燃料电池及燃料电池汽车
《燃料电池电动汽车》课件

变速器
02
03
控制系统
根据车辆行驶需求,配备适当的 变速器以调节电动机的转速和转 矩。
对电动机进行精确控制,实现车 辆的加速、减速和制动等操作, 确保驾驶安全。
03
燃料电池电动汽车的关 键技术
燃料电池技术
燃料电池技术是燃料电池电动 汽车的核心技术,它能够将氢 气和氧气通过化学反应转换成
燃料电池电动汽车
目录
• 燃料电池电动汽车简介 • 燃料电池电动汽车的工作原理 • 燃料电池电动汽车的关键技术 • 燃料电池电动汽车的应用与市场前景 • 结论
01
燃料电池电动汽车简介
燃料电池电动汽车的定义与特点
定义
燃料电池电动汽车是一种使用燃料电 池作为动力源的电动汽车,通过燃料 电池发电来驱动车辆行驶。
电机与电控技术的进步可以提高燃料电池电动汽车的效率和性
03
能,降低噪音和振动,提高乘坐舒适性。
04
燃料电池电动汽车的应 用与市场前景
燃料电池电动汽车的应用领域
城市客车
燃料电池电动汽车适合在 城市公交系统中使用,提 供零排放的公共交通方式 。
出租车
燃料电池电动汽车也可用 于城市出租车服务,减少 对环境的污染。
特点
燃料电池电动汽车具有高效、环保、 长续航里程等优点,同时相比传统燃 油车减少了尾气排放和噪音污染。
燃料电池电动汽车的发展历程
早期探索阶段
20世纪60年代开始,人们开始探 索燃料电池技术应用于汽车领域 ,但由于技术限制和成本问题,
进展缓慢。
研发阶段
20世纪90年代开始,各大汽车制 造商开始加大燃料电池电动汽车的 研发力度,取得了一些重要突破。
燃料电池汽车概论.

燃料电池汽车概论一、燃料电池汽车的特点燃料电池汽车是电动汽车的一种,其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能的。
燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。
燃料电池汽车的氢燃料能通过几种途径得到。
●有些车辆直接携带着纯氢燃料:●另外一些车辆有可能装有燃料重整器,能将烃类燃料转化为富氢气体。
单个的燃料电池必须结合成燃料电池组,以便获得必需的动力,满足车辆使用的要求。
与传统汽车相比,燃料电池汽车具有以下优点:1、零排放或近似零排放。
2、减少了机油泄露带来的污染。
3、降低了温室气体的排放。
4、提高了燃油经济性。
5、提高了发动机燃烧效率。
6、运行平稳、无噪声。
二、燃料电池的工作原理三、燃料电池电动汽车的现状与发展燃料电池以其特有的燃料效率高、比能量大、比功率大、供电时间长、使用寿命长、可靠性高、噪声低及不产生有害排放物NO2等优点正在引起世界各国的注意。
与内燃机汽车相比,氢燃料电池电动汽车有害气体的排放量减少99%,CO2的生成量减少75%,电池能量转换效率约为内燃机效率的2.5倍。
这种电池将有可能成为继内燃机之后的汽车最佳动力源之一。
近年来一些厂家,如戴姆勒-克莱斯勒、丰田、通用、本田、日产、福特等公司都开发了自己的燃料电池电动汽车(FCEV)。
汽车界人士认为FCEV是汽车工业的一大革命,是21世纪真正的纯绿色环保车,是最具实际意义的环保车种。
1.燃料电池电动汽车的发展慨况20世纪60年代和70年代,美国首先将燃料电池用于航天,作为航天飞机的主要电源。
此后,美国等西方各国将燃料电池的研究转向民用发电和作为汽车、潜艇等的动力源。
世界各著名汽车公司相继投入较多的人力和物力,开展燃料电池电动汽车的开发研究。
在北美,各大汽车公司加入了美国政府支持的国际燃料电池联盟,各公司分别承担相应的任务,生产以新的燃料电池作动力的汽车。
燃料电池汽车原理

燃料电池汽车原理
燃料电池汽车是一种使用燃料电池作为主要能源的车辆。
其原理是通过将氢气与氧气反应产生电能来驱动汽车。
燃料电池是一种通过化学反应转化能量的设备,它类似于一个可逆的电池。
燃料电池由正极、负极和电解质层组成。
在正极,氢气被氧化成为氢离子,并释放出电子。
同时,在负极,氧气接受电子和氢离子,还原成为水。
这个过程同时释放出能量,从而产生了电能。
这些电子通过外部电路流动,驱动电动机转动,使汽车运行。
燃料电池汽车相比传统汽车有许多优点。
首先,燃料电池汽车零排放,只产生水作为副产品,对环境友好。
其次,燃料电池具有高效能转换率,可以充分利用燃料的能量,提高能源利用效率。
此外,燃料电池汽车具有快速加注和长续航里程的特点,更加便利实用。
然而,目前燃料电池汽车的成本仍然较高,需要进一步的研究和发展才能推广应用。
总之,燃料电池汽车利用氢气和氧气的化学反应产生电能,驱动汽车运行。
它具有零排放、高能效和快速加注等优点,但目前仍然面临成本较高的挑战。
燃料电池汽车作为一种新型清洁能源汽车,有着广阔的发展前景,有望成为未来出行的主要选择。
“燃料电池电动汽车”教案讲义

燃料电池具有如下缺点:
价格高 目前质子交换膜燃料电池的价格虽然
已有所降低,但是要达到30-50美元/kW 的目标还需要一段时间的努力。
贵金属催化剂 铂的用量虽然已降低,但是距0.1-
0.2mg/ 还有段距离。 燃料的限制
目前车用的燃料电池主要是质子交换 膜燃料电池,它们只能用纯氢作燃料。
燃料电池分类
目前有上车历史的燃料电池主要为以下三 种:
碱性燃料电池(Alkaline Fuel Cell,AFC) 磷酸型燃料电池(Phosphoric Acid Fuel
Cell,PAFC) 质子交换膜燃料电池(Proton Exchange
Membrane Fuel Cell, PEMFC)
AFC,PAFC,PEMFC三种 燃料电池的发展概况
燃料电池的发展趋势
燃料电池发展的第一课题是降低成本, 第二是选择材料,第三是提高性能。 降低成本主要是因为材料的价格很高。 车载用50kw系统仅氟高分子膜就要花费近 7400美元。另外, 在电池单元的电极中使用的白金催化剂也 是高成本的材料之一。50kw的系统中白金 催化剂就要花费将近5000美元。 燃料的选择:燃料采用氢后,重整器 部分的成本可以减免,系统得以简化。氢 的储存则采用储氢合金或者高压储气罐。
燃料电池
燃料电池是一种将储存在燃料和氧化剂 中的化学能通过电极反应直接转化为电能 的发电装置。它平时将燃料(如氢气、甲 醇等)和氧化剂(如氧气)分别作为电池 两极的活性物质保存在电池的本体之外, 当使用时连续通入电池体内,使电池发电。 燃料电池本体由质子交换膜,膜电极, 集流板三部分组成。
燃料电池实质上是电化学反应发生器,它 的燃料主要是氢气。 反应机理是将燃料中 的化学能不经燃烧而直接转化为电能。电 化反应步骤为:经增湿后的氢气和氧气分 别进入阳极室和阴极室,经气体电极扩散 层扩散,到达催化层与质子交换膜的界面, 分别在催化剂作用下发生氧化和还原反应。
第6章 燃料电池电动汽车

• (2)绿色环保 • (3)运行噪声低 • (4)续驶里程长 • (5)过载能力强 • (6)设计灵活方便
• 2.燃料电池电动汽车的缺点 • (1)燃料电池价格过高 • (2)燃料电池用氢的制备、储存困难 • (3)辅助设施不完善、建设成本本昂贵 • (4)起动时间长,系统抗振能力有待进一步提高
•6.2 燃料电池电动汽车的类型
• FCEV按“多电源”的配置不同,可分为纯燃料电池驱动(PFC)的 FCEV、燃料电池与辅助蓄电池联合驱动(FC+B)的FCEV、燃料电池与 超级电容联合驱动(FC+C)的FCEV、燃料电池与辅助蓄电池和超级电 容联合驱动(FC+B+C)的FCEV。
• 6.2.1 纯燃料电池驱动(PFC)的FCEV
• 6.2.4 燃 料 电 池 与 辅 助 蓄 电 池 和 超 级 电 容 联 合 驱 动 (FC+B+C)的FCEV
• 燃料电池与蓄电池和超级电容联合驱动的电动汽车的动力系统如图 所示,该结构也为串联式混合动力结构。在该动力系统结构中,燃料电 池、蓄电池和超级电容一起为驱动电动机提供能量动电动机将电能转化 成机械能传给传动系统,从而驱动汽车前进;在汽车制动时,驱动电动 机变成发电机,蓄电池和超级电容将储存回馈的能量。
• 7.整车与动力系统的参数选择与优化设计 • 燃料电池汽车整车性能参数是整个燃料电池动力系统开发的信息来源,而虚 拟配置的动力系统的特性参数也影响整车性能。
• 目前参数设计主要借助于通用的或专用的仿真软件进行离线仿真,如 ADVISOR、EASY5、PSCAD、V2ELPH、FAHRSIM等。
• 为了实现虚拟模拟与真实部件的联系,必须建立实时仿真开发环境。 • 8.多能源动力系统的能量管理策略 • 目前的开发方式一般是借助仿真技术建立一个虚拟开发环境,对动力系统模 型进行合理简化,从理论分析的角度得到最优功率分配策略与能量源参数和工 况特征之间的解析关系,并从该关系出发定量地分析功率缓冲器特性参数对最 优功率分配策略的影响,为功率缓冲器的参数选择提供理论依据。
燃料电池汽车的发展与市场前景

燃料电池汽车的发展与市场前景近年来,随着环保意识的提升以及对传统燃油汽车的限制,燃料电池汽车逐渐成为了人们关注的焦点。
作为一种利用氢气和氧气产生电能的清洁能源汽车,燃料电池汽车在环境保护、能源利用和经济发展等方面,具备了巨大的潜力。
本文将从燃料电池汽车的技术发展、市场前景以及挑战等多个方面进行探讨。
首先,燃料电池汽车的技术发展已经取得了长足的进步。
以氢燃料电池为例,随着电解质膜、氢气储存等关键技术的不断改进,燃料电池汽车的整体性能提升明显。
如今的燃料电池汽车已经具备了与传统燃油汽车相当的续航里程,同时充电时间也大大缩短。
同时,燃料电池汽车具备较高的能量转化效率,相比传统汽车来说更加环保节能。
此外,氢气作为燃料具有可再生性,可以通过水电解、生物质转化等方式获得,为燃料电池汽车的可持续发展提供了坚实的基础。
其次,燃料电池汽车的市场前景也备受高度关注。
目前,许多国家和地区已经开始投入大量资源用于燃料电池汽车的研发和推广,燃料电池汽车的市场规模逐渐扩大。
例如,中国政府提出了“中国制造2025”和“十三五规划”等一系列政策支持,力争到2025年燃料电池汽车销量超过100万辆。
此外,日本、韩国、美国等国家也相继推出了相关政策和补贴措施,以促进燃料电池汽车的发展。
随着政策的支持和技术的成熟,燃料电池汽车的市场前景将更加广阔。
然而,燃料电池汽车的发展仍面临一些挑战。
首先,燃料电池汽车的制造成本较高,导致售价较高,限制了消费者的购买意愿。
其次,与充电桩密布的充电站相比,氢气充电站的建设相对滞后,充电设施不完善也制约了燃料电池汽车的推广。
此外,氢气的储存和运输也面临着一定的挑战,需要解决安全性和成本等问题。
因此,燃料电池汽车的普及与推广还需要克服这些困难。
综上所述,燃料电池汽车在技术发展和市场前景方面都具备了较大的潜力。
随着技术的进步和政策的支持,燃料电池汽车的市场份额将逐渐扩大。
然而,面对制造成本、充电设施和氢气储存等挑战,燃料电池汽车的发展还需要进一步努力。
新能源汽车的类别及特点

三、新能源汽车的类别及特点根据新能源汽车的定义,我们可以认定的新能源汽车有很多种,随着新能源汽车的不断发展,其包含的范围也越来越广。
鉴于目前市场主流认识,从新能源的技术特点和车辆驱动原理上来分,一般将新能源汽车分为混合动力汽车(Hybird Electric Vehicle,HEV)、纯电动汽车(Battery Electric Vehicle,BEV)、燃料电池汽车(FuelCell Electric Vehicle,FCEV)和燃气汽车、生物燃料汽车以及其他能量形式驱动的汽车。
以下做简要介绍。
(一)纯电动汽车纯电动汽车(Battery Electric Vehicle,BEV),顾名思义就是纯粹靠电能驱动的车辆。
它必须使用专用充电桩或者特定的充电场所进行充电才能行驶。
典型的例子是特斯拉。
它的优点是结构简单,保养项目少,使用成本低,缺点是电池的续航里程和电池寿命较短,温度对电池容量的影响非常大,充电的便利性也不好。
由于电能的来源广泛,在未来还会有更清洁的电能产生,因此纯电动车是未来的最终发展趋势。
电动汽车无内燃机汽车工作时产生的废气,不产生排气污染,对环境保护和空气的洁净是十分有益的,几乎是“零污染”。
众所周知,内燃机汽车废气中的CO、HC及NOX、微粒、臭气等污染物形成酸雨酸雾及光化学烟雾。
电动汽车无内燃机产生的噪声,电动机的噪声也较内燃机小。
电动汽车的研究表明,其能源效率已超过汽油机汽车。
电动汽车停止时不消耗电量,在制动过程中,电动机可自动转化为发电机,实现制动减速时能量地再利用。
图1-3-1纯电动汽车典型结构图(二)混合动力汽车混合动力汽车(Hybird Electric Vehicle,HEV)指的是至少拥有两种动力源,使用其中一种或多种动力源提供部分或者全部动力的车辆。
从目前世界范围内的整个形势来看,日本是电动汽车技术发展速度最快的少数几个国家之一,特别是在发展混合动力电动汽车方面,日本居世界领先地位。
燃料电池汽车参数

燃料电池汽车参数燃料电池汽车是一种装载了燃料电池的电动汽车。
它的主要特点是使用氢气作为能源,经过燃料电池反应产生电能驱动电机实现汽车的行驶。
相比于传统的内燃机汽车,燃料电池汽车具有零排放、低噪音、高能效等特点。
本文将介绍燃料电池汽车的参数。
1. 车身尺寸燃料电池汽车的车身尺寸一般与普通汽车相当,目前市场上常见的燃料电池汽车车身尺寸多在4米到5米之间,宽度在1.8米左右。
2. 质量和载重燃料电池汽车的质量主要由电池和氢气储存罐等设备决定,因此相比传统的内燃机汽车,燃料电池汽车往往较为轻盈。
其载重一般在500kg左右。
3. 动力系统燃料电池汽车的动力系统主要由燃料电池、电机以及电子控制系统等组成。
燃料电池是燃料电池汽车的核心部件,它将氢气和氧气上的电化学反应转化为电能来驱动电机。
电机则是直接通过电能来驱动车轮转动的装置。
电子控制系统则起到监测和控制动力系统运行的作用。
4. 电池类型和容量燃料电池汽车的电池选择一般分为两种:质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)。
PEMFC是目前最为常见的一种电池类型。
其电池容量一般在60kW到120kW之间,能够提供足够的能量来驱动汽车行驶数百公里。
5. 续航里程燃料电池汽车的续航里程一般在300km以上,有些车型甚至能够达到500km以上。
相比传统的电动汽车,燃料电池汽车的续航里程更为可靠和稳定,而且加注氢气所需时间较短,用户的使用体验也更佳。
6. 最高车速燃料电池汽车的最高车速一般在150km/h左右,这是由于其动力系统的特性所致。
虽然较普通汽车略为降低,但也能够满足大部分的行驶需求。
7. 加注氢气时间燃料电池汽车的加注氢气时间一般在3到5分钟之间,相比于传统的电动汽车快速充电所需的时间较长。
目前,世界上已经建成了大量的氢气加注站,未来也有望进一步扩大规模,推动燃料电池汽车的应用普及。
总结:燃料电池汽车相比传统的汽油车和电动汽车具备明显的优势,其参数表现也越来越适应人们的生活需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3磷酸燃料电池(phosphoric acid fuel cell--PAFC)
磷酸燃料电池是当前商业化发展得最快的一种燃料电 池。使用液体磷酸为电解质。磷酸燃料电池上的白金催化剂来加 速反应。由于其工作温度较高,所以其阴极上的反应速度 要比质子交换膜燃料电池的阴极的速度快。且较高的工作 温度也使其对杂质的耐受性较强。 磷酸燃料电池的效率比其它燃料电池低,约为40%, 其加热的时间也比质子交换膜燃料电池长。优点是构造简 单,稳定,电解质挥发度低等。磷酸燃料电池可用作公共 汽车的动力。
2.1质子交换膜燃料电池(proton exchange membrane fuel cell--PEMFC)
质子交换膜燃料电池的关 键材料与部件为:1)电催化剂; 2)电极(阴极与阳极);3)质 子交换膜;4)双极板。 工作时,氢在阳极被转变 成氢离子的同时释放出电子, 电子通过外电路回到电池阴极, 与此同时,氢离子则通过电池 内部高分子膜电解质到达阴极。 在阴极,氧气转变为氧原子, 氧原子得到从阳极传过来的电 子变成氧离子,和氢离子结合 生成水。右图是质子交换膜燃 料电池工作原理示意图
燃料电池及燃料电池汽车
内容提要
燃料电池(Fuel Cell)的基本原理及组成 燃料电池的分类 质子交换膜燃料电池的特点及研发应用现状 燃料电池的发展趋势 燃料电池汽车基本结构及特点 燃料电池汽车的研发进展
1.1燃料电池(Fuel Cell) 的基本原理
燃料电池通过氧与氢结合成水的简单电化学反应而发电。燃料电池 的基本组成有:电极、电解质、燃料和催化剂。二个电极被一个位于这它 们之间的、携带有充电电荷的固态或液态电解质分开。在电极上,催 化剂,例如白金,常用来加速电化学反应。 下图为燃料电池基本原理 示意图。
在电极上的这些反应如下: 阳极: 2H2 4H 4e 阴极: O2 4H 4e 2H2O 整体: 2H2 O2 2H2O 质子交换膜燃料电池的工作温度约为80℃。在这样的低 温下,电化学反应能正常地缓慢进行,通常用每个电极上的 一层薄的白金进行催化。 每个电池能产生约0.7伏的电,足够供一个照明灯泡使用。 驱动一辆汽车则需要约300伏的电力。为了得到更高的电压, 将多个单个的电池串联起来便可形成人们称做的燃料电池存 储器。
2.4溶化的碳酸盐燃料电池 (molten carbonate fuel cell--MCFC)
溶化的碳酸盐燃料电池与上述讨论的燃料电池差异较 大,这种电池不是使用溶化的锂钾碳酸盐就是使用锂钠碳酸 盐作为电解质。当温度加热到650℃时,这种盐就会溶化, 产生碳酸根离子,从阴极流向阳极,与氢结合生成水,二氧 化碳和电子。电子然后通过外部回路返回到阴极,在这过程 中发电。 2 CO H H O CO 2e 3 2 2 2 阳极反应: 2 2CO O 4e 2CO 2 2 3 阴极反应: 这种电池工作的高温能在内部重整诸如天然气和石油 的碳氢化合物,在燃料电池结构内生成氢。且白金催化剂可 用廉价的一类镍金属代替,其产生的多余热量还可被联合热 电厂利用。这种燃料电池的效率最高可达60%。 这种电池需要较长的时间方能达到工作温度,因此不能 用于交通运输。
2燃料电池的分类
燃料电池依据其电解质的性质而分为不同的类型,每类 燃料电池需要特殊的材料和燃料,且使用于其特殊的应用。 按电解质划分,燃料电池大致上可分为五类: 1质子交换膜燃料电池(proton exchange membrane fuel cell--PEMFC) 2碱性燃料电池(alkaline fuel cell--AFC) 3磷酸燃料电池(phosphoric acid fuel cell--PAFC) 4溶化的碳酸盐燃料电池 (molten carbonate fuel cell--MCFC) 5固态氧化物燃料电池(solid oxide fuel cell--SOFC)
1.2燃料电池系统组成
单独的燃料电池堆是不能发电并用于汽车的,它 必需和燃料供给与循环系统、氧化剂供给系统、水/热 管理系统和一个能使上述各系统协调工作的控制系统组 成燃料电池发电系统,简称燃料电池系统。 1 燃料电池组 2辅助装置和关键设备: (1)燃料和燃料储存器(包括碳氢化合物转化的重整器) (2)氧化剂和氧化剂存储器(3)供给管道系统和调节系统 (包括气体输送泵、热交换器、气体分离和净化装置) (4)水和热管理系统
500kw质子交换膜燃料电池
2.2碱性燃料电池(alkaline fuel cell--AFC)
碱性燃料电池是该技术发展最快的一种电池,主要为空间 任务,包括航天飞机提供动力和饮用水。 碱性燃料电池的设计基本与质子交换膜燃料电池相似, 但其使用的电解质为水溶液或稳定的氢氧化钾基质。电化学反 应: 阳极反应:2H 4OH 4H2O 4e 阴极反应:O2 2H2O 4e 4OH 碱性燃料电池的工作温度大约80℃。因此启动也很快, 但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽 车中使用显得笨拙。不过,它们是燃料电池中生产成本最低的, 因此可用于小型的固定发电装置。
燃料可以是H2、CH4、CH3OH、CO等,氧化剂一般是氧气或空气, 电解质可为水溶液(H2SO4、H3PO4、NaOH等)、熔融盐(NaCO3、 K2CO3)、固体聚合物、固体氧化物等。 发电时,燃料和氧化剂由电池外部分别供给电池的阳极和阴极, 阳极发生燃料的氧化反应,阴极发生氧化剂的还原反应,电解质将两 电极隔开,导电离子在电解质内移动,电子通过外电路做功并构成电 的回路。与普通电池不同的是,只要能保证燃料和氧化剂的供给,燃 料电池就可以连续不断地产生电能。 它的燃料和氧化剂不是储存在电池内,而是储存在电池外的储罐 中。当电池发电时,要连续不断地向电池内送入燃料和氧化剂,排出 反应产物,同时也要排除一定的废热,以维持电池工作温度的恒定。 FC本身只决定输出功率的大小,其储存能量则由储存在储罐内的燃料 与氧化剂的量决定。