厌氧水解酸化原理

合集下载

厌氧反应器酸化的原因及恢复措施

厌氧反应器酸化的原因及恢复措施

厌氧反应器酸化的原因及恢复措施厌氧反应器的启动和正常运行中,对技术水平要求较高,常出现的问题就是厌氧反应器的“酸化”。

一、厌氧反应器的三个重要参数1、碱度(ALK)厌氧处理系统中,较强的酸碱缓冲体系能够降低系统pH的变化幅度,而与酸碱平衡有关的共轭酸碱对包括:H2CO3/HCO3-、HCO3-/CO32-、NH4+/NH3、H2S/HS-、HS-/S2-和HAc /Ac-等。

当废水中的pH发生变化时,这些酸碱对的浓度也会发生相应的变化。

理论上,总碱度将包括水中的[HS-]、[CO32-]、[NH3]、[HCO3-]、[Ac-]、[OH-]和[S2-]等,常称之为“挥发性酸碱度”,也称“VFA”,因为一般厌氧体系的pH值为6.0~8.0,上述致碱物质中的[OH-]和[S2-]的浓度会相对较小,可以忽略不计。

废水中有足够的碱度时,能够通过控制反应器的pH来监控VFA的积累,只有在厌氧体系中有足够的碳酸氢盐碱度才能保证稳定的pH值环境。

水解酸化池的出水碱度必须保持至少在600~900mg/L(该数值为低限,在高浓度废水中,碱度要高出此许多),这样可防止当挥发性脂肪酸积累的情况下反应器的pH值骤然下降。

2、酸化度(VFA/COD)在厌氧工艺的研究中,将酸化度(VFA/COD)作为废水酸化程度的指标,但查阅相应的厌氧处理技术资料后发现,明确提出将酸化度(VFA/COD)作为厌氧反应器进水的一项重要水质指标的并不多。

穆军等将挥发酸产率(VFA/COD)作为废水处理中的一个重要性质,研究了蔗糖-蛋白胨人工配水的酸化过程,在此基础上提出和定义了废水可酸化性和酸化度的概念,并构建了废水厌氧酸化过程的评判标准。

部分学者认为有机废水完全预酸化对厌氧反应是有害的,因为预酸化出水中含有细小的发酵产酸菌污泥,这些污泥会置换出反应器中的部分产甲烷菌,使产甲烷菌过多流失,使污泥增长速度变慢,严重时会导致反应器“酸化”。

所以,建议在厌氧处理前采用轻微的预酸化,酸化率为20~40%,有时甚至更低就可以达到要求。

厌氧的基本原理及影响其效果的因素

厌氧的基本原理及影响其效果的因素

厌氧生化法的基本原理及影响其效果的因素一、厌氧生化法的基本原理废水厌氧生物处理是在无分子氧条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程,也称为厌氧消化。

厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的联合作用完成。

因而粗略地将厌氧消化过程分为三个连续的阶段,即水解酸化阶段、产氢产乙酸阶段和产甲烷阶段,如下图所示:(1)水解酸化(2)产氢产乙酸(3)产甲烷第一阶段为水解酸化阶段。

复杂的大分子、不溶性有机物先在细胞外酶的作用下水解为小分子、溶解性有机物,然后渗入细胞体内,分解产生挥发性有机酸、醇类、醛类等。

这个阶段主要产生较高级脂肪酸。

含氮有机物分解产生的NH除了提供合成细胞物质的氮源外,在水中部分电离,形成NHHCO,具有缓冲消化液PH值的作用。

第二阶段为产氢产乙酸阶段。

在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2 ,在降解奇数碳素有机酸时还形成CO2 。

第三阶段为产甲烷阶段。

产甲烷细菌将乙酸、乙酸盐、CO2 和H2 等转化成甲烷。

虽然厌氧消化过程可分为以上三个阶段,但是在厌氧反应器中,三个阶段是同时进行的,并保持某种程度的动态平衡。

这种动态平衡一旦被PH值、温度、有机负荷等外加因素所破坏,贝y首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,甚至会导致整个厌氧消化过程停滞。

二、影响厌氧处理效果的因素水解产酸细菌和产氢产乙酸细菌,可统称为不产甲烷菌,它包括厌氧细菌和兼性细菌,尤以兼性细菌居多。

与产甲烷菌相比,不产甲烷菌对PH值、温度、厌氧条件等外界环境因素的变化具有较强的适应性,且其增殖速度快。

而产甲烷菌是一群非常特殊的、严格厌氧的细菌,它们对环境条件的要求比不产甲烷菌更严格,而且其繁殖的世代期更长。

因此,产甲烷细菌是决定厌氧消化效率和成败的主要微生物,产甲烷阶段是厌氧过程速率的限制步骤。

厌氧水解酸化工艺原理

厌氧水解酸化工艺原理

厌氧水解酸化工艺原理
厌氧水解酸化工艺原理:
水解和酸化是分为两部分的,在厌氧硝化过程是两个阶段的。

水解酸化的目的是将原有废水中的非溶解性有机物转变为溶解性
有机物,工业废水中的难生物降解的有机物转变为易生物降解的有机物时,废水的可生化性提高了就有利于后续的好氧处理。

而水解的主要目的在于降低浓度难降解废水预处理,水解酸化的目的是为混合厌氧硝化过程的甲烷发酵提供底物,混合厌氧硝化中的产酸相和产甲烷相分开将能够达到最佳的效果。

也即:经过酸化后的废水提高其水质的可生化性,减少污泥产量,降低污水的pH值,水解酸化池中设组合填料将可以提高整个系统对有机物和悬浮物的去除效果同时减轻好氧系统的有机负荷。

水解(酸化)工艺

水解(酸化)工艺

水解(酸化)工艺水解(酸化)工艺属于升流式厌氧污泥床反应器的改进型,适用于处理低浓度的城市污水,它的水力停留时间为3~4小时,能在常温下正常运行,不产生沼气,流程简化,并在基本不需要能耗的条件下对有机物进行降解,降低了造价和运行费用。

水解池内分污泥床区和清水层区,待处理污水以及滤池反冲洗时脱落的剩余微生物膜由反应器底部进入池内,并通过带反射板的布水器与污泥床快速而均匀地混合。

污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。

由于污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解—产酸菌的作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质(如有机酸类)。

经过水解后的污水的可生化性进一步提高,通过清水区排出池外进入后续好氧系统进一步处理。

由于上述原因以及水解酸化的污泥龄较长,所以在污水处理的同时,污泥得以稳定减容。

在水解酸化池中,主要以兼性微生物为主,另含有部分甲烷菌。

水解酸化池中COD的降低,主要是由于微生物的生长过程中吸收有机污染物作为营养物质,以及大分子物质降解为有机酸过程中产生二氧化碳,同时还包括硫酸盐的还原、氢气的产生及少量的甲烷化过程等。

总之,水解(酸化)工艺具有以下特点:1)在城市污水处理中,多功能的水解(酸化)池较功能专一的传统初沉池对各类有机物的去除效率高,节能降耗。

以多功能的水解池取代功能专一的初沉池,水解(酸化)池对各类有机物的去除率远远高于传统的初沉池,其COD、BOD、SS去除率分别达到25-30%、15-25%、65-70%,从数量上降低了对后续处理构筑物的负荷。

水解池用较短的时间和较低的能耗完成了部分有机污染物的净化过程,使该组合工艺较常规工艺节能20%~30%。

2)污泥相对稳定水解(酸化)—曝气生物滤池工艺较常规工艺污泥量减少了15~30%,整个工艺的剩余污泥最终从水解酸化池排出。

水解酸化原理全面解析

水解酸化原理全面解析

水解酸化原理全面解析【格林大讲堂】在废水处理中,水解指的是有机底物进入细胞之前,在胞外进行的生物化学反应。

水解是复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。

水解在化学上指的是化合物与水进行的一类反应的总称。

高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。

并通过胞内的生化反应取得能源,同时排出代谢产物(厌氧条件下主要为各种有机酸)。

如果废水中同时存在不溶性和溶解性有机物时,水解和酸化更是不可分割地同时进行。

武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。

18年来公司设计并施工了上百个交钥匙式的污水处理工程。

如果酸化使pH值下降太多时,则不利于水解的进行。

酸化则是一类典型的发酵过程,即产酸发酵过程。

酸化是有机底物即作为电子受体也是电子供体的生物降解过程。

在酸化过程中溶解性有机物被转化以挥发酸为主的末端产物。

他们首先在细菌胞外酶的水解作用下转变为小分子物质。

这一阶段最为典型的特征是生物反应的场所发生在细胞外,微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶完成生物催化氧化反应(主要包括大分子物质的断链和水溶)。

在厌氧条件下的混合微生物系统中,即使严格地控制条件,水解和酸化也无法截然分开,这是因为水解菌实际上是一种具有水解能力的发酵细菌,水解是耗能过程,发酵细菌付出能量进行水解是为了取得能进行发酵的水溶性底物。

厌氧发酵产生沼气过程可分为水解阶段、酸化阶段、乙酸化阶段和甲烷阶段等四个阶段。

水解酸化工艺就是将厌氧处理控制在反应时间较短的第一和第二阶段,即将不溶性有机物水解为可溶性有机物,将难生物降解的大分子物质转化为易生物降解的小分子有机物质的过程。

水解酸化阶段主要利用的是发酵细菌,这类细菌的种类繁多,代谢能力强,繁殖速度快,对外界环境适应能力强等特点。

不需要密闭的池,不需要搅拌器,不需要水、气、固三相分离器,降低了造价和便于维护。

关于水解酸化工艺的详解!

关于水解酸化工艺的详解!

关于水解酸化工艺的详解!1、水解酸化法的机理厌氧生物反应包括水解、酸化和甲烷化三个大的阶段,将反应控制在水解和酸化两个阶段的反应过程,可以将悬浮性有机物和大分子物质(碳水化合物、脂肪和脂类等)通过微生物胞外酶水解成小分子,小分子有机物在酸化菌作用下转化成挥发性脂肪酸的过程。

在这一过程中同时可以将悬浮性固体水解为溶解性有机物、将难生物降解的大分子物质转化为易生物降解的小分子物质。

首先,水解反应器中大量微生物将进水中颗粒状颗粒物质和胶体物质迅速截留和吸附,这是一个物理过程的快速反应。

一般只要几秒钟到几十秒即可完成。

因此,反应是迅速的。

截留下来的物质吸附在水解酸化污泥的表面,慢慢地被分解代谢,其在系统内的污泥停留时间要大于水力停留时间。

在大量水解酸化细菌的作用下,大分子、难于生物降解物质转化为易于生物降解的小分子物质后,重新释放到液体中。

在较高的水力负荷下随水流出系统。

由于水解和产酸菌世代期较短,往往以分钟和小时计,因此,这一降解过程也是迅速的。

在这一过程中溶解性BOD、COD 的去除率虽然从表面上讲只有 10%左右,但是由于颗粒状有机物发生水解增加了系统中溶解性有机物的浓度,因此,溶解性BOD、COD 去除率远大于10%。

但是由于酸化过程的控制不能严格划分,在污泥中可能仍有少量甲烷菌的存在,可能产生少量的甲烷,但甲烷在水中的溶解度也相当可观,故以气体形成释放的甲烷量很少。

可以看出,水解反应器集沉淀、吸附、网捕和生物絮凝等物理化学过程,与水解、酸化和甲烷化过程等生物降解功能于一体。

2、水解酸化法的反应器类型水解酸化反应器主要包括升流式水解反应器、复合式水解反应器及完全混合式水解反应器。

此外,水解反应器还可以包括采用其他厌氧反应器型式实现水解酸化的反应器,如厌氧折流板反应器、厌氧接触反应器等。

1、升流式水解反应器升流式水解反应器的示意图见图1,水解酸化微生物与悬浮物形成污泥层,污水通过布水装置自反应器底部均匀上升至顶部出水堰排出过程中,污泥层可截留污水中悬浮物,并在水解酸化菌作用下降解有机物、提高污水可生化性等。

厌氧水解酸化原理PPT课件

厌氧水解酸化原理PPT课件
详细描述
厌氧水解酸化微生物对温度的适应性因菌种而异,通常在15℃-35℃范围内可以正常代 谢。在适宜的温度范围内,适当提高温度可以促进厌氧水解酸化速率,缩短水解酸化时 间。同时,温度的突然升高或下降会对厌氧微生物产生不利影响,导致水解酸化效果下
降甚至产生有害物质。因此,需要对温度进行控制,保持适宜且稳定的温度范围。
微生物种群的影响
厌氧水解酸化过程中涉及多种 微生物种群,包括水解菌、产
酸菌和产甲烷菌等。
水解菌能够将大分子有机物分 解为小分子有机物,产酸菌能 够将小分子有机物进一步转化
为挥发性脂肪酸等产物。
产甲烷菌能够将挥发性脂肪酸 等产物转化为甲烷气体。
微生物种群之间的相互关系和 生态平衡对厌氧水解酸化过程 具有重要影响。
启动与运行管理
• 总结词:启动与运行管理是厌氧水解酸化的重要环节之一,良好的启动
与运行管理可以提高水解酸化效果。
• 详细描述:启动阶段是厌氧水解酸化的关键时期,需要选择适当的接种物和培养条件,以保证厌氧微生物的快速繁殖和 适应新环境。在运行过程中,需要定期监测各项参数如温度、pH值、有机负荷率等,及时调整以保持适宜的工艺条件。 同时,需要定期对反应器进行排泥、清洗等维护措施,以保证反应器的正常运行和出水质量。此外,应对进水和出水进 行监测和控制,以保证进水的稳定性和安全性以及出水的达标排放。通过良好的启动与运行管理可以提高厌氧水解酸化 的效果和稳定性。
产酸反应是厌氧消化过程中的第二阶段,主要是将小分子有机物 转化为挥发性脂肪酸和二氧化碳。
产酸反应动力学模型
描述产酸反应速率与底物浓度、温度、pH等参数之间的关系。
产酸反应速率常数
表示产酸反应的速率,受底物浓度和温度影响较大。
产甲烷反应动力学

水解酸化池原理及操作规程培训课堂PPT

水解酸化池原理及操作规程培训课堂PPT
2 产酸阶段(酸化阶段):碳水化合物降解为脂肪酸 (主要是醋酸、丁酸和丙酸)、醇类等,本阶段会产 生大量的有机酸,故pH值有下降趋势,与此同时,酸 化菌也利用部分物质合成新的细胞物质。
3.产氢产乙酸阶段,在产氢产乙酸菌的作用下,酸 化阶段产生的两个碳链以上的短链脂肪酸、醇、醛 等物质转化为乙酸盐,同时产生少量的CO2、H2,在 此阶段中,由于产氢细菌的活动使氨态氮浓度增加 ,氧化还原势降低,pH上升,pH的变化为甲烷菌创 造了适宜的条件。
水解酸化池的优缺点
13
优点
1.对污泥的处理不需要经过消化池,直接水解酸化可 在常温下使污泥迅速水解,最终实现污泥一次处理。 所以,排泥为连续排泥,其目的是:保持运行与维护简单方便
3.出水无臭味,使得污水处理厂有 个良好的空气环境
4.出水的可生化性大幅度提 高了,非常有利于后续的好 氧处理
缺点
1、厌氧微生物量增加比较缓慢,反应器启动时间较长
2、对于低浓度(碳水化合物)和碱度不足的污水处 理效果差 3、出水COD浓度比较高,需要设置后序好氧工 艺处理设施
4、要使得厌氧生物处于最佳状态,必须外加热,增加了投资 和运行
水解酸化池的运行管理
17
1、每次巡检时(2小时一次)注意检查池内的设备 (潜水搅拌器、吸泥行车等)运行状态,发现设备停 运或噪音、震动异常等及时上报。 2、做好水解调节池PH在线监测仪记录工作,若PH值 低于6及时汇报。 3、为保持池内泥水混合均匀,每天开曝气风机运行 至少10min,防止污泥淤积。 4、二沉池污泥回流时,注意检查二沉池液位,防止 二次提升泵缺水损坏。
产氢产乙酸阶阶段还有H2S,吲哚、粪臭素和硫醇等 带有不良气味的副产物产生。
4.产甲烷阶段,产甲烷菌将前几阶段产生的乙酸、 CO2、H2及少量的甲酸、甲醇等物质转化为CH4和 CO2。由甲烷菌把有机酸转化为沼气。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厌氧生物处理——原理
厌氧消化装置的负荷率是怎样确定的呢? 一个重要的原则是:在两个转化(酸化和气化)速 率保持稳定平衡的条件下,求得最大的处理目标 (最大处理量或最大产气量)。 一般而言,厌氧消化微生物进行酸化转化的能力强, 速率快,对环境条件的适应能力也强;而进行气化 转化的能力相对较弱,速率也较慢,对环境的适应 能力也较脆弱。这种前强后弱的特征使两个转化速 率保持稳定平衡颇为困难,因而形成了三种发电位(ORP或Eh) 厌氧环境是厌氧消化过程赖以正常进行的最重要的条件。 厌氧环境,主要以体系中的氧化还原电位来反映。 一般情况下,氧的溶入无疑是引起发酵系统的氧化还原电 位升高的最主要和最直接的原因。但是,除氧以外, 其它一些氧化剂或氧化态物质的存在(如某些工业废 水中含有的Fe3+、Cr2O72-、NO3-、SO42-以及酸性 废水中的H+等),同样能使体系中的氧化还原电位升 高。当其浓度达到一定程度时,同样会危害厌氧消化 过程的进行。
第九章 厌氧生物处理
概述 原理 主要构筑物及工艺
厌氧生物处理——概述
在断绝与空气接触的条件下,依赖兼性厌氧菌和专性厌 氧菌的生物化学作用,对有机物进行生物降解的过程, 称为厌氧生物处理法或厌氧消化法。
厌氧生物处理法的处理对象是:高浓度有机工业废水、 城镇污水的污泥、动植物残体及粪便等。
厌氧生物处理——主要构筑物及工艺
一、早期用于处理废水的厌氧消化构筑物是化粪池和双层 沉淀池。 化粪池是一个矩形密闭的池子,用隔墙分为两室或三室, 各室之间用水下连接管接通。废水由一端进入,通过 各室后由另一端排出。悬浮物沉于池底后进行缓慢的 厌氧发酵。各室的顶盖上设有人孔,可定期(数月) 将消化后的污泥挖出,供作农肥。这种处理构筑物通 常设于独立的居住或公共建筑物的下水管道上,用于 初步处理粪便废水。
厌氧生物处理——主要构筑物及工艺
四、厌氧生物滤池和厌氧生物转盘 为了防止消化池的污泥流失,可在池内设置挂膜介质, 使厌氧微生物生长在上面,由此出现了厌氧生物滤池 和厌氧生物转盘。
厌氧生物处理——主要构筑物及工艺
五、上流式厌氧污泥床反应器(UASB) 这种反应器是目前应用最为广泛的一种厌氧生物处理装 置。
当有机物负荷率偏小时,供给产酸细菌的食物不足,产酸 量偏少,不能满足甲烷细菌的需要。此时,消化液中的 有机酸残存量很少,pH值偏高,在pH值偏高(大于 7.5)的条件下进行的厌氧消化过程,称为碱性发酵状 态。如前所述,由于负荷偏低,因而是一种虽稳定但低 效的厌氧消化状态。
厌氧生物处理——原理
(3)加热 为把料液控制到要求的发酵温度,则必须加热。 据估算,去除8000mg/L的COD所产生的沼气,能 使一升水升温10℃。 (4)pH值的控制 如果料液会导致反应器内液体的pH值 低于6.5或高于8.0时,则应对料液预先中和。当有机 酸的积累而使反应液的pH值低于6.8~7时,应适当减 小有机物负荷或毒物负荷,使pH值恢复到7.0以上 (最好为7.2~7.4)。若pH低于6.5,应停止加料, 并及时投加石灰中和。
厌氧生物处理——原理
高温厌氧消化系统适宜的氧化还原电位为-500~-600mV; 中温厌氧消化系统及浮动温度厌氧消化系统要求的氧化还原 电位应低于-300~-380mV。 产酸细菌对氧化还原电位的要求不甚严格,甚至可在 +100~-100mV的兼性条件下生长繁殖; 甲烷细菌最适宜的氧化还原电位为-350mV或更低。
当有机物负荷率很高时,由于供给产酸菌的食物相当充分, 致使作为其代谢产物的有机物酸产量很大,超过了甲烷 细菌的吸收利用能力,导致有机酸在消化液中的积累和 pH值(以下均指大气压条件下的实测值)下降,其结 果是使消化液显酸性(pH<7)。这种在酸性条件下进 行的厌氧消化过程称为酸性发酵状态,它是一种低效而 又不稳定的发酵状态,应尽量避免。
酸化(1)
小分子溶解态 有机物转化为 (H2+CO2)及 A、B两类产物
酸化(2)
B类产物转化为 (H2+CO2)及 乙酸等 产氢产乙酸细菌
气 化
生化过程
CH4、CO2等

群 甲烷发酵
发酵细菌
甲烷细菌
发酵工艺 酸发酵 ——
厌氧生物处理——原理
二、发酵的控制条件 (以下重点讨论甲烷发酵的控制条件。) (一)营养与环境条件 废水、污泥及废料中的有机物种类繁多,只要未达到抑 制浓度,都可连续进行厌氧生物处理。对生物可降解 性有机物的浓度并无严格限制,但若浓度太低,比耗 热量高,经济上不合算;水力停留时间短,生物污泥 易流失,难以实现稳定的运行。一般要求COD大于 1000mg/L。 COD∶N∶P=200∶5∶1
d1
D
d2
圆筒形厌氧消化池
h4
h3
h2 h1
蛋形厌氧消化池
厌氧生物处理——主要构筑物及工艺
三、厌氧接触系统 普通消化池用于处理高浓度有机废水时,为了强化有机物 与池内厌氧污泥的充分接触,必须连续搅拌; 同时为了提高处理效率,必须改间断进水排水为连续进水 排水。但这样一来,会造成厌氧污泥的大量流失。 为了克服这一缺点,可在消化池后串联一个沉淀池,将沉 淀下的污泥又送回消化池,因此组成了厌氧接触系统(图 9-4)。 污泥回流量约为进水流量的2~3倍。消化池内的MLVSS 为6~10g/L。
厌氧生物处理——概述
厌氧生物处理的方法和基本功能有二: (1)酸发酵的目的是为进一步进行生物处理提供易生物 降解的基质; (2)甲烷发酵的目的是进一步降解有机物和生产气体燃 料。
厌氧生物处理——概述
完全的厌氧生物处理工艺因兼有降解有机物和生产气 体燃料的双重功能,因而得到了广泛的发展和应用。
厌氧生物处理——原理
(3)pH值及酸碱度 由于发酵系统中的CO2分压很高 (20.3~40.5kPa),发酵液的实际pH值比在大气 条件下的实测值为低。一般认为,实测值应在 7.2~7.4之间为好。 (4)毒物 凡对厌氧处理过程起抑制或毒害作用的物质, 都可称为毒物。
厌氧生物处理——原理
(1)生物量 各种反应器要求的污泥浓度不尽相同,一般介于 10~30gVSS/L之间。
厌氧生物处理——原理
(2)温度 温度是影响微生物生命活动过程的重要因素之 一。温度主要影响微生物的生化反应速度,因而与有 机物的分解速率有关。 工程上: 中温消化温度为30~38℃(以33~35℃为多); 高温消化温度为50~55℃。 厌氧消化对温度的突变也十分敏感,要求日变化小于 ±2℃。温度突变幅度太大,会招致系统的停止产气。
为了保持反应器生物量不致因流失而减少,可采用多种措施,如 安装三相分离器、设置挂膜介质、降低水流速度和回流污泥 量等。
厌氧生物处理——原理
(2)负荷率 负荷率是表示消化装置处理能力的一个参数。 负荷率有三种表示方法:容积负荷率、污泥负荷率、 投配率。 反应器单位有效容积在单位时间内接纳的有机物量, 称为容积负荷率,单位为kg/m3· d或g/L· d。有机物 量可用COD、BOD、SS和VSS表示。 反应器内单位重量的污泥在单位时间内接纳的有机物 量,称为污泥负荷率,单位为kg/kg· d或g/g· d。 每天向单位有效容积投加的新料的体积,称为投配率, 单位为m3/m3· d。投配率的倒数为平均停留时间或消 化时间,单位为d。投配率有时也用百分数表示,例如, 0.07m3/m3· d的投配率也可表示为7%。
厌氧生物处理——原理
一、厌氧消化的生化阶段 复杂有机物的厌氧消化过程要经历数个阶段,由不同的 细菌群接替完成。根据复杂有机物在此过程中的物态 及物性变化,可分三个阶段(表9-1)。
厌氧生物处理——原理
表9-1 有机物厌氧消化过程
生化阶段 Ⅰ Ⅱ Ⅲ
物态变化
液化(水解) 大分子不溶态 有机物转化为 小分子溶解态 有机物
厌氧生物处理——主要构筑物及工艺
双层沉淀池上部有一个流槽,槽底呈V形。废水沿槽缓 慢流过时,悬浮物便沉降下来,并从V形槽底缝滑落于 大圆形池底,在那里进行厌氧消化。这两种处理构筑 物仅起截留和降解有机悬浮物的功用,产生的沼气难 以收集利用。
厌氧生物处理——主要构筑物及工艺
二、普通消化池,主要用于处理城市污水的沉淀污泥。普 通消化池多建成加顶盖的筒状。 生污泥从池顶进入,通过搅拌与池内污泥混合,进行厌氧 消化。分解后的污泥从池底排出。产生的生物气从池 顶收集。普通消化池需要加热,以维持高的生化速率。 这种处理构筑物通常是每天加排料各1~2次,与此同时进 行数小时的搅拌混合。
当有机负荷率适中时,产酸细菌代谢产物中的有机酸基本 上能被甲烷细菌及时地吸收利用,并转化为沼气,溶液 中残存的有机酸量一般为每升数百毫克。此时消化液中 pH值维持在7~7.5之间,溶液呈弱碱性。这种在弱碱 性条件下进行的厌氧消化过程称之为弱碱性发酵状态, 它是一种高效而又稳定的发酵状态,最佳负荷率应达此 状态。
超高
三相分离区
反应区
布水区
UASB布置结果示意图
厌氧生物处理——主要构筑物及工艺
六、厌氧流化床反应器 厌氧流化床反应器的内部充填着粒径很小 (d=0.5mm左右)的挂膜介质,当其表面长满微生 物时,称为生物颗粒。 在上升水流速度很小时,生物颗粒相互接触,形成固定 床。借助循环管增大(即图9-6中回流用水泵及流量计 控制)反应器内的上升流速,可使生物颗粒开始脱离 接触,并呈悬浮状态。当继续增大流速至污泥床的膨 胀率达10~20%时,生物颗粒便呈流化态。
相关文档
最新文档