答案)一、选择题1.在实数,- ,,中,是无理数的是()A. ,B. - ,C.D.2.下列所示的数轴中,画得正确的是()A. B. C. D.3.下列说法正确的是( )A. 的系数是3B. 2m2n的次数是2次C. 是多项式D. x2-x-1的常数项是14.若数a的近似数为1.6,则下列结论正确的是()A. a=1.6B. 1.55≤a<1.65C. 1.55<a≤1.56D. 1.55≤a<1.565.把代数式3x3-6x2y+3xy2分解因式,结果正确的是()A. x(3x+y)(x-3y)B. 3x(x2-2xy+y2)C. x(3x-y)2D. 3x(x-y)26.要使式子﹣有意义,字母x的取值必须满足()A. x≤B. x≥﹣C. x≥且x≠3D. x≥7.下列各式中,是最简分式的是()A. B. C. D.8.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间9.用加减法解方程组中,消x用____法,消y用____法()A. 加,加B. 加,减C. 减,加D. 减,减10.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是A. 1B. 2C. -1D. -211.已知:,,那么的值为()A. 3或-3B. 0C. 0或3D. 312.观察一串数:0,2,4,6,….第n个数应为()A. 2(n-1)B. 2n-1C. 2(n+1)D. 2n+113.如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于().A. B. 3 C. 4 D. 514.某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定二、填空题15.若|2x﹣y|+(y﹣2)2=0,则x+y=________ .16.若是一个完全平方公式,则m的值为________17.计算﹣(﹣1)2=________18.已知=2,则=________.19.使代数式有意义的x取值范围是________.20. 5x+9的立方根是4,则2x+3的平方根是________.21.使有意义的x的取值范围是________.22.当x变化时,|x-4|+|x-t|有最小值5,则常数t的值为________.三、解答题23.综合题。

2020年浙江数学中考复习第一单元数与式之第2课时 代数式与整式(含因式分解)

2020年浙江数学中考复习第一单元数与式之第2课时  代数式与整式(含因式分解)

第2课时 代数式与整式(含因式分解)
返回目录
了解整数指数幂的意义和基本性质; 能推导乘法公式;了解公式的几何背景,并能利用公式进行简单计算; 能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是 正整数)
).
第2课时 代数式与整式(含因式分解)
返回目录
考点精讲
代数式求值
非负数 单项式
非负数常见的非负数有:a2,|b|, c (a、b、c均大于或等于0)
非负数 性质:若几个非负数的和为0,则每个非负数的值均为_0__,如:若 a2+|b|+ c =0,则有a2=0,|b|=0, c =0,则a=b=c=0
第2课时 代数式与整式(含因式分解)
返回目录
整式的相 关概念
返回思维导图
单项式:数与字母或字母与字母相乘组成的代数式.单独 的一个数或一个字母也是单项式.如3,a,3a2都是单项式
去括号法则:a+(b-c)=___a_+__b_-__c___;a-(b-c)=_____a_-__b_+__c_____
第2课时 代数式与整式(含因式分解)
返回目录
同底数幂相乘:底数不变,指数相加,am·an=___a_m_+__n
返回思维导图
幂的运算 同底数幂相除:__底__数__不__变__,__指__数__相__减___,am÷an=__a_m_-__n_(a≠0)
=4x-1. ∵∴x原=式32,=4×32-1 =5.
第2课时 代数式与整式(含因式分解)
返回目录
13. (2014杭州19题8分)设y=kx,是否存在实数k,使得代数式(x2-y2)(4x2-y2)+
3x2(4x2-y2)能化简为x4?若能,请求出所有满足条件的k的值,若不能,请说明

2019、2020年山东中考数学试题分类(1)——数与式

2019、2020年山东中考数学试题分类(1)——数与式

2019、2020年山东中考数学试题分类(1)——数与式一.有理数的加减混合运算(共1小题) 1.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= . 二.科学记数法—表示较大的数(共5小题) 2.(2020•日照)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为( ) A .1.02×106 B .1.02×105 C .10.2×105 D .102×104 3.(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为( ) A .1.109×107 B .1.109×106 C .0.1109×108 D .11.09×106 4.(2020•泰安)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( ) A .4×1012元 B .4×1010元 C .4×1011元 D .40×109元 5.(2020•烟台)5G 是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB 以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 . 6.(2019•济南)2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为( ) A .0.1776×103 B .1.776×102 C .1.776×103 D .17.76×102 三.科学记数法—表示较小的数(共2小题) 7.(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为( )A .10×10﹣10B .1×10﹣9C .0.1×10﹣8 D .1×109 8.(2019•烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns ),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A .1.5×10﹣9秒B .15×10﹣9秒C .1.5×10﹣8秒D .15×10﹣8秒 四.计算器—基础知识(共1小题)9.(2020•东营)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( ) A .﹣2 B .2 C .±2 D .4五.实数的性质(共1小题) 10.(2020•济南)﹣2的绝对值是( ) A .2 B .﹣2 C .±2 D .√2六.实数大小比较(共1小题) 11.(2020•菏泽)下列各数中,绝对值最小的数是( ) A .﹣5B .12C .﹣1D .√2七.规律型:数字的变化类(共4小题) 12.(2020•淄博)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是 个. 13.(2019•济宁)已知有理数a ≠1,我们把11−a称为a 的差倒数,如:2的差倒数是11−2=−1,﹣1的差倒数是11−(−1)=12.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5 B .7.5C .5.5D .﹣5.514.(2020•泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.15.(2020•滨州)观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,…,根据其中的规律可得a n=(用含n的式子表示).八.规律型:图形的变化类(共3小题)16.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①①①…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.50517.(2019•青岛)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图①是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图①中,使它恰好盖住图①中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图①是一个由4个棱长为1的小立方体构成的几何体,图①是一个长、宽、高分别为a,b,c(a ≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图①的不同位置共可以找到个图①这样的几何体.18.(2020•日照)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71九.完全平方公式(共2小题)19.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.102420.(2020•济南)下列运算正确的是( ) A .(﹣2a 3)2=4a 6 B .a 2•a 3=a 6 C .3a +a 2=3a 3 D .(a ﹣b )2=a 2﹣b 2 一十.整式的混合运算(共1小题) 21.(2020•东营)下列运算正确的是( ) A .(x 3)2=x 5 B .(x ﹣y )2=x 2+y 2 C .﹣x 2y 3•2xy 2=﹣2x 3y 5 D .﹣(3x +y )=﹣3x +y 一十一.提公因式法与公式法的综合运用(共1小题) 22.(2019•临沂)将a 3b ﹣ab 进行因式分解,正确的是( ) A .a (a 2b ﹣b ) B .ab (a ﹣1)2C .ab (a +1)(a ﹣1)D .ab (a 2﹣1) 一十二.分式的混合运算(共3小题) 23.(2019•青岛)(1)化简:a −aa ÷(a 2+a 2a−2n );(2)解不等式组{1−15a ≤653a −1<8,并写出它的正整数解.24.(2020•青岛)(1)计算:(1a+1a)÷(a a−a a);(2)解不等式组:{2a −3≥−5,13a +2<a .25.(2020•泰安)(1)化简:(a ﹣1+1a −3)÷a 2−4a −3;(2)解不等式:a +13−1<a −14.一十三.分式的化简求值(共12小题) 26.(2020•烟台)先化简,再求值:(aa −a−a 2a 2−a 2)÷aaa +a 2,其中x =√3+1,y =√3−1.27.(2019•日照)(1)计算:|√3−2|+π0+(﹣1)2019﹣(12)﹣1;(2)先化简,再求值:1−a +3a 2−1÷a +3a −1,其中a =2;(3)解方程组:{2a −a =5,3a +4a =2.28.(2019•菏泽)先化简,再求值:1a −a (2aa +a−1)÷1a 2−a 2,其中x =y +2019.29.(2019•枣庄)先化简,再求值:a 2a 2−1÷(1a −1+1),其中x 为整数且满足不等式组{a −1>1,5−2a ≥−2.30.(2019•滨州)先化简,再求值:(a 2a −1−a 2a 2−1)÷a 2−aa 2−2a +1,其中x 是不等式组{a −3(a −2)≤4,2a −33<5−a 2的整数解.31.(2019•泰安)先化简,再求值:(a ﹣9+25a +1)÷(a ﹣1−4a −1a +1),其中a =√2. 32.(2019•德州)先化简,再求值:(2a−1a)÷(a 2+a 2aa−5a a)•(a2a+2a a+2),其中√a +1+(n ﹣3)2=0.33.(2020•东营)(1)计算:√27+(2cos60°)2020﹣(12)﹣2﹣|3+2√3|;(2)先化简,再求值:(x −2aa −a 2a )÷a 2−a2a 2+aa,其中x =√2+1,y =√2. 34.(2020•潍坊)先化简,再求值:(1−a +1a 2−2a +1)÷a −3a −1,其中x 是16的算术平方根.35.(2020•菏泽)先化简,再求值:(2a −12a a +2)÷a −4a 2+4a +4,其中a 满足a 2+2a ﹣3=0. 36.(2020•德州)先化简:(a −1a −2−a +2a )÷4−aa 2−4a +4,然后选择一个合适的x 值代入求值.37.(2020•滨州)先化简,再求值:1−a −a a +2a ÷a 2−a 2a 2+4aa +4a 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1.一十四.最简二次根式(共1小题) 38.(2020•济宁)下列各式是最简二次根式的是( ) A .√13B .√12C .√a 3D .√53一十五.二次根式的加减法(共1小题) 39.(2020•日照)下列各式中,运算正确的是( ) A .x 3+x 3=x 6 B .x 2•x 3=x 5 C .(x +3)2=x 2+9 D .√5−√3=√2 一十六.二次根式的混合运算(共6小题) 40.(2019•聊城)下列各式不成立的是( ) A .√18−√89=73√2B .√2+23=2√23C .√8+√182=√4+√9=5D .√3+√2=√3−√241.(2020•菏泽)计算(√3−4)(√3+4)的结果是 . 42.(2020•青岛)计算:(√12−√43)×√3= . 43.(2019•临沂)计算:√12×√6−tan45°= .44.(2019•青岛)计算:√24+√8√2−(√3)0= . 45.(2020•临沂)计算:√(13−12)2+√221√6−sin60°.2019、2020年山东中考数学试题分类(1)——数与式参考答案与试题解析一.有理数的加减混合运算(共1小题) 1.【解答】解;根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2=1.1; 故答案为:1.1二.科学记数法—表示较大的数(共5小题) 2.【解答】解:1020000=1.02×106. 故选:A . 3.【解答】解:∵1109万=11090000, ∴11090000=1.109×107. 故选:A . 4.【解答】解:4000亿=4000×108=4×1011, 故选:C . 5.【解答】解:将数据1300000用科学记数法可表示为:1.3×106. 故答案为:1.3×106. 6.【解答】解:177.6=1.776×102. 故选:B .三.科学记数法—表示较小的数(共2小题) 7.【解答】解:∵十亿分之一=11000000000=1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9. 故选:B .8.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8. 故选:C .四.计算器—基础知识(共1小题)9.【解答】解:表示“√4=”即4的算术平方根,∴计算器面板显示的结果为2, 故选:B .五.实数的性质(共1小题) 10.【解答】解:﹣2的绝对值是2; 故选:A .六.实数大小比较(共1小题)11.【解答】解:∵|﹣5|=5,|12|=12,|﹣1|=1,|√2|=√2, ∴绝对值最小的数是12.故选:B .七.规律型:数字的变化类(共4小题) 12.【解答】解:当一辆快递货车停靠在第x 个服务驿站时,快递货车上需要卸下已经通过的(x ﹣1)个服务驿站发给该站的货包共(x ﹣1)个, 还要装上下面行程中要停靠的(n ﹣x )个服务驿站的货包共(n ﹣x )个. 根据题意,完成下表:服务驿站序号 在第x 服务驿站启程时快递货车货包总数1 n ﹣12 (n ﹣1)﹣1+(n ﹣2)=2(n ﹣2)3 2(n ﹣2)﹣2+(n ﹣3)=3(n ﹣3)4 3(n ﹣3)﹣3+(n ﹣4)=4(n ﹣4)5 4(n ﹣4)﹣4+(n ﹣5)=5(n ﹣5)……n 0由上表可得y =x (n ﹣x ).当n =29时,y =x (29﹣x )=﹣x 2+29x =﹣(x ﹣14.5)2+210.25, 当x =14或15时,y 取得最大值210. 故答案为:210. 13.【解答】解:∵a 1=﹣2,∴a 2=11−(−2)=13,a 3=11−13=32,a 4=11−32=−2,…… ∴这个数列以﹣2,13,32依次循环,且﹣2+13+32=−16,∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(−16)﹣2=−152=−7.5,故选:A .14.【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.15.【解答】解:由分析可得a n =a 2+(−1)a +12a +1.故答案为:a 2+(−1)a +12a +1.八.规律型:图形的变化类(共3小题) 16.【解答】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n +5)块, 当n =50时,7n +5=350+5=355. 故选:C . 17.【解答】解:探究三:根据探究二,a ×2的方格纸中,共可以找到(a ﹣1)个位置不同的 2×2方格, 根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a ×2的方格纸中,共可以找到(a ﹣1)×4=(4a ﹣4)种不同的放置方法; 故答案为a ﹣1,4a ﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a ,有(a ﹣1)条边长为2的线段, 同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a ×3的方格中,可以找到2(a ﹣1)=(2a ﹣2)个位置不同的2×2方格,根据探究一,在在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a ﹣2)×4=(8a ﹣8)种不同的放置方法.故答案为2a ﹣2,8a ﹣8;问题解决:在a ×b 的方格纸中,共可以找到(a ﹣1)(b ﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a ﹣1)(b ﹣1)种不同的放置方法;问题拓展:发现图①示是棱长为2的正方体中的一部分,利用前面的思路, 这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法, 所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图①这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1). 18.【解答】解:根据图中圆点排列,当n =1时,圆点个数5+2;当n =2时,圆点个数5+2+3;当n =3时,圆点个数5+2+3+4;当n =4时,圆点个数5+2+3+4+5,…∴当n =10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=4+12×11×(11+1)=70. 故选:C .九.完全平方公式(共2小题) 19.【解答】解:由“杨辉三角”的规律可知,(a +b )9展开式中所有项的系数和为(1+1)9=29=512 故选:C . 20.【解答】解:∵(﹣2a 3)2=4a 6,故选项A 正确; ∵a 2•a 3=a 5,故选项B 错误;∵3a +a 2不能合并,故选项C 错误;∵(a ﹣b )2=a 2﹣2ab +b 2,故选项D 错误; 故选:A .一十.整式的混合运算(共1小题) 21.【解答】解:A 、原式=x 6,不符合题意; B 、原式=x 2﹣2xy +y 2,不符合题意; C 、原式=﹣2x 3y 5,符合题意; D 、原式=﹣3x ﹣y ,不符合题意. 故选:C .一十一.提公因式法与公式法的综合运用(共1小题) 22.【解答】解:a 3b ﹣ab =ab (a 2﹣1)=ab (a +1)(a ﹣1), 故选:C .一十二.分式的混合运算(共3小题)23.【解答】解:(1)原式=a −a a ÷a 2+a 2−2aaa=a −a a ×a (a −a )2=1a −a; (2){1−15a ≤65a 3a −1<8a 由①,得x ≥﹣1, 由①,得x <3.所以该不等式组的解集为:﹣1≤x <3. 所以满足条件的正整数解为:1、2.24.【解答】解:(1)原式=(a aa+aaa)÷(a 2aa−a 2aa)=a +a aa ÷a 2−a 2aa=a +aaa •aa (a +a )(a −a ) =1a −a ;(2)解不等式2x ﹣3≥﹣5,得:x ≥﹣1, 解不等式13x +2<x ,得:x >3, 则不等式组的解集为x >3.25.【解答】解:(1)原式=[(a −1)(a −3)a −3+1a −3]÷(a +2)(a −2)a −3=(a 2−4a +3a −3+1a −3)•a −3(a +2)(a −2)=(a −2)2a −3•a −3(a +2)(a −2)=a −2a +2;(2)去分母,得:4(x +1)﹣12<3(x ﹣1), 去括号,得:4x +4﹣12<3x ﹣3, 移项,得:4x ﹣3x <﹣3﹣4+12, 合并同类项,得:x <5.一十三.分式的化简求值(共12小题) 26.【解答】解:(aa −a −a 2a 2−a 2)÷aaa +a 2,=[a (a +a )(a +a )(a −a )−a 2(a +a )(a −a )]÷a a (a +a ), =aa (a +a )(a −a )×a (a +a )a , =a 2a −a ,当x =√3+1,y =√3−1时,原式=(√3−1)22=2−√3. 27.【解答】解:(1)|√3−2|+π0+(﹣1)2019﹣(12)﹣1=2−√3+1+(﹣1)﹣2 =−√3; (2)1−a +3a 2−1÷a +3a −1 =1−a +3(a +1)(a −1)⋅a −1a +3=1−1a +1 =a +1−1a +1=a a +1当a =2时,原式=22+1=23;(3){2a −a =5a3a +4a =2a ,①×4+①,得 11x =22, 解得,x =2,将x =2代入①中,得 y =﹣1,故原方程组的解是{a =2a =−1.28.【解答】解:1a −a (2aa +a−1)÷1a 2−a 2=1a −a ⋅2a −(a +a )a +a⋅(a +a )(a −a )=﹣(2y ﹣x ﹣y ) =x ﹣y ,∵x =y +2019,∴原式=y +2019﹣y =2019.29.【解答】解:原式=a 2(a +1)(a −1)÷(1a −1+a −1a −1)=a 2(a +1)(a −1)•a −1a=a a +1,解不等式组{a −1>1,5−2a ≥−2.得2<x ≤72,则不等式组的整数解为3,当x =3时,原式=33+1=34. 30.【解答】解:原式=[a 3+a 2(a +1)(a −1)−a 2(a +1)(a −1)]•(a −1)2a (a −1)=a 3(a +1)(a −1)•(a −1)2a (a −1) =a 2a +1,解不等式组{a −3(a −2)≤4,2a −33<5−a 2得1≤x <3, 则不等式组的整数解为1、2, 又x ≠±1且x ≠0, ∴x =2, ∴原式=43.31.【解答】解:原式=(a 2−8a −9a +1+25a +1)÷(a 2−1a +1−4a −1a +1)=a 2−8a +16a +1÷a 2−4a a +1 =(a −4)2a +1•a +1a (a −4)=a −4a ,当a =√2时, 原式=√2−4√2=1﹣2√2.32.【解答】解:(2a −1a )÷(a 2+a 2aa −5aa)•(a2a+2a a+2)=2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −aaa •aa (a +2a )(a −2a )•(a +2a )22aa=−a +2a 2aa .∵√a +1+(n ﹣3)2=0.∴m +1=0,n ﹣3=0, ∴m =﹣1,n =3.∴−a +2a2aa =−−1+2×32×(−1)×3=56. ∴原式的值为56.33.【解答】解:(1)原式=3√3+(2×12)2020﹣22﹣(3+2√3) =3√3+1﹣4﹣3﹣2√3 =√3−6;(2)原式=a 2−2aa +a 2a •a 2+aa a 2−a 2 =(a −a )2a •a (a +a )(a +a )(a −a )=x ﹣y .当x =√2+1,y =√2时,原式=√2+1−√2=1.34.【解答】解:原式=(a 2−2a +1a 2−2a +1−a +1a 2−2a +1)÷a −3a −1, =(a 2−3a a 2−2a +1)×a −1a −3, =a (a −3)(a −1)2×a −1a −3, =a a −1. ∵x 是16的算术平方根,∴x =4,当x =4时,原式=43. 35.【解答】解:原式=(2a 2+4a a +2−12a a +2)÷a −4(a +2)2 =2a 2−8a a +2•(a +2)2a −4 =2a (a −4)a +2•(a +2)2a −4 =2a (a +2)=2(a 2+2a )∵a 2+2a ﹣3=0,∴a 2+2a =3,则原式=2×3=6.36.【解答】解:(a −1a −2−a +2a )÷4−aa 2−4a +4=[a (a −1)a (a −2)−(a −2)(a +2)a (a −2)]×(a −2)24−a=4−a a (a −2)⋅(a −2)24−a=a −2a , ∵x 不能取0,2,4把x =1代入a −2a =1−21=−1.37.【解答】解:原式=1−a −a a +2a ÷(a +a )(a −a )(a +2a )2=1+a −a a +2a •(a +2a )2(a +a )(a −a ) =1+a +2a a +a=a +a +a +2a a +a =2a +3a a +a ,∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2,∴原式=2×3+3×(−2)3−2=0. 一十四.最简二次根式(共1小题)38.【解答】解:A 、√13是最简二次根式,符合题意;B 、√12=2√3,不是最简二次根式,不符合题意;C 、√a 3=a √a ,不是最简二次根式,不符合题意;D 、√53=√153,不是最简二次根式,不符合题意. 故选:A .一十五.二次根式的加减法(共1小题)39.【解答】解:A 、x 3+x 3=2x 3,故选项A 不符合题意;B 、x 2•x 3=x 5计算正确,故选项B 符合题意;C 、(x +3)2=x 2+6x +9,故选项C 不符合题意;D 、二次根式√5与√3不是同类二次根式故不能合并,故选项D 不符合题意. 故选:B .一十六.二次根式的混合运算(共6小题)40.【解答】解:√18−√89=3√2−2√23=7√23,A 选项成立,不符合题意; √2+23=√83=2√23,B 选项成立,不符合题意; √8+√182=2√2+3√22=5√22,C 选项不成立,符合题意; √3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,D 选项成立,不符合题意; 故选:C .41.【解答】解:原式=(√3)2﹣42 =3﹣16=﹣13.故答案为:﹣13.42.【解答】解:原式=(2√3−2√33)×√3 =4√33×√3=4, 故答案为:4.43.【解答】解:√12×√6−tan45°=√12×6−1=√3−1, 故答案为:√3−1.44.【解答】解:√24+√8√2−(√3)0=2√3+2﹣1=2√3+1, 故答案为:2√3+1. 45.【解答】解:原式=12−13+23−√32 =16+√36−√32=1−2√36.。

2024年全国中考数学试题分类汇编——数与式之计算题(文字版,含答案)

2024年全国中考数学试题分类汇编——数与式之计算题(文字版,含答案)
3.
4.
5.【答案】 ,
6.【答案】-1
7.【答案】从第②步开始出现错误,正确过程如下:
解: ①
10.【详解】解:

当 时,原式 .
11.解:

12.解:

13.
14.

15. 16.
17. 18.
19.
20.
第三组数与式计算题 专题分类汇编
1.(内蒙古赤峰市卷)计算: ;
2.(内蒙古赤峰市卷)已知 ,求代数式 的值.
3.(吉林省长春市卷)先化简,再求值: ,其中 .
4.(吉林省卷)先化简,再求值: ,其中 .
5.(江苏省常州市卷)先化简,再求值: ,其中 .
6.(江苏省连云港市卷)17.计算 .
7.(江苏省连云港市卷)19.下面是某同学计算 解题过程:
解: ①


上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.
解: …①
…②
…③
…④
…⑤
当 时,原式 .
(1)小乐同学的解答过程中,第______步开始出现了错误;
(2)请帮助小乐同学写出正确的解答过程.
17.(黑龙江省齐齐哈尔市卷)计算:
18.(黑龙江省齐齐哈尔市卷)分解因式:
19.(湖北省卷)计算:
20.(湖南省长沙市卷)计算: .
第一组 中考 数与式计算题 试题汇编答案
【一】
1.【详解】解:原式

∵ ,
∴ ,
∴原式 .
2.【详解】解:原式 .
3.
6.解:原式=|﹣2|﹣3+1
=2﹣3+1
=2+1﹣3
6.(四川省广安市卷)计算: .

中考数学数与式专题训练50题(含答案)

中考数学数与式专题训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。

2020年中考数学真题分类汇编(四川省)专题: 数与式(教师版)

2020年中考数学真题分类汇编(四川省)专题: 数与式(教师版)

专题01 数与式 实数部分一、选择题1.(2019四川凉山州)﹣2的相反数是( ) A .2 B .﹣2 C .12D .﹣12【答案】A .【解析】解:根据相反数的定义,﹣2的相反数是2. 故选:A .2.(2019是攀枝花)2(1)-等于( )A 、1-B 、1C 、2-D 、2 【答案】B【解析】(-1)2=(-1)×(-1)=1. 3.(2019四川资阳)﹣3的倒数是( ) A .﹣13B .13C .﹣3D .3【答案】A .【解析】解:∵﹣3×(﹣13)=1, ∴﹣3的倒数是﹣13. 故选:A .4.(2019四川自贡)﹣2019的倒数是( ) A .﹣2019 B .﹣20191C .20191D .2019【答案】B .【解析】解:﹣2019的倒数是﹣20191. 故选:B .5.(2019四川乐山)3-的绝对值是 A. 3 B. 3-C.31 D. 31- 【答案】A.【解析】考查绝对值的理解,负数的绝对值是它的相反数, 故选A.6.(2019四川眉山)下列四个数中,是负数的是( )A .|﹣3|B .﹣(﹣3)C .(﹣3)2D【答案】D .【解析】解:|﹣3|=3,﹣(﹣3)=3,(﹣3)2=9,∴四个数中,负数是﹣.故选:D .7.(2019四川遂宁)﹣||的值为( )AB .﹣C D .2【答案】B .【解析】解:﹣|﹣|=﹣.故选:B .8.(2019四川攀枝花)在0,1-,2,3-这四个数中,绝对值最小的数是( ) A 、0 B 、1- C 、2 D 、3- 【答案】:A.【解析】:|0|=0,|-1|=1,|2|=2,|-3|=3 显然0最小,故选A.9.(2019四川成都)比﹣3大5的数是( ) A .﹣15 B .﹣8C .2D .8【答案】C .【解析】解:﹣3+5=2. 故选:C .10.(2019四川达州)﹣2019的绝对值是( ) A .2019 B .﹣2019C .20191D .﹣20191【答案】A .【解析】解:﹣2019的绝对值是:2009. 故选:A .11.(2019四川广安)﹣2019的绝对值是( ) A .﹣2019 B .2019C .﹣20191D .20191【答案】B .【解析】解:﹣2019的绝对值是:2019. 故选:B .12.(2019四川乐山)a -一定是( )A. 正数B. 负数C. 0D. 以上选项都不正确 【答案】D【解析】因为a 可正、可负、也可能是0, 故选D.13.(2019四川南充)如果6a =1,那么a 的值为( ) A .6 B .61 C .﹣6 D .﹣61 【答案】B .【解析】解:∵6a =1,∴a =61. 故选:B .14.(2019四川宜宾)2的倒数是( ) A .12B .﹣2C .12-D .12±【答案】A .【解析】解:2的倒数是12, 故选:A .15.(2019四川资阳)设x x 的取值范围是()A .2<x <3B .3<x <4C .4<x <5D .无法确定【答案】B .【解析】解:∵9<15<16,∴34<<,故选:B .16.(2019四川自贡)实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )m n1A.|m|<1 B.1﹣m>1 C.mn>0 D.m+1>0【答案】利用数轴表示数的方法得到m<0<n,然后对各选项进行判断.【解析】解:利用数轴得m<0<1<n,所以﹣m>0,1﹣m>1,mn<0,m+1<0.故选:B.17.(2019四川宜宾)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5【答案】B.【解析】解:0.000052=5.2×10﹣5;故选:B.18.(2019四川自贡)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为()A.2.3×104B.23×103C.2.3×103D.0.23×105【答案】A.【解析】解:23000=2.3×104,故选:A.19.(2019四川凉山州)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【答案】C.【解析】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.20.(2019四川眉山)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个【答案】C.【解析】解:120亿个用科学记数法可表示为:1.2×1010个.故选:C.21.(2019四川攀枝花)用四舍五入法将130542精确到千位,正确的是()A、131000B、6⨯D、4⨯13.1101.3110⨯C、50.13110【答案】C.【解析】解:130542=1.30542×105,又精确到千位,所以,130542=1.30542×105≈1.31×105故选C.22.(2019=2,则a的值为()A. B. 4 C.【答案】B.【解析】因为4的算术平方根是2,所以a=4.故选B.23.(2019四川绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10-3B. 0.2×10-4C. 2×10-3D. 2×10-4【答案】D.【解析】0.0002=2×0.0001=2×10-4故选D.24.(2019四川巴中)企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A.93×108元B.9.3×108元C.9.3×107元D.0.93×108元【答案】C.【解析】解:将9300万元用科学记数法表示为:9.3×107元.故选:C.25.(2019四川成都)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示()A.5500×104B.55×106C.5.5×107D.5.5×108【答案】C.【解析】解:科学记数法表示:5500万=5500 0000=5.5×107故选:C.26.(2019四川广安)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是()A.0.25×1011B.2.5×1011C.2.5×1010D.25×1010【答案】B.【解析】解:数字2500 0000 0000用科学记数法表示,正确的是2.5×1011.故选:B.27.(2019四川绵阳)已知x是整数,当x取最小值时,x的值是()A. 5B. 6C. 7D. 8【答案】A.x,∴56,5,∴当x取最小值时,x的值是5,故选:A.28.(2019四川达州)a是不为1的有理数,我们把11a-称为a的差倒数,如2的差倒数为1 12 -=﹣1,﹣1的差倒数111(1)2=--,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A .5B .﹣14C .43D .45【答案】D .【解析】解:∵a 1=5,a 2=111115a =--=﹣14, a 3=211111()4a =---=45, a 4=3114115a =--=5, …∴数列以5,﹣14,45三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=45, 故选:D . 二、填空题29.(2019四川攀枝花)3-的相反数是 。

2020年中考数学复习:数与式、化简求值问题 专项练习题(含答案解析)

2020年中考数学复习:数与式、化简求值问题 专项练习题(含答案解析)

2020年中考数学复习:数与式、化简求值问题 专项练习题1. (2019遂宁第18题)先化简,再求值:÷﹣,其中a ,b 满足(a ﹣2)2+=02.(2019·本溪)先化简,再求值:a a a a a a 2221444222-÷⎪⎪⎭⎫ ⎝⎛--+--. 其中a 满足 a 2+3a -2=0.3.观察下列等式:第1个等式:a 1=11+2=2-1, 第2个等式:a 2=12+3=3-2, 第3个等式:a 3=13+2=2-3, 第4个等式:a 4=12+5=5-2, 按上述规律,回答以下问题:(1)请写出第n 个等式:a n = ;(2)a 1+a 2+a 3+…+a n = .4.(2019·凉山)先化简,再求值:(a +3)2-(a +1)(a -1)-2(2a +4),其中a =-12.53+22,我们可以如下做:∵3+22=2+1+22=(2)2+2×2×1+12=(2+1)2, ∴3+22=(2+1)2=2+1. 仿照上例化简下列各式: (1)4+23= ;(2)13-242= ;(3)14+65-14-65= .6.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a 、b 、m 、n 均为整数),则有a +b 2=m 2+2n 2+2mn 2. ∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +b2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b 得:a = ,b = ; (2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空: +( +2;(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.7.化简:x -3x -2÷(x +2-5x -2).8.先化简,再求值:(a +b )2+b (a -b )-4ab ,其中a =2,b =-12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数与式模块一、选择题:1.(2019 厦门质检第 1 题)计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 答案:A2.(2019 龙岩质检第 1 题)计算-1-1的结果等于A.-2 B.0 C.1 D.2答案:A3.(2019 南平质检第1 题)下列各数中,比-2 小3 的数是( ).(A)1 (B) -1 (C)- 5 (D)- 6答案:C4.(2019 福州质检第 1 题)- 3 的绝对值是A.13答案:D B.-13C. - 3D.35.(2019 泉州质检第1 题)化简|-3|的结果是().(A)3 (B)-3 (C)±3(D)13答案:A6.(2019 宁德质检第 1 题)-2019 的值是A.12019 B.2019 C.-12019D.-2019答案:B7.(2019 莆田质检第 1 题) 2019 的相反数为(A) 2019 (B) 答案:C1(C)2019- 2019(D) -120198.(2019 三明质检第 1 题)-1的值为(▲)9A.1B.-1C.9 D.-9 9 9答案: A9.(2019 福州质检第 4 题)如图,数轴上 M,N,P,Q 四点中,能表示A.M B.N C.P D.Q答案:C的点是().110.(2019 漳州质检第 1 题)如图,数轴上点 M 所表示的数的绝对值是().A .3B . - 3C .±3D . -1 3答案:A11.(2019 漳州质检第 1 题)“中国天眼”FAST 射电望远镜的反射面总面积约 250 000m 2,数据 250 000 用科学记数法表示为().A .25×104B .2.5×105C .2.5×106D .0.25×106答案: B12.(2019 三明质检第 2 题)港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道, 全长约 55000 米,把 55000 用科学记数法表示为(▲)A .55×103B .5.5×104C .5.5×105D .0.55×105答案:B13.(2019 泉州质检第 3 题)从泉州市电子商务中心获悉,近年来电子商务产业蓬勃发展截止到 2019 年 3 月,我市电商从业人员已达 873 000 人,数字 873 000 可用科学记数法表示 为 ( ).(A)8.73×103 (B)87.3×104 (C)8.73×105 (D)0.873×106答案:C14.(2019 南平质检第 2 题)我国南海总面积有 3 500 000 平方千米,数据 3 500 000 用科学记数法表示为(). (A)3.5×106 (B)3.5×107(C)35×105(D)0.35×108答案:A15.(2019 福州质检第 3 题)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为 4 400 000 000 人,将 4 400 000 000 科学记数法表示,其结果是( ).A .44×108B .4.4×109C .4.4×108D .4.4×1010答案:B16.(2019 漳州质检第 4 题)下列计算,结果等于 x 5 的是A .x 2+x 3B .x 2•x3 C .x 10 ÷x2 D .(x 2)3答案:B17.(2019 泉州质检第 4 题)下列各式的计算结果为 a 5 的是( ) (A)a 7-a 2(B)a 10÷a2(C)(a 2)3 (D)( -a )2·a 3答案:D18.(2019 三明质检第 4 题)下列运算中, 正确的是(▲)A .(ab 2)2=a 2b4B .a 2+a 2=2a4 C . a 2 ⋅ a 4 =a 8答案: A19.(2019 莆田质检第 2 题)下列式子运算结果为 2a 的是D .a 6÷a 3=a 2(A) 答案: Ca ⋅a(B) 2 + a(C)a + a(D)a 3 ÷ a20.(2019 福州质检第 5 题)下列计算正确的是(). A . 8a - a = 8B . (-a )4 =a 4C . a 3 ⋅ a 2=a 6D . (a - b )2 = a2 - b 2答案: B21.(2019 龙岩质检第 2 题)下列计算正确的是A . 4= ± 2B . 2x (3x -1) = 6x2 -1C. a 2 +a 3 =a 5答案: DD. a 2 ⋅ a 3 =a 522.(2019 厦门质检第 5)若 967×85=p ,则 967×84 的值可表示为A. p -1B. p -85C. p -967D.8584 p答案: C23.(2019 龙岩质检第 9 题)已知k =4x + 3,则满足k 为整数的所有整数 x 的和是 2x -1A .-1B .0C .1D .2 答案: D 二、填空题:1.(2019 福州质检第 11 题) 2-1=.1答案: 22.(2019 莆田质检第 11 题) 计算:答案: 2= .3. (2019 泉州质检第 11 题)已知 a 1-1ab (填“>”,“<”或“=”) .答案:>=( )°,b=2 2,则4.(2019 厦门质检第 11 题)分解因式: m 2-2m = .答案: m ( m -2)5.(2019 三明质检第11 题)分解因式:a3 -a =▲.答案:a(a +1)(a -1)46.(2019 宁德质检第11 题)因式分解:2a2 - 2 = .答案:2(a +1)(a -1)7.(2019 漳州质检第11 题)因式分解:ax2 -a = .答案:a(x+1)(x-1);8.(2019 宁德质检第 11 题)2017 年10 月18 日,中国共产党第十九次全国代表大会在北京隆重召开.从全国近 89 400 000 党员中产生的 2 300 名代表参加了此次盛会.将数据 89 400000 用科学记数法表示为.答案:8.94 ⨯1079.(2019 莆田质检第 12 题)我国五年来(2013 年—2019 年)经济实力跃上新台阶,国内生产总值增加到827000 亿元.数据827000 亿元用科学记数法表示为亿元. 答案: 8.27 ⨯10510.(2019 龙岩质检第12 题)2019 年春节假期,某市接待游客超3360000 人次,用科学记数法表示3360000,其结果是.答案: 3.36⨯10611.(2019 龙岩质检第 11 题)使代数式答案:x ≥ 2有意义的x 的取值范围是.12.(2019 漳州质检第 15)“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组数a,b,c 的值依次为.答案:14.答案不唯一.13.(2019 厦门质检第15)已知a+1=20002+20012,计算:2a+1答案:4001.14.(2019 莆田质检第 16 题)2010 年8 月19 日第26 届国际数学家大会在印度的海德拉巴市举行,并首次颁出陈省身奖,该奖项是首个以中国人名字命名的国际主要科学奖.根据蔡勒公式可以得出2010 年8 月19 日是星期.(注:蔡勒(德国数学家)公式:W =⎡c ⎤- 2c +y +⎡y ⎤+⎡26(m +1) ⎤+d -1 ⎢⎣4⎥⎦⎢⎣4 ⎥⎦⎢⎣10 ⎥⎦其中:W——所求的日期的星期数(如大于 7,就需减去 7 的整数倍),c——所求年份的前两位,y——所求年份的后两位,m——月份数(若是 1 月或2 月,应视为上一年的 13 月或14 月,即3 ≤m ≤14 ),d——日期数,[a]——表示取数a 的整数部分.) 答案:四三、解答题:1.(2019 宁德质检第 17 题)(本题满分 8 分)计算: 4cos30︒ + 2-1 -12 . 解:原式=4 ⨯ 3 + 1 - 2 2 2················· 6 分 = 1 ·························· 8 分 2 2.(2019 漳州质检第 17 题)(本小题满分 8 分)计算:3-1 + π 0- .解:原式= 1 +1- 13 3……………………………………………………………………6 分=1. ........................................................................ 8 分3.(2019 南平质检第 17 题)(8 分)先化简,再求值:(a + 2b )2- 4a (b - a ),其中 a =2,b=,解:原式= a 2 + 4ab + 4b 2 - 4ab + 4a 2 ..................... 2 分= 5a 2 + 4b 2 ,.................................... 4 分 当a = 2,b =时,原式= 5⨯ 22 + 4⨯( 3)2 .............................6 分= 20 +12 = 32 . ................................. 8 分4.(2019 三明质检第 17 题) (本题满分 8 分)先化简,再求值: x (x + 2y ) -(x +1)2 + 2x ,其中 x = +1, y = ..................................................... -1 . 解: 原式=x 2+2xy - (x 2+2x +1)+2x ................................. 2 分= x 2+2xy -x 2-2x -1+2x ....................... 4 分 =2xy -1. ................................... 5 分当 x = 3+1,y =-1时,原式=2(3+1)(-1)-1 ................... 6 分=2(3-1)-1 .......................... 7 分 =3. ..................................... 8 分5.(2019 福州质检第 17 题)( 8 分)先化简,再求值:(1 -2) ÷x 2 - 2x + 1,其中 x =+1x +1 271 (x -1)2x +1x + 1解:原式= (x +1- x +) ÷ x +1··················2 分a⎪⎝ ⎭ =x +1 - 2⋅x +1x +1 (x -1)2=x -1 ⋅x + 1x + 1 (x -1)2··················· 4 分= 1 ,······················· 6 分x - 1当x =+1时,原式= 12 +1 -1·············7 分= 12= 2 .················· 8 分26.(2019 龙岩质检第 17 题)(本小题满分 8 分)先化简,后求值:x -3x2-1x2 + 2x+1⋅-1,其中x =x - 32 +1. x -3 (x +1)2解:原式=⋅-1 ………………2 分(x +1)(x -1) x -3=x +1-x -1 ………………4 分x -1=2x -1x-1………………6 分当x = 2 +1时,原式=2=2=………………8 分⎛ 27.(2019 泉州质检第18 题)(8 分)先化简,再求值: -9 ⎫ a 2 +3a ÷,其中a= . a - 3 a -3 ⎪a3 28.(2019 莆田质检第 17 题)(本小题满分 8 分)先化简,再求值: a ÷ (1-1) ,其中 a = -1.解:原式= = a (a +1)2 a(a +1)2a 2 + 2a +1 ÷a +1-1a +1 ⨯ a +1 a a +1┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 分┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 分=∵a = 1 a +1-1.┄ ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 分∴原式=1= 1 =3 . ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 分39.(2019 宁德质检第 22 题)(本题满分 10 分)若正整数 a ,b ,c 满足 1 + 1 = 1,则称正整数a b ca ,b ,c 为一组和谐整数.(1) 判断 2,3,6 是否是一组和谐整数,并说明理由;(2) 已知 x ,y ,z (其中 x <y ≤z )是一组和谐整数,且 x = m +1 , y = m + 3 ,用含 m 的代数式表示 z ,并求当 z = 24 时 m 的值.解:(1)是 1 分理由如下:∵ 1 + 1 = 1 ,满足和谐整数的定义,3 6 2∴2,3,6 是和谐整数. ···················· 4 分 (2) 解:∵ x <y ≤z ,依题意,得 1 + 1 = 1 .y z x∵ x = m +1 , y = m + 3 ,∴ 1 = 1 - 1 = 1 - 1 = 2 . z x y m +1 m + 3 (m +1)(m + 3)∴ z = (m +1)(m + 3) . ··················· 7 分2 ∵ z = 24 ,∴ (m +1)(m + 3) = 24 .2解得 m = 5,m = -9 . ···················· 9 分 ∵x 是正整数,∴ m = 5 . ························· 10 分。

相关文档
最新文档