二次根式辅导讲义
二次根式全章复习讲义

知识点一 二次根式的概念和性质 【知识梳理】一、二次根式概念1.二次根式:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数. 二、二次根式的性质1.a ≥0,(a ≥0);2. (a ≥0);3..【典例精讲】类型一、二次根式的概念1下列各式中,一定是二次根式的有( )个.A.2B.3C.4D.5举一反三:【变式】下列式子中二次根式的个数有( ). (1)13;(2)3-; (3)21x -+;(4)38; (5)21()3-;(6)1x -(1x >)A .2 B.3 C.4 D.52. x 取何值时,下列函数在实数范围内有意义?(1)1y x =-; (2)y=2+x -x 23-;举一反三:【变式】下列格式中,一定是二次根式的是( ). A. 23- B. ()20.3- C. 2- D. x类型二、二次根式的性质3. 计算下列各式:232()4-⨯-2(3.14)π-(1) (2)举一反三:【变式】(1)2)252(-=_____________. (2)2)2(2a a ---=_____________.4.已知实数a ,b ,c 在数轴上的位置如图所示,化简:22||()||a a c c b b -++---|.举一反三:【变式】若整数m 满足条件22(1)1,,5m m m +=+<且则m 的值是___________.【巩固练习】一.选择题1要使代数式有意义,则x 的( ).A. 最大值是23 B .最小值是23 C. 最大值是32 D. 最小值是322. 若1a <,化简2(1)-1=a - ( ).A.2a -B.2a -C.aD.a - 3.下列说法正确的是( )A .4是一个无理数B .函数11y x =-的自变量x 的取值范围是x ≥1C .8的立方根是2± D.若点(2,)-3)P a Q和点(b ,关于x 轴对称,则a b +的值为5. 4. 若a 不等于0,a 、b 互为相反数,则下列各对数中互为相反数的一对数是( ). A.与B.与C.与D.与5.下列根式是最简二次根式的是( ). A .8 B .24x y + C . D .6. 已知,化简二次根式的正确结果为( ).A.B. C.D.二. 填空题7.当x______时,式子x -在实数范围有意义;当x_______时,式子2x -在实数范围有意义.8.=____________. 若,则____________.9.(1)2)53(-=_____________. (2)9622++-a a a (a>0)=__________________________.10.求值(1)已知a 、b 满足,解关于x 的方程(a+2)x+b 2=a ﹣1.(2)已知x 、y 都是实数,且,求y x的平方根.知识点二二次根式的乘除法计算化简一、二次根式的乘法及积的算术平方根:(≥0,≥0),即两个二次根式相乘,根指数不变,只把被1.乘法法则a b开方数相乘.二、二次根式的除法及商的算术平方根:(≥0,>0),即两个二次根式相除,根指数不变,把被开方数相1.a b除.。
二次根式讲义

二次根式辅导讲义同步知识梳理一:二次根式得概念二次根式得定义形如得式子叫二次根式,其中叫被开方数,只有当就是一个非负数时,才有意义.二:二次根式得性质1、非负性:a a()≥0就是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2、()() a aa20=≥.注意:此性质既可正用,也可反用,反用得意义在于,可以把任意一个非负数或非负代数式写成完全平方得形式:a a a=≥()()203、a aa aa a20 ==≥-<⎧⎨⎩||()()注意:(1)字母不一定就是正数.(2)能开得尽方得因式移到根号外时,必须用它得算术平方根代替.(3)可移到根号内得因式,必须就是非负因式,如果因式得值就是负得,应把负号留在根号外.4、公式a aa aa a2==≥-<⎧⎨⎩||()()与()()a aa20=≥得区别与联系(1)a2表示求一个数得平方得算术根,a得范围就是一切实数.(2)()a2表示一个数得算术平方根得平方,a得范围就是非负数.(3)a2与()a 2得运算结果都就是非负得.三:最简二次根式与同类二次根式2a B、1--3<0,则化简(1)148 (2)4337- (3)11212 (4)13550-【例14】把下列各式分母有理化(1)328x x y(2)38xx【例15】把下列各式分母有理化:(1)221- (2)5353+- (3)333223- 举一反三:1、已知2323x -=+,2323y +=-,求下列各式得值:(1)x y x y +-(2)223x xy y -+专题五:二次根式计算——二次根式得乘除【例16】化简(1)916⨯ (2)1525⋅ (3)229x y (0,0≥≥y x ) (4)12×632⨯ 【例17】计算(1)(2) (3) (4)(5) (6) (7) (8)【例18】化简:(1)364 (2)22649b a )0,0(≥>b a (2)2964xy )0,0(>≥y x (4)25169x y )0,0(>≥y x【例19】计算:(1)123 (2)3128÷ (3)11416÷(4)648【例20】能使等式22xxx x =--成立得得x 得取值范围就是( )A 、2x >B 、0x ≥C 、02x ≤≤D 、无解专题六:二次根式计算——二次根式得加减【例20】计算(1)11327520.53227--+-; (2)12543102024553457⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 【例21】(1)224344x y x y x y x y --+--+ (2)a b a ba b a b--+-+ 专题七:二次根式计算——二次根式得混合计算与求值1、ab b a ab b 3)23(235÷-⋅ 2、 22 (212 +418-348 ) 3、132x y ·(-42y x)÷162x y 4、673)32272(-⋅++5、62332)(62332(+--+)6、1110)562()562(+-【例21】 1.已知:,求得值.2.已知,求得值。
第二十一章二次根式 辅导讲义

求:(1) ;(2) ;(3)你会算 吗?
6.当x= 时,求 + 的值.(结果用最简二次根式表示)
教师评定:
1、学生上次作业评价:○好○较好○一般○差○没做作业
2、学生本次上课情况评价:○好○较好○一般○差
教师签字:
家长签字:___________
4.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=( )2,5=( )2,你知道是谁的二次根式呢?下面我们观察:
( -1)2=( )2-2·1· +12=2-2 +1=3-2
反之,3-2 =2-2 +1=( -1)2
例2.判断下列各式是否正确,不正确的请予以改正:
(1)
(2) × =4× × =4 × =4 =8
例3.已知 ,且x为偶数,求(1+x) 的值.
例4.观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:
= = -1,
= = - ,
同理可得: = - ,……
从计算结果中找出规律,并利用这一规律计算
A.13 B. C.10 D.5
4.( -3 +2 )× 的值是().
A. -3 B.3 - C.2 - D. -
5.计算( + )( - )的值是().
A.2 B.3 C.4 D.1
二、填空题
1.在 、 、 、 、 、3 、-2 中,与 是同类二次根式的有________.
2.计算二次根式5 -3 -7 +9 的最后结果是________.
讲义三:《二次根式》专题辅导讲义

讲义三:《二次根式》知识点梳理:1.二次根式2.最简二次根式3.同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.4.二次根式的性质2=a(a≥0);│a│=;(a≥0,b≥0);(b≥0,a>0).5.分母有理化及有理化因式6.二次根式的运算◆例题讲解1、二次根式的意义和性质1、若y=++2009,则x+y=2有意义,则x的取值范围是_______.3、实数a,b,c a-b│.4、将根号外的a移到根号内,得 ( )A. ;B. -;C. -;D.5、已知0<x<1=______.6、=_____________(0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩=5-x x-5o1)+2、同类与最简二次根式(1)在下列各组根式中,是同类二次根式的是( ) ABC(2)已知最简二次根式是同类二次根式,则a=______,b=_______(2)在根式) A .1) 2) B .3) 4) C .1) 3) D .1) 4) (3)已知a>b>0,的值为( )A .B .2 CD .3、二次根式的化简与求值(1)(2006,辽宁十一市)先化简,再求值:,其中,.(2)观察下列分母有理化的计算:从计算结果中找出规律,并利用这一规律计算:)=________.(09福建).对于题目“化简求值:,其中a=”,甲、乙两个学生的解答不同. 甲的解答是:=+-a= 乙的解答是:=+a -=a= 谁的解答是错误的?为什么? 因此乙的解答是错误的.D b 21211()ba b b a a b ++++===++ 1a151a 1a 1a 1a 2495a a -=1a 1a 1a 1a154、二次根式的应用1、在实数范围内分解因式。
(1);(2)2、比较数值的大小(放进根式里、平方)(1);(2)(3)(2009贺州)的整数部分是_________,小数部分是________。
《二次根式课件》公开课课件

二次根式的历史与文化背景
01
二次根式的起源
二次根式最初起源于古希腊数学家毕达哥拉斯学派,他们研究了直角三
角形的边长关系,发现了直角三角形的勾股定理。
02 03
二次根式的发展历程
随着数学的发展,二次根式在各个历史时期都得到了广泛的应用和研究 。特别是在文艺复兴时期,数学家们开始系统地研究二次根式的性质和 运算方法。
二次根式的性质
总结词
二次根式具有非负性、算术平方根的单调性、算术平方根的取值范围等性质。
详细描述
二次根式的被开方数是非负数,因此二次根式本身也是非负数。此外,算术平 方根具有单调性,即随着被开方数的增大,其平方根也单调增大。最后,算术 平方根的取值范围是非负实数。
二次根式的化简
总结词
化简二次根式的方法包括因式分解、配方法、直接开平方法 和分母有理化等。
二次根式在代数式变形中的应用
总结词
简化表达式
详细描述
二次根式在代数式变形中有着重要的应用,它可以简化复杂的代数表达式。通过利用二 次根式的性质和运算法则,可以将复杂的代数表达式化简为更简单的形式,方便后续的
运算和分析。
二次根式在代数式变形中的应用
总结词:因式分解
详细描述:在代数式变形中,二次根式还可以用于因式分解 。通过提取公因式和利用二次根式的性质,可以将多项式进 行因式分解,从而更好地理解和分析代数式的结构。
详细描述
化简二次根式是数学中常见的代数运算之一。通过因式分解 或配方法,将二次根式化为最简形式。如果被开方数是多项 式,则可以使用直接开平方法或分母有理化进行化简。化简 后的二次根式更易于计算和运用。02 二次 Nhomakorabea式的运算
二次根式的加减法
二次根式讲义

二次根式讲义 一、知识点梳理 1.二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
2.定义重点①式子有意义:)0(≥a a 中必须,否则,式子没有意义②隐含条件:)0(≥a a ,则,即也为非负数4. 二次根式的乘除运算b a ab ⋅=(00≥≥b a ,))0,0(≥≥=b a b ab a根式中分母不能含有根号,且要变为最简。
6.最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
三、典型例题讲解 例11、用代数式表示:(1)面积为S 的正方形的边长为______.(2)•面积为10•的直角三角形的两直角边的比为1:•2,•则这两条直角边分别为______.2、在二次根式1a -中,字母a 的取值范围是( )A .1<aB .1≤aC .1≥aD .1>a 3、下列式子中,是二次根式的有( )①22x +,②3x ,③32,④2()x -A .1个B .2个C .3个D .4个 4、(1)若0≥a ,则a _____0.(2)若021=++-x y ,则=x _____,=y ______. 5、求使式子有意义的实数x 的取值范围.(1)2x - (2)11x - 例21、计算:(1)=2)3(______;(2)=-2)52(_____. 2、下列式子正确的个数是( )①2)4(4±=;②3)3(2-=--;③1)2()3(22=-;④2)7(7=.A .1个B .2个C .3个D .4个3、在实数范围内分解因式792-a .解:=-=-222)7()3(79a a ( )·( )4、计算:(1)22=______.(2)2(5)-=_____; (3)2211010-==______.5、计算: (1)2(2)x -(2≤x ) (2)2(32)- (3)-2(3.14)π-例31、计算:(1)2×7=______.(2)12×8=______; (3)0.1×100=_______.2、下列运算不正确的是( )A .0.40.6⨯=0.2×0.6=1.2B .4×36=2×6=12C .0.4 3.60.4 3.6 1.44⨯=⨯===1.2D .a ·3=3a (0≥a ) 3、计算:(1)3×(-212) (2)2×6×13(3)2ab ·1b (4)-12xy ·(-4y )4、计算:(1)812=______;(2)126=_____.5、计算:(1)318÷2=_____;(2)293x y xy ÷=______. 例41、化简:(1)8=______;(2)1327=____.2、化简:(1)3a =_____;(2)2316x y =_____.3、化简:(1)56=______; (2)-125015⨯=______; (3)2332ab c=______;4、下列计算正确的是( )A .-1210×2=-1220B .y x xy x xy x 31313313=⋅=⋅C .112882887272⨯=⨯=4=2 D .534=5435、把38化为最简二次根式为_______.6、下列二次根式中,不是最简二次根式的是( )A .aB .31C .1x D .21a +四、举一反三 1.(2012义乌)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间2.(2012杭州)已知)212()33(-⨯-=m ,则有( )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 3.(2012泰安)下列运算正确的是( )A .2(5)5-=- B .21()164--= C .632x x x ÷= D .325()x x =4.(2012德阳)使代数式12-x x有意义的x 的取值范围是( )A . 0≥xB .21≠x C .0≥x 且21≠x D .一切实数5.(2011山东菏泽)实数a 在数轴上的位置如图所示,则22(4)(11)a a -+- 化简后为( )A . 7B . -7C .152-aD . 无法确定6.(2011山东济宁)若0)3(12=++-+y y x ,则y x -的值为 ( )A .1B .-1C .7D .-77.(2011山东烟台)如果aa 21)12(2-=-,则( )A .21<a B. 21≤a C. 21>a D. 21≥a8.(2011山东日照)已知x ,y 为实数,且满足x +1y y ---1)1(=0,那么20112011y x -= .9. (2011山东枣庄)对于任意不相等的两个实数a 、b ,定义运算※如下:a※b =b a b a -+,如3※2=32532+=-.那么8※12= .10.已知a ,b ,c 为△ABC 的三边长,化简22()()a b c b a c +-+---a b c --.a 105第2题图第4题图 五、过关测试二次根式的定义 1、二次根式11x --有意义,则实数x 的取值范围为_____. 2、矩形面积为12cm 2,矩形的长与宽之比为3:2,则矩形长为_____cm ,宽为____cm . 3、无论实数x 取何值下列式子总有意义为( )A .2(1)x -- B .21x -+ C .21x + D .1x -4、如图所示,方格图中小正方形的边长为1,将方格图中阴影部分剪下来,再把剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) A .3 B .2 C .5 D .65、如图所示,在平面直角坐标系中,A (-2,3),B (-4,0),C (-2,0)是三角形的三个顶点,求三角形各边的长.6、已知1433b a --与114+-b a 互为相反数,试求a ,b 的值.7、已知x ,y 为实数,且y =1122x x -+-+12,求x ,y 的值.二次根式的性质1、计算:(1)=2)75(____________; (2)=-2)2(x ______.2、(1)当0≥x 时,=-2x ______________;(2)当0≤x 时,2x =______. 3、下列式子计算不正确的是( )A .3)3(2=B .a a =-2)((0≥a )C .2(32)-=3-2D .15)53(2-=- 4、计算:(1)22)3553()54(- (2)22(6)(8)-+-(3)2)52(494-⋅+ (4)2230.6--5、已知实数x 在数轴上的位置如图所示,化简2222(1)(2)x x x --+-.6、(改错题)计算:(2x -)2+2(3)x - 解:(2x -)2+2(3)x -=2-x +x -3 ① =-1 ②你认为上述解答过程是错在第_____步,为什么?并求出正确的结果.二次根式的乘法 1、计算:(1)-122×3=_____; (2)18×(-32)=_____. 2、计算:(1)110×110=______; (2)131x·3xy =______. 3、化简:(1)3a -=_____;(2)34m n (0<m )=______. 4、若)2)(1(21--=-⋅-x x x x .则x 的取值范围是( )A .1>xB .2≥xC .2>xD .1≥x 5、定义运算“@”运算法则,x@y@z =xyz ,则2@3@6值为( )A .3B .2C .6D .126、下列各等式成立的是( )A .45×25=85B .53×42=205C .43×32=75D ,53×42=20 7、已知2=a ,则200的值为( )A .a 2B .a 3C .a 10D .a 8 8、下列计算正确的是( )A .(121)(9)1219-⨯-=-⨯-=33B .23x =x 3C .(16)(25)1625-⨯-=⨯=20D .249x -=32-x 9、阅读解答题:因为23=223⨯=12 ①-23=2(2)3-⨯=12 ②所以23=-23 ③ 即2=-2导致以上出现错误的结果错因在第几步( ) A .① B .② C .③ D .④ 10、化简:(1)2000 (2)250a b (0<a ,0>b )(3)18×3220×(-1315) (4)627×(-23)(5)2xy ×12x (6)115×23×(-1210)11、计算(1)5xy ×(-323x y )×361y (2)32ab b ·(-323a b )·3ab(0<a ,0>b )(3))))((abx ax x a b x ab --- (0>a ,0>b ,0>x )12、将aa 1-括号外的因式a 移到括号内部.二次根式的除法及最简二次根式 1、计算:(1)49=_____________;(2)2764=______.2、计算:(1)0.680.17=__________;(2)328=______. 3、计算:(1)0.48=______;(2)512=_____. 4、若2211x xx x--=++,则x 取值范围为_______. 5、下列各式是最简二次根式为( ) A .15B .24C .28D .7326、如图所示,小芳想在墙壁上钉一个三角形架,•其中两直角边的长度之比为3:2,斜边长为520,则较短直角边的长度为( ) A .40 B .210 C .410 D .426 7、化去下列各式中根号内的分母正确的是( ) A .2225555== B .22151535=⨯ C .3333n n mn m m m ==(0>m ,0>n ) D .11aa a a===a 8、下列各式计算正确的是( )A .442939---==---=23B .238499==2132C .3163727÷= D .825=58 9、把下列二次根式化为最简二次根式: (1)338=_______; (2)712=_______;(3)2.11.0⋅=_______;(4)3273x =_______; 10、计算:(1)48÷(32·3)(2)43623x x ÷(3)3520÷(-136)(4)8243311、计算:(1)3223×(-1815)÷1225(2)-4318÷(28×1354)。
《二次根式》 讲义

《二次根式》讲义一、二次根式的定义形如\(\sqrt{a}\)(\(a\geq 0\))的式子叫做二次根式。
其中,\(a\)叫做被开方数。
需要注意的是,二次根式具有双重非负性,即被开方数\(a\geq 0\),二次根式的值\(\sqrt{a}\geq 0\)。
例如,\(\sqrt{4}\),\(\sqrt{5}\),\(\sqrt{16}\)等都是二次根式,而\(\sqrt{-4}\)就不是二次根式,因为被开方数\(-4\lt 0\)。
二、二次根式有意义的条件要使二次根式\(\sqrt{a}\)有意义,被开方数\(a\)必须是非负数,即\(a\geq 0\)。
例如,对于二次根式\(\sqrt{x 2}\),要使其有意义,则\(x2\geq 0\),解得\(x\geq 2\)。
三、二次根式的性质1、\((\sqrt{a})^2 = a\)(\(a\geq 0\))这一性质表明,一个非负的二次根式的平方等于被开方数。
例如,\((\sqrt{5})^2 = 5\),\((\sqrt{10})^2 =10\)。
2、\(\sqrt{a^2} =|a|\)当\(a\geq 0\)时,\(\sqrt{a^2} = a\);当\(a\lt 0\)时,\(\sqrt{a^2} = a\)。
例如,\(\sqrt{4^2} = 4\),\(\sqrt{(-3)^2} = 3\)。
3、\(\sqrt{ab} =\sqrt{a}\cdot\sqrt{b}\)(\(a\geq 0\),\(b\geq 0\))这一性质是二次根式乘法运算的基础。
例如,\(\sqrt{2}\times\sqrt{8} =\sqrt{2\times 8} =\sqrt{16} = 4\)。
4、\(\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}\)(\(a\geq 0\),\(b\gt 0\))这是二次根式除法运算的依据。
二次根式基础讲义

二次根式复习讲义(MS )一、基础知识(一)二次根式的概念:(1)二次根式:式子a (a ≥0)叫做二次根式.(2)最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.把满足这两个条件的二次根式,叫做最简二次根式。
(3)同类二次根式:化成最简二次根式后,如果被开方数相同。
,这几个二次根式就叫做同类二次根式.(4)分母有理化:把分母中的根号化去,叫做分母有理化。
(5)有理化因式:两个含有二次根式的代数式相乘,如果它们的积为有理式,我们说这两个代数式互为有理化因式.(6)代数式:用基本运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子叫代数式。
(二).同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
(三)二次根式的性质.20)(0);,(0)0,(0),(0)0,0)____(0,0);a a a a a a a a a a b a b ≥=≥>⎧⎪===⎨⎪-<⎩=≥≥=≥>是一个非负数;(*)(三)二次根式的运算:(1)二次根式的加减:先将二次根式化成最简二次根式,然后合并同类二次根式。
(20,0,0)a b a b =≥≥=≥>注意:做乘法时要灵活运用乘法分式;做除法时,有时要写为分数形式,然后分母有理化; 化简时要注意a 的正负性,尤其是隐含的正负性.二、分类考点 二次根式的定义例: ) A 、6个 B 、5个 C 、4个 D 、3个练习:下列各式中,哪些是二次根式,哪些不是二次根式?1.求a 为何值时,下列各式有意义. (1)a a 212-+ (2)32-+a a (4)215.0-a练习1、 53+-x 的取值范围是 _________________练习2有意义的x 的取值范围是 _________________ 练习3、x x --+315的取值范围是 _________________练习4、若31-+a 在实数范围内有意义, 则a 满足的条件是( )A.2=aB. 2≥a C .4-≤a D. 2≥a 或4-≤a例1: 在根式1) ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例2.在二次根式45, 2x 3, 11, 54, x 4中,最简二次根式个数是( ) A .1个 B.2个 C.3个 D.4个例1.把下列各式中根号外的因式适当改变后移到根号里面(1)53- (2)3.010 (3)1832 (4)616 (5)2142-例2、将根号外的数移到根号内(1)33 (2)717(3)x 2 (4)x x 2练习1.计算化简(1)226061- (2)84252.0b a (3)b b 42-(4)b a 325(0<b ) (5)2211b a -(b a <)练习3.求值(1)当211=x 时,求2244x x x +--的值;(2)当3-=a 时,求4152+-⋅-a a a 的值.练习4.求值22)2()1(+--b a ,其中3,14==b a .练习5、10)21()2006(312-+---+;练习5、已知AB,试比较A 与B 的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式一、知识梳理1、二次根式的概念和性质二次根式的定义:形如a (0a ≥)的式子叫做二次根式.注意点:(1)被开方数是正数或0;(2)二次根式a (0a ≥)表示非负数a 的算术平方根.二次根式的性质:(1)二次根式的非负性:0a ≥;(2)2()(0)a a a =≥;(3)2(0)(0)(0)a a a a a a a a >⎧⎪===⎨⎪-<⎩;(4)当0a ≥时,22()a a =.2、最简二次根式最简二次根式最简二次根式的定义:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开 得尽方的因数或因式.这样的二次根式叫做最简二次根式.最简二次根式的满足条件:(1)被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式);(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含二次根式.说明:二次根式的计算结果要写成最简根式的形式.3、二次根式的加减同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式.二次根式的加减同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次 根式.合并同类二次根式:()a x b x a b x +=+,同类二次根式才可加减合并.分母有理化分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.a b+与a b-互为有理化因式;分式有理化时,一定要保证有理化因式不为0.4、二次根式综合运算二次根式的综合运算法则:先算乘除法,再算加减法,有括号的先算括号里面的,最终结果二次根式部分要化为最简二次根式.注意:在二次根式的计算题中,如果题目中没有明确说明字母的取值范围,按照字母使二次根式有意义计算.5、二次根式化简求值二次根式的化简求值:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,化为较为简单的一个式子(或直接得出结果),最后代入未知数的值求解,有时候也会存在整体代入的情况.注意:对于二次根式的化简求值如果字母没有明确说明取值范围,必须要进行分类讨论.6、根式的大小比较比较大小的方法1.作差法:比较a、b的大小,0,0,0,a b a b a ba b>>⎧⎪-==⎨⎪<<⎩2.作商法:比较a、b的大小,当0,0a b>>时,可以采用作商法,1,1,1,a b aa b ba b>>⎧⎪==⎨⎪<<⎩二次根式比较大小的方法(1)0a b a b>>⇔>(2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比较.(3)估算法(4)分子有理化(5)倒数法7、二次根式的乘除二次根式的乘除法二次根式的乘法法则:a b ab⋅=(0a≥,0b≥).二次根式的除法法则:a abb=(0a≥,0b>).说明:利用乘除法则时注意a、b的取值范围,对于ab a b=⋅,a、b都非负,否则不成立.二、典型例题题型一、二次根式的概念和性质例1: 函数1x y x =-中自变量x 的取值范围是( ) A .1x ≥B .1x <且0x ≠C .1x >D .1x ≥且0x ≠【答案】C【解析】该题考查的是函数的定义域.根式下的式子在非负条件下有意义,分数在分母不为0的条件下有意义,综上所述,10x -≥,且10x -≠,∴1x >,故本题答案为C .例2: 若320-+-=x y ,则xy 的值为____.A .8B .6C .5D .9【答案】A【解析】该题考查的是的非负性.根据题意得:3020x y -=⎧⎨-=⎩解得:32x y =⎧⎨=⎩∴32x y =,故选A .变式: 已知:()322512012x x y x -+-=+--,求x y 的值. 【答案】25【解析】该题考查的是二次根式的性质.∵()322512012x xy x -+-=+--有意义∴()32020120120x x x ⎧-≥⎪⎪-≥⎨⎪--≠⎪⎩所以2x =,055y =+=∴2525x y ==题型二、最简二次根式例1、下列二次根式中,最简二次根式是( )A .22xB .0.5C .22x y +D .1x 【答案】C【解析】该题考查最简二次根式.A 、x x 222=被开方数含能开得尽方的因数,不是最简二次根式;故本选项错误; B 、120.522==,被开方数含分母,不是最简二次根式;故本选项错误; C 、22x y +满足最简二次根式的定义,是最简二次根式;D 、1x x x=,被开方数含能开得尽方的因数,不是最简二次根式. 故选C .例2、若最简二次根式2342a +与22613a -是同类二次根式,则a =_________【答案】1±【解析】该题考查的是二次根式.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 根据题意可列:22461a a +=-解得:1a =±变式、若2,m ,4为三角形三边,化简:()()2226m m -+-=____________.【答案】4【解析】该题考查的是根式的化简求值.∵2,m ,4为三角形三边,可知包括如下关系:①24m +>,即6m <②24m +>,即2m >∴原式264m m =-+-=题型三、二次根式的加减例1、计算124183-⨯=__________.【答案】6【解析】该题考查的是二次根式的计算.原式346923=⨯-⨯⨯326323=-⨯ 2666=-=例2、111115533131317+++=++++____.【答案】1714-【解析】该题考查根式的分母有理化.11115135133171317144444155********-----+++=+++=++++ 故答案为1714-. 变式、已知32x =+,32y =-,则33_________x y xy +=.【答案】10【解析】因为32x =+,32y =-,所以()()32321xy =+-=,()()323223x y +=++-=,所以()()()22332221232110x y xy xy x y xy x y xy ⎡⎤⎡⎤+=+=+-=⨯-⨯=⎢⎥⎣⎦⎣⎦题型四、二次根式综合运算例1、化简:2244112a a a a -+--+(112a ≤≤)【答案】32a -【解析】()()222244112211211a a a a a a a a -+--+---=---,因为112a ≤≤,所以原式21121132a a a a a =---=-+-=-例2、若352x y +=-,325x y -=-,求xy .【答案】52-【解析】2()352x y +=-;2()325x y -=-∴22()()352(325)5244x y x y xy +-----===-变式、化简22691025a a a a +++-+【答案】当3a <-时,原式=22a -+;当35a -≤<时,原式=8;当5a ≥时,原式=22a -;【解析】()()22226910253535a a a a a a a a +++-+=++-=++-,当3a <-时,原式353522a a a a a =++-=---+=-+;当35a -≤<时,原式35358a a a a =++-=+-+=;当5a ≥时,原式353522a a a a a =++-=++-=-题型五、二次根式化简求值例1、化简:()221269x x x -+-+=____【答案】43x -【解析】该题考查根式的化简.()()2221269123x x x x x -+-+=-+-∵由题得120x -≥,12x ≤∴()2333x x x -=-=-.∴原式12343x x x =-+-=-.故答案为43x -.例2、化简:108322++.【答案】42+【解析】22108322108(12)108(12)1882(42)42++=++=++=+=+=+变式、化简:(1)412-(2)415+【答案】(1)31-(2)1062+【解析】(1)()24124233131-=-=-=- (2)221064158215(53)222++=+=+=题型六、根式的大小比较例1、比较大小:512-_______12.(填“>”、“<”或“=”). 【答案】>【解析】该题考查的是二次根式比大小.5115115254022222------===>,即511022-->, 即51122->. 例2、设120082006,2007A B =-=,比较大小:A ____B .【答案】A B >【解析】222008200620082006A ==+-,22220072007B ==;2008200622007+< ∴22A B< ∴A B >变式、已知21a =-,226b =-,62c =-,那么a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c b a >>D .c b a <<【答案】B【解析】()()221,223,2322a b c ⎛⎫=-=-=- ⎪ ⎪⎝⎭2222(231)2(13)(2223)0222b a -=--+=-+=+->,b a > 2222(132)2(13)(2223)0222a c -=--+=-+=+->,a c >b ac >>题型七、二次根式的乘除例1、下列计算正确的是( )A .235⋅=B .236⋅=C .84=D .2(3)3-=-【答案】B【解析】根据二次根式的乘法运算法则,可得236⋅=,故答案为B 选项.例2、下列计算结果正确的是( )A .257+=B .2510⨯=C .3223-=D .25105=【答案】B【解析】该题考查的是二次根式计算.A 选项2与5不是同类项,不能合并,故本选项错误;B 选项252510⨯=⨯=,故本选项正确;C 选项32222-=,故本选项错误;D 选项21055=,故本选项错误. 故答案是B .变式、已知:4322232b a a =-+-+,求11a b +的平方根.【答案】2±【解析】该题考查的是二次根式.4322232b a a =-+-+,根据被开方数的非负性我们知道320230a a -≥⎧⎨-≥⎩,所以23a =, 代入得43222322b a a =-+-+=,所以1131222a b +=+=,平方根为2±三、课堂巩固1、函数11y x =-中自变量的取值范围是( B )A .1x ≠B .1x >C .1x ≥D .1x ≥-2、对于所有实数,a b ,下列等式总能成立的是( C )A .()2a b a b +=+B .22a b a b +=+C .()22222a b a b +=+ D .()2a b a b +=+ 3、函数12y x =+中,自变量x 的取值范围是2->x 4、实数P 在数轴上的位置如图所示,化简()()2223p p -+-=15、计算:=⨯121726,=--)84)(213(24, =⨯-03.027.02-0.18,=÷-327348-5.6、化简:()221269x x x -+-+=x 34-.7、设120082006,2007A B =-=,比较大小:A >B . 8、已知: 21x =-,求223x x +-的值.()()()()2222231322-=-+=+-=-+x x x x 9、已知:,x y 为实数,且113y x x <-+-+,化简:23816y y y ---+. 1=x 3<y 原式=()1-4343=---=---y y y y1 2 3 4 p课后作业1、函数2x y x-=中,自变量x 的取值范围是( A ) A .2x ≤且0x ≠B .2x ≤C .2x <且0x ≠D .0x ≠2、若()424A a =+,则A =( A ) A .24a +B .22a +C .()222a + D .()224a + 3、若2(2)10m n ++-= 则m n -= -3 .4、在下列二次根式22211025312232322a a a a b m x a b x a b +-++,,,,,,,,,,中,最简二次根式有6个.5、若最简二次根式35a -与3a +是同类二次根式,则a =___4___.6、若231604b a a +-+=-,则3223a b a b +=-___-18___.7、比较大小:512-___>___12.(填“>”、“<”或“=”). 8、计算:01186(121)221+---- 原式=01232212=--++9、化简:(1)412-原式=()13132-=- (2)415+221064158215(53)222++=+=+=。