数的开方与二次根式讲义
开方及二次根式知识点

开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方是数学中常见的运算符号,表示一个数的平方根。
而二次根式则是指包含开方的代数式。
在学习数学过程中,掌握开方及二次根式的知识是非常重要的。
本文将就开方及二次根式的相关知识进行详细介绍。
我们来看看开方的定义。
对于一个非负实数a,如果实数b满足b 的平方等于a,即b²=a,那么b就是a的平方根,记作√a,其中√符号称为根号。
如果a是一个负数,那么它的平方根定义为复数,可以表示为±√(-a),其中±表示取正负号。
开方的运算可以用来求解方程、计算距离等实际问题,是数学中的重要工具。
在代数中,我们经常会遇到二次根式,即含有开方的代数式。
如√2、√3等都属于二次根式。
二次根式通常可以简化,使其形式更加简洁。
简化二次根式的方法是利用数的乘法性质,将开方中的被开方数进行因式分解,找到一个完全平方数因子,然后将其提出开方符号。
对于√12,可以找到一个完全平方数的因子4,即√12=√(4*3)=2√3。
这样就化简成了更加简洁的形式。
在进行运算时,需要注意开方及二次根式的运算规则。
首先是同底数相乘的运算法则,即√a*√b=√(a*b),这条规则适用于任意实数a、b。
其次是开方的乘法公式,即√a±√b=√(a±2√(a*b)±√b),这个公式在计算开方时经常会用到。
如果要进行开方的除法运算,可以采用类似的方法,将被开方数分解成较小的因子,然后进行化简。
运用这些运算规则,可以更加方便地进行开方及二次根式的运算。
除了基本的开方运算,还有一些特殊的开方,如立方根、四次根等。
立方根表示一个数的三次方根,记作³√a,其运算规则与平方根类似。
比如³√8=2,因为2³=8。
四次根则表示一个数的四次方根,记作⁴√a,其运算规则也可以类似的推出。
这些特殊的开方可以在数学问题中发挥重要作用,例如求解立方程等。
2020年春数学中考一轮复习5.重庆数学 第5讲数的开方与二次根式

=0”时,每个部分
3.二次根式运算时,一定要先化简,再运算.步骤是先乘方开方,再乘除, 最后加减;有括号的由内到外、由小到大进行计算. 4.重要技巧:y= x-a+ a-x+1. 解:∵x-a≥0,a-x≥0(保证二次根式有意义,才能运算), ∴x≥a,且x≤a,即x=a, ∴y=1.
03 考场 ·笑傲全国题
10.(2019·梧州)计算:3 8=____2_.
11.(2019·内江)若|1001-a|+ a−1002=a,则a-10012=__1_0_0_2__. 1
12.(2019·重庆模拟)已知y= x−3+ 3−x-2,则xy的值为__9___.
13.(2019·扬州)计算:( 5-2)2018( 5+2)2019的结果是____5_+_2__.
第一单元 数与式
第5讲 数的开方与二次根式
01 考点 ·梳理知识点
考标点击
1.了解平方根、算术平方根、立方根的概念,会表示数的平方根、算术平 方根、立方根. 2.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会 用立方运算求百以内整数(对应的负整数)的立方根. 3.能用有理数估计一个无理数的大致范围. 4.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数) 加、减、乘、除运算法则,会用它数的开方
样题1 (2019·重庆A)估计(2 3+6 2)× 13的值应在( C )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
[解析]先根据二次根式的乘法进行计算,再进行估算.
(2
3+6
2)×
1 3
=2+6
23=2+
36×
中考复习之 数的开方与二次根式

[解析] 9的平方根是± 3,(-2)2的算术平方根是2.
第5讲┃ 归类示例
(1)一个正数的平方根有两个,它们互为相反数;(2)平 方根等于本身的数是0,算术平方根等于本身的数是1和 0,立方根等于本身的数是1、-1和0;(3)一个数的立方根 与它同号;(4)对一个式子进行开方运算时,要先将式子化 简再进行开方运算.
2 1 1 2 计算: ×( 3-1) + + 3- -1. 2 2 2-1 4-2 3 解:原式= + 2+1+ 3- 2 2 =2- 3+ 2+1+ 3- 2=3.
第5讲┃ 归类示例
利用二次根式的性质,先把每个二次根式化简,然 后进行运算;在中考中二次根式常与零指数、负指数结 合在一起考查.
第5讲┃ 考点聚焦 考点5 把分母中的根号化去
常用形式 及方法
1· a 1 a (1) = = a a· a a a+b 1 (2) = a+b a+b
第5讲┃ 归类示例
归类示例
► 类型之一 求平方根、算术平方根与立方根
命题角度: 1. 平方根、算术平方根与立方根的概念; 2. 求一个数的平方根、算术平方根与立方根.
第5讲┃ 归类示例
[2012· 巴中] 先化简,再求值:
1 1 x x2+2x+1 1 - ,其中x= . x x+1· 2 2 2 x+1 -x-1
x x+1 x+1 1 解:原式= · = . 4x xx+1 4xx+1 1 ①当x+1>0时,原式= ; 4x 1 ②当x+1<0时,原式=- . 4x 1 ∵当x= 时,x+1>0, 2 1 ∴原式= . 2
第2节 数的开方与二次根式

1.当 x 取何值时,二次根式有意义. (1) 3+x :__x_≥__-__3____;
x-1 (2) 3-x :__x_≥__1_且__x_≠__3_____;
2.(1)8 的立方根是__2__,3 -8 =___-__2__;
(2)若 x 的平方根是±8,则 x 的立方根是_4___;
(3)(易错题) 16 的平方根是__±__2__,
(8) 14 × 7 =_7___2____.
4.若|a-1|+(b+2)2+ c-3 =0,则 a=_1___,b=_-__2_,c=_3___.
二次根式及其性质(北部湾5年3考)
例 1 (2024 南宁模拟)如果二次根式 a 有意义,那么 a 的值可以是( D ) A.-3 B.-2.5 C.-1 D.1
例 6 (2024 南宁模拟)计算:9+(-3)+ 4 ×(5-2). 解:原式=9-3+2×3=9-3+6=12.
二次根式的估值(2024.14)
例 7 估算 7 的值是在( B ) A.1 到 2 之间 B.2 到 3 之间 C.3 到 4 之间 D.4 到 5 之间
例8
(2024 广西)写出一个比 3 大的整数,可以是
__2_(_答__案__不__唯__一__)_____.
(2020 桂林)若 x-1 =0,则 x 的值是( C ) A.-1 B.0 C.1 D.2
例 2 (2021 桂林)下列根式中,是最简二次根式的是( D )
A.
1 9
B. 4
C. a2
D. a+b
(2024 钦州一模)下列二次根式中,化简后能与 2 进行合并的二次根式 是( C )
A. 4 B. 6 C. 8 D. 12 例 3 (2023 广西) 9 =__3__.
2013届中考数学考前热点冲刺《第5讲 数的开方及二次根式》课件 新人教版

第5讲┃ 归类示例
此类有意义的条件问题主要是根据:①二次根式 的被开方数大于或等于零;②分式的分母不为零等列不 等式组,转化为求不等式组的解集.
第5讲┃ 归类示例 ► 类型之三 根式的化简与计算
命题角度: 1. 二次根式的性质:两个重要公式,积的算术平方 根,商的算术平方根; 2. 二次根式的加减乘除运算.
[点析] 在进行二次根式化简求值时,常常用到整体思 想.把 x+y、x-y、xy 当作整体进行代入.
第5讲┃ 回归教材
中考变式
a2-4a+4 a+1 2 [2012· 苏州] 先化简,再求值: + 2 · ,其 a-1 a -1 a-2 中 a= 2+1.
a-22 a+1 a-2 2 2 a 解:原式= + · = + = . a-1 a+1a-1 a-2 a-1 a-1 a-1 2+1 2+ 2 当 a= 2+1 时,原式= = . 2 2
第5讲┃ 考点聚焦 考点3 二次根式的性质
两个重要 的性质 ( a)2=a(a________) ≥0 a =a
2
二 次 根 积的算术 式 平方根 的 性 商的算术 质 平方根
=
a -a
a≥0 a<0
ab= a· b(a______(a________, >0 a a b________) ≥0
立方 一个数x的________等于a,那么x叫做 立方 根 3 数a的立方根,记作 a
第5讲┃ 考点聚焦 考点2 二次根式的有关概念
二 次 根 式 最简 二次 根式
定义 防错 提醒
形如 a(________)的式子叫做二次根式 a≥0 a中的 a 可以是数或式, a 一定要大于 但 或等于 0
2024年中考数学复习课件---第2讲+数的开方与二次根式

+
+
+…+
+
=
+ + +
+ +
−
.
4
5
6
第2讲
数的开方与二次根式— 真题试做
返回命题点导航
返回栏目导航
命题点 3 二次根式的估值(遵义6年1考)
7.(2022·遵义5题4分)估计 的值在( C )
A.2和3之间
(2)找出与平方后所得数字相邻的两个开得尽方的整数,如4和9
(3)对以上两个整数开方,如 = , =3
(4)确定这个二次根式的值在两个整数开方后所得的
之间,如2< <3
(1)先确定 在哪两个整数(或小数)之间,如3< <
确定与
最接
近的整
数
(2)取这两个连续整数(或小数)的平均数,如
与非负
数的性
质
平方根
ห้องสมุดไป่ตู้
算数平方根
立方根
概念
a>0
性
质 a=0
a<0
相反
互为①______数
(两个)
0
没有
正数(一个)
正数(一个)
0
0
没有
②_________
负数(一个)
非 负 数 的 性 质 :(1)常见的非负数有 ( ≥ ),| a |,
(2)若几个非负数的和为, 则这几个非负数同时为,
+
=3.5
(3)将平均数进行平方,并与 a比较,确定与 最接近的整数,
如. �� = . , < . , 所以 < . ,所以与
数的开方与二次根式

数与式
第 2 讲 数的开方与二次根式
内容 索引
备考基础 重点突破
温故知新,明确考向 分类讲练,以例求法
易错防范
辨析错因,提升考能
备考基础
返回
考点梳理
平方根、算术平方根与立方根
1.平方根: 一个数 x 的 平方等于 a, 那么 x 叫做 a 的平方根, 记做 x=± a. 2.算术平方根:如果一个正数 x 的平方 等于 a,那么 x 叫做 a 的算术平 方根,记做 x= a.0 的算术平方根是 0. 3.立方根:如果一个数 x 的 立方等于 a,那么 x 叫做 a 的立方根,记做 x= a.
解
答案
类型三
二次根式的计算
【例 3】 (1)(2017· 滨州)下列计算: ①( 2)2=2, ② -22=2, ③(-2 3)2 =12,④( 2+ 3)( 2- 3)=-1,其中结果正确的个数为( D )
A. 1
B. 2
C. 3
D. 4
点拨
根据二次根式的性质可得①、②、③正确;根据平方差公
式可得④正确.
点拨
答案
9 (2)(2017· 天津)计算(4+ 7)(4- 7)的结果等于________ . 点拨 根据平方差公式计算即可.
解
答案
【变式 3】
(1)(2017· 黄冈)计算: 27-6
1 3 . 的结果是 ________ 3
解
3 原式=3 3-6× =3 3-2 3= 3. 3
3
特别提醒
(1)± a表示 a 的平方根, a表示 a 的算术平方根,- a表示 a 的算术 平方根的相反数, a表示 a 的立方根. 3
(2)开平方运算与平方运算是互为逆运算的关系.常用平方运算来检
第4讲 数的开方与二次根式

考 点 梳 理
对 接 中 考
A.0
B.1
C.-1
解析 解得a=-1,b=1,
D.±1
课 时 跟 踪 检 测
根据题意得,a+1=0,b-1=0,
所以,(ab)2 013=(-1×1)2 013=-1. 答案 C
上 页
下 页
返 回
简易通
【预测 1】 如果 (2a-1)2=1-2a,则 ( )
易 错 防 范
易 错 防 范
考 点 梳 理
对 接 中 考
求平方根有两个,互为相反准没错;
正的叫做算术根,零都得零别放过.
课 时 跟 踪 检 测
上 页
下 页
返 回
简易通
二次根式及其性质 被开方数 . 1. 二次根式: 式子 a(a≥0)叫二次根式, 其中 a 叫_________ 2.最简二次根式:满足下面两个条件的二次根式是最简 二次根式. 能开得尽方的因数或因式; (1)被开方数中不含___________
题. 2.与二次根式的性质有关的问题.
课 时 跟 踪 检 测
上 页
下 页
返 回
简易通
x 【例题 1】 (2013· 广州)若代数式 有意义,则实数 x 的 x-1 取值范围是 ( )
课 前 必 读
易 错 防 范
考 点 梳 理
对 接 中 考
A.x≠1 C.x>0
解析
B.x≥0 D.x≥0且x≠1
课 时 跟 踪 检 测
x≥ 0, 根据题意得: x- 1≠ 0.
解得:x≥0 且 x≠1.
答案
D
上 页
下 页
返 回
简易通
【例题2】 (2013· 上海)下列式子中,属于最简二次根式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的开方与二次根式讲义
〖知识点〗
平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化 〖大纲要求〗
1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根(包括利用计算器及查表);
2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;
3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
内容分析
1.二次根式的有关概念 (1)二次根式
式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或O .
(2)最简二次根式
被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3)同类二次根式
化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.
2.二次根式的性质 ).
0;0();0;0();
0(),
0(||);
0()(22>≥=≥≥⋅=⎩⎨
⎧<-≥==≥=b a b
a b
a
b a b a ab a a a a a a a a a
3.二次根式的运算 (1)二次根式的加减
二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并. (2)三次根式的乘法
二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=
⋅b a ab b a
二次根式的和相乘,可参照多项式的乘法进行. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.
(3)二次根式的除法
二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.
〖考查重点与常见题型〗
1.考查平方根、算术平方根、立方根的概念。
有关试题在试题中出现的频率很高,习题类型多为选择题或填空题。
2.考查最简二次根式、同类二次根式概念。
有关习题经常出现在选择题中。
3.考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多。
考查题型
1.下列命题中,假命题是( )
(A )9的算术平方根是3 (B )16的平方根是±2
(C )27的立方根是±3 (D )立方根等于-1的实数是-1 2.在二次根式45, 2x 3
, 11,
54, x
4
中,最简二次根式个数是( ) (A ) 1个 (B )2个 (C )3个 (D )4个 (2)下列各组二次根式中,同类二次根式是( ) (A )136,3 2 (B )35,15 (C )1
2
12,
1
3
(D )8,23
3. 化简并求值,a+ab ab+b +ab -b
a -ab
,其中a =2+3,b =2- 3
4.2+1的倒数与2-3的相反数的和列式为 ,计算结果为 5.(-14)2的算术平方根是 ,27的立方根是 ,
4
9
的算术平 方根是 ,
49
81
的平方根是 . 考点训练:
1.如果x 2
=a ,已知x 求a 的运算叫做 ,其中a 叫做x 的 ;已知a 求x 的运算叫做 ,其中x 叫做a 的 。
2.(- 2 )2
的平方根是 ,9的算术平方根是 , 是-64的立方根。
3.当a<0时,化简∣a ∣+a 2
+3a 3 = 。
4.若 5.062 =2.249,50.62 =7.114,x =0.2249,则x 等于( ) (A )5.062 (B )0.5062 (C )0.005062 (D )0.05062 5.设x 是实数,则(2x +3)(2x -5)+16的算术平方根是( ) (A )2x -1 (B )1-2x (C )∣2x -1∣ (D )∣2x +1∣ 6.x 为实数,当x 取何值时,下列各根式才有意义: (1)-3x -2 ( )(2)x 2
+5 ( )(3)1
x
2 ( ) (4)
1
3
1-x
( )(5)1
1-x +2 ( )(6)x +-x ( )
7.等式
3-x x +2 =3-x
x +2
成立的条件是( )
(A )-2<x ≤3 (B )-2≤x ≤3 (C )x>-2 (D )x ≤3 8.计算及化简: (1)(-727
)2 (2)ab 2(c +1)2 (3)0.01×64
0.36×324
(4)2a 2
3b
b 3
a 4-
b 2
a 4 (b>1) (5)
x
x -3y
x 2
y -6xy 2
+9y
3
x
(x>3y )
(6)(48 -60.5 )(4 3 +18 )-(2 3 -3 2 )2
(7)已知方程4x2
-2ax+2a-3=0无实数根,
化简4a2
-12a+9 +|a-6|
解题指导 1.下列命题:(1)任何数的平方根都有两个(2)如果一个数有立方根,那么它一定有平方根(3)算术平方根一定是正数(4)非负数的立方根不一定是非负数,错误的个数为( ) (A )1 (B )2 (C )3 (D )4
2.已知30.5 =0.794,35 =1.710,350 =3.684,则3
5000 等于( ) (A )7.94 (B )17.10 (C )36.84 (D )79.4 3.当1<x<2时,化简∣1-x ∣+4-4x +x 2
的结果是( ) (A )-1 (B )2x -1 (C )1 (D )3-2x 4.(x -2)2
+(2-x )2
的值一定是( ) (A )0 (B )4-2x (C )2x -4 (D )4 5.比较大小: (1)3
15
11
4
(2)7 - 2 2 2 -1 (3)35 -34 34 -33 6.化简:a
a -2b
a 2
b -4ab 2
+4b
3
a
()
7.计算:(32 +0.5 -2
1
3
)-(18 -1
5
75 ) 8.已知a =
3-23+2 ,b =3+23-2
,求a 2-5ab +b 2
的值。
9.计算:945 ÷3
15 ×3
2
223 10.化简:632-23
11.设
5+15-1
的整数部分为a,小数部分为b,求a2+12 ab+b2
的值。
独立训练
1. 2 - 3 的倒数是 ; 2 - 3 的绝对值是 。
2.8 的有理化因式是 ,x -y 的有理化因式是 。
3.1x -x -1 与1
x -1+x
的关系是 。
4.三角形三边a =750 ,b =472 ,c =298 ,则周长是 。
5.直接写出答案:
(1) 3 · 2 ÷30 = ,(2)4xy 2x = ,(3)( 3 -2)8( 3 +2)8
= 。
6.如果 a - b 的相反数与 a + b 互为倒数,那么( )
(A )a 、b 中必有一个为0 (B )∣a ∣=∣b ∣(C )a =b +1 (D )b =a +1
7.如果(2-x)2
+(x -3)2
=(x -2)+(3-x ),那么x 的取值范围是( ) (A )x ≥3 (B )x ≤2 (C )x>3 (D )2≤x ≤3 8.把(a -b )
-1a -b
化成最简二次根式,正确的结果是( ) (A )b -a (B )a -b (C )-b -a (D )-a -b 9.化简-3x x -
1x
+4x 3
的结果必为( ) (A )正数 (B )负数 (C )零 (D )不能确定 10.计算及化简: (1)(5
8
27
·113 ·354 ) (2)18 +22-1
-412
-2( 2 +1)0
(3)(3x 2 x y -25 3xy +13 xy 2 )÷x 2 x y (4) a a -b
a 2
-ab
a 3-2a 2b+ab
2
(a>b ) 11.已知x+3x+2 =13+2+1 ,求x-32x -4 ÷(5
x -2 -的值x -2)。
12.先化简,再求值:( x+2xy +y x +y + 1x - y )+ x- y+1
x
其中x=2 - 3 ,y=2 + 3
13.设11-6 2 的整数部分为m ,小数部分为n ,求代数式m +n +2
n
的值。
14.试求函数t=2--3x2
+12x-9 的最大值和最小值。
15.如果a+b+|c-1 -1|=4a-2 +2b+1 -4,那么a+2b-3c的值。