数学发展史
数学的历史介绍数学的历史发展和重要数学家

数学的历史介绍数学的历史发展和重要数学家数学作为一门古老而又深刻的学科,在人类文明的历史长河中扮演着重要的角色。
从古代至今,数学不断发展演变,培育出许多伟大的数学家,他们为数学的进步做出了巨大的贡献。
本文将为大家介绍数学的历史发展并重点介绍一些重要的数学家。
一、古希腊时期数学的发展古希腊是数学史上一个重要的里程碑,许多重要的数学思想和概念都在这个时期诞生。
最为人熟知的是毕达哥拉斯学派提出的一系列数学原理,包括著名的毕达哥拉斯定理。
另外,欧几里得的《几何原本》对后世数学发展起到了巨大的影响,成为许多数学家研究的基础。
二、中世纪数学的低谷与复兴中世纪数学的发展相对较慢,部分原因是欧洲的文化环境受到了战争和政治动荡的影响。
然而,阿拉伯数学家在这个时期对数学的发展做出了重要贡献。
他们将印度和希腊的数学知识引入阿拉伯世界,并进行了整理和发展,为欧洲数学的复兴打下了基础。
著名的《阿拉伯数学传统》成为了数学史上的重要文献之一。
三、文艺复兴时期的数学突破文艺复兴时期是欧洲数学复兴的重要时期,众多数学家在这个时期涌现出来。
其中,意大利数学家斯忒芬诺为代数学的发展做出了杰出贡献,他提出了方程三次及以上的根的求解方法。
另外,日耳曼数学家勒让德也是这个时期的重要人物,他以发展微积分理论而闻名。
四、近代数学的革命近代数学的革命主要发生在17至19世纪,这一时期见证了许多基础性数学理论的诞生。
哥德巴赫猜想、费马大定理等一系列重要的数学难题在这一时期得到了提出。
著名的数学家牛顿和莱布尼茨几乎同时独立发现了微积分学,为后来的物理学和工程学等学科提供了基础。
五、现代数学的拓展与应用20世纪以来,数学已经发展成为一门庞大而复杂的学科体系。
代数学、几何学、概率论、数论等各个分支都有了独立而深入的发展。
许多著名的数学家如高斯、黎曼、庞加莱等在这个时期做出了具有重要影响的贡献。
数学的应用也广泛渗透到自然科学、工程学与经济学等领域,为人类社会的进步做出了重要贡献。
数学发展历程

数学发展历程数学是一门古老而又重要的学科,它对人类的文明进程产生了深远的影响。
本文将介绍数学的发展历程,从古代数学的起源到现代数学的蓬勃发展。
1. 古代数学的起源数学的历史可以追溯到古代文明。
早在公元前3000年左右,古埃及人、古巴比伦人和古印度人就开始使用简单的几何学和代数学方法来解决实际问题。
古希腊的毕达哥拉斯学派则为几何学的发展做出了重要贡献。
2. 古希腊数学的巅峰古希腊数学是数学发展史上的重要里程碑。
众所周知的数学家如毕达哥拉斯、欧几里得和阿基米德等,他们的研究奠定了几何学和数论的基础。
毕达哥拉斯学派提出了著名的毕达哥拉斯定理,欧几里得则以其著作《几何原本》成为了这一时期最具影响力的数学著作。
3. 中世纪的数学复兴中世纪数学发展相对较缓慢,直到数学复兴的来临才迎来了重要的突破。
文艺复兴时期的欧洲,数学开始受到更多人的关注。
著名的数学家费马和笛卡尔等人的工作推动了代数学的发展,他们将代数学与几何学相结合,开辟了新的研究领域。
4. 数学的科学化17世纪,随着数学的科学化进程,数学开始独立于其他学科发展。
牛顿和莱布尼茨的发现了微积分,这一发现不仅为物理学和工程学等其他学科提供了重要的工具,也标志着数学成为一门真正的学科。
这个时期的数学家还研究了概率和解析几何等领域。
5. 现代数学的发展进入现代时期,数学的发展进入了一个全新的阶段。
20世纪对数学产生了巨大的影响,数学家们推动了许多重要的发现和理论。
例如,集合论和拓扑学的兴起推动了数学的新进展。
数论、代数学、数学分析等各个分支都在不断深化和拓展。
6. 当代数学的前沿当代数学拥有众多前沿领域,包括数学物理学、几何拓扑学、图论和数值计算等。
这些领域的研究不仅解决了许多现实问题,也丰富了数学的理论体系。
同时,数学的应用也与其他学科如计算机科学、金融学和生物学等有着密切的联系。
结语:数学的发展历程长期而丰富多样。
从古代的起源到现代的蓬勃发展,数学一直作为人类智慧的结晶,推动着人类文明的进步。
数学的发展历史

数学的发展历史一、古代数学的萌芽数学的历史可以追溯到公元前1800年的古巴比伦,那时候出现了一些代数问题和几何问题。
他们使用类似于解谜游戏的方法来解决问题,这些解题方法在那个时代已经很先进了。
在公元前600年左右,古希腊的毕达哥拉斯学派开创了完整的数学理论,这阶段被认为是古代数学的黄金时代。
他们发现了自然数、几何元素和研究了三角形的一些基本理论。
二、欧几里得与数学元素欧几里得是古希腊的数学家、几何学家,他发表了著名的《几何原本》一书,成为了古代希腊数学理论的代表。
欧几里得的《几何原本》对许多几何概念和证明进行了全面的系统总结,成为了数学教育中的经典教材。
三、中世纪的数学沉寂中世纪的欧洲数学长期受到罗马帝国的灭亡和各种教会的禁忌的影响而停滞不前。
然而,在伊斯兰世界,穆斯林数学家保留下了希腊的数学遗产,发展出了乘法表和代数学,同时也为十进制数学系统提供了发展思路,这大大促进了基础数学的发展。
四、文艺复兴与数学的繁荣在文艺复兴时期,欧洲兴起的人文主义和启蒙思想极大地推动了数学的发展。
意大利数学家费拉利和巴西科等人提出了大量的代数方法和解决方案,而德国数学家克拉默在线性代数和矩阵理论上的突破对现代数学的发展产生了深刻的影响。
五、科技革命与数学的重要角色随着科技的飞跃,数学的应用价值也越来越受到重视。
数学提供了解决数值计算问题和控制系统问题的数学方法,使得机械、电子和计算机技术得到了迅速的发展。
现代数学的很多理论和方法都是为了解决这些工程和科学问题而发展起来的。
六、现代数学的哲学与未来现代数学不仅让人们更好的理解世界,更开启了理解科学和宇宙的新的宏观和微观层次。
随着技术的飞速发展,数学的应用也不断得到了创新和拓展,预示着数学将在未来担任越来越重要的角色,成为推动人类进步的重要力量。
数学发展史大全(到2008年)

1679,德国数学家戈特弗里德。莱布尼兹最早使用只用 两个数的二进制算术。 1683,日本数学家关孝和首次将行列式引进数学。行列 式是由正方矩阵的元素所决定的数,用于解决联立方程 式及其它数学问题。 1706,威尔士数学家威廉。琼斯首先将符号π作为圆周 1717,英国天文学家亚伯拉罕。夏普交将圆周率的数值 计算到小数点后72位 1718,法国数学家亚伯拉罕。德。棣莫弗创作出《机会 论》,这是他的关于概率的第一本书。 1719,英国数学家布鲁克。泰勒验证了透视图中的消失 1743,法国数学家让。达朗贝尔因其著作《论动力学》 一书而建立数学动力学。三年后他提出复数理论。 1743,英国数学家托马斯。辛普森提出辛普森法则,计 算曲线围成的面积的系统方法。 1767,瑞士数学家莱昂哈德。欧拉发表著作《代数学完 整引论》,制定了代数规则。 1777,瑞士数学家莱昂哈德。欧拉将i引入数学概念, 成为-1的平方根。 1784,法国数学家阿德里安-玛丽。勒让德确定了勒让 德多项式,这个多项式的数学意义在于与物理学难题相 关的微分方程有了解决方法。 1796,德国物理学业家卡尔。高斯提出了直线或者曲线 与图形上的点的距离的最小二乘法。 1796,丹麦数学家卡斯帕尔。韦塞尔提出了用矢量表示 复数。 1806,瑞士科学家让。罗伯特。阿尔冈修改了阿尔冈图 表,用坐标平面里的点表示复数z=x+y,X轴表示实数部 分,Y轴表示虚拟部分 1815,英国学者彼得。罗杰修改了计算尺,增加了对数 坐标,极大简化了简洁和除法 1822,法国数学家约瑟夫。傅里叶提出傅里叶分析,用 正统函数和余弦函数分析连续函数 1824,德国天文学家、数家家弗里德里希。贝塞尔提出 了贝塞乐函数(最早是11817年提出的)。贝塞尔函数 形成一个无穷极函数,能解决天文和物理学方面的偏微 分方程的问题。 1827,德国物理学家卡尔。高斯发展了微分几何 1830,英国数学家乔治。皮考克在他的《代数论》中首 次提出了数字法则 1837,法国数学家、物理学家西蒙。泊松发现了泊松分 布曲线,一种在统计研究中非常重要的标准分布曲线 1843,爱尔兰数学家威廉。哈密顿修改了四元法,复数 第不能交替的。 1847,英国数学家奥古斯都。德。摩根提出了德。摩根 定律,为逻辑学奠定了基础 1851,法国数学家约瑟夫。刘维尔发表了著作,确认了 超越数的存在(不是代数概念里的数) 1854,英国数学家乔治。布尔引入了布尔代数概念 1854,德国数学家伯纳德。黎曼形成了非欧几德几何 学,后来这个理论又应用于相对论 1872,德国数学家理查德。戴德金发表了他的无理数理 1873,法国数学家查尔斯。赫密特证明了e(自然对数 的底数)是超级数(代数中无法用等式表现的无理数 1873,黄精数学家威廉。申克斯将π计算到小数点后
【学科起源】世界数学历史发展简介(原版)

公元499年 公元5约公元625年
第【1】页
【学科起源】世界数学历史发展简介
公元628年 公元656年 公元820年 约公元870年 公元960~公元1279年 约公元1050年 公元1100年 公元1150年 公元1202年 公元1247年 公元1248年 约公元1250年 公元1279~公元1368年 公元1303年 公元1325年 公元14世纪 约公元1360年 公元1368~公元1644年 公元1427年 公元1464年 公元1482年 公元1489年 公元1545年 公元1572年 公元1585年 公元1591年 公元1592年 公元1606年 公元1614年 公元1615年 公元1629年 公元1635年 公元1637年 公元1639年 公元1640年 公元1642年 公元1644~公元1911年 公元1655年 公元1657年 印度婆罗摩笈多著《婆罗摩历算书》,已知圆内接四边形面积计算法,推进了一、二次不定方程的研 究; 中国李淳风等注释十部算经,后通称《算经十书》; 阿拉伯花拉子米著《代数学》,以二次方程求解为主要内容,12世纪该书被译成拉丁文传入欧洲; 印度出现包括零的十进制数码,后传入阿拉伯演变为现今的印度-阿拉伯数码; 宋; 中国贾宪提出二项式系数表(现称贾宪三角和增乘开方法); 阿拉伯奥马· 海亚姆首创用两条圆锥曲线的交点来表示三次方程的根; 印度婆什迦罗II著《婆什迦罗文集》为中世纪印度数学的代表作,其中给出二元不定方程x⒉=1+py⒉若干 特解,对负数有所认识,并使用了无理数; 意大利斐波那契著《算盘书》,向欧洲人系统地介绍了印度-阿拉伯数码及整数、分数的各种算法; 中国秦九韶著《数书九章》,创立解一次同余式的大衍求一术和求高次方程数值解的正负开方术,相 当于西方的霍纳法(1819); 中国李冶著《测圆海镜》,是中国现存第一本系统论述天元术的著作; 阿拉伯纳西尔丁· 图西开始使三角学脱离天文学而独立,将欧几里得《几何原本》译为阿拉伯文; 元; 中国朱世杰著《四元玉鉴》,将天元术推广为四元术,研究高阶等差数列求和问题; 英国布雷德沃丁将正切、余切引入三角计算; 珠算在中国普及; 法国奥尔斯姆撰《比例算法》,引入分指数概念,又在《论图线》等著作中研究变化与变化率,创图 线原理,即用经、纬度(相当于横、纵坐标)表示点的位置并进而讨论函数图像; 明; 阿拉伯卡西著《算术之钥》,系统论述算术、代数的原理、方法,并在《圆周论》中求出圆周率17位 准确数字; 德国雷格蒙塔努斯著《论一般三角形》,为欧洲第一本系统的三角学著作,其中出现正弦定律; 欧几里得《几何原本》(拉丁文译本)首次印刷出版; 捷克韦德曼最早使用符号+、-表示加、减运算; 意大利卡尔达诺的《大术》出版,载述了费罗(1515)、塔尔塔利亚(1535)的三次方程解法和费拉里(1544) 的四次方程解法; 意大利邦贝利的《代数学》出版,指出对于三次方程的不可约情形,通过虚数运算必可得三个实根, 给出初步的虚数理论; 荷兰斯蒂文创设十进分数(小数)的记法; 法国韦达著《分析方法入门》,引入大量代数符号,改良三、四次方程解法,指出根与系数的关系, 为符号代数学的奠基者; 中国程大位写成《直指算法统宗》,详述算盘的用法,载有大量运算口诀,该书明末传入日本、朝 鲜; 中国徐光启和利玛窦合作将欧几里得《几何原本》前六卷译为中文; 英国纳皮尔创立对数理论; 德国开普勒著《酒桶新立体几何》,有求酒桶体积的方法,是阿基米德求积方法向近代积分法的过 渡; 荷兰吉拉尔最早提出代数基本定理; 法国费马已得解析几何学要旨,并掌握求极大极小值方法; 意大利卡瓦列里建立“不可分量原理”; 法国笛卡儿的《几何学》出版,创立解析几何学; 法国费马提出“费马大定理”; 法国德扎格著《试论处理圆锥与平面相交情况初稿》,为射影几何先驱; 法国帕斯卡发表《圆锥曲线论》; 法国帕斯卡发明加减法机械计算机; 清(1661~1796史称康乾盛世); 英国沃利斯著《无穷算术》,导入无穷级数与无穷乘积,首创无穷大符号∞; 荷兰惠更斯著《论骰子游戏的推理》,引入数学期望概念,是概率论的早期著作。在此以前帕斯卡、 费马等已由处理赌博问题而开始考虑概率理论;
数学的发展历史概述

数学的发展历史概述数学作为一门古老而又重要的学科,经历了悠久的发展历程。
本文将从古代数学的起源开始,逐步介绍数学的发展历史,并重点关注数学在不同时期的重要贡献和突破。
1. 古代数学的起源数学的起源可以追溯到古代文明时期,最早的数学发展可以追溯到公元前3000年的古埃及和美索不达米亚。
古埃及人和美索不达米亚人使用数学来解决土地测量、建筑和贸易等实际问题。
他们发展了一些基本的数学概念,如整数、分数和几何图形。
2. 古希腊数学的兴起古希腊是数学发展的重要时期,著名的数学家包括毕达哥拉斯、欧几里得和阿基米德等。
毕达哥拉斯学派提出了许多重要的数学理论,如毕达哥拉斯定理和数学证明方法。
欧几里得的《几何原本》成为了古代数学的经典著作,其中包含了许多几何学的基本原理和证明方法。
阿基米德则在数学物理方面做出了重要贡献,他发明了浮力定律,并使用数学方法解决了许多物理问题。
3. 中世纪数学的发展在中世纪,数学的发展受到了宗教和哲学的限制,但仍有一些重要的数学成果。
阿拉伯数学家阿尔-花拉子米在其著作《算法的归纳和检验》中介绍了代数学的基本概念和方法。
同时,印度数学家布拉马叶在其著作《布拉马叶算法》中介绍了二次方程的解法和无穷级数的概念。
4. 文艺复兴时期的数学革命文艺复兴时期是数学发展的重要时期,数学家们开始对古代数学进行重新研究,并开展了许多新的数学研究。
意大利数学家费马提出了费马定理,这是数论中的一个重要问题。
法国数学家笛卡尔发明了解析几何,将代数和几何联系起来。
同时,牛顿和莱布尼茨发明了微积分,为物理学和工程学的发展提供了重要工具。
5. 现代数学的发展19世纪和20世纪是现代数学发展的时期,数学的各个分支得到了快速发展。
代数学、几何学、数论、概率论等领域都取得了重要的成果。
著名数学家高斯、黎曼、庞加莱等人在各自领域做出了重要贡献。
同时,数学的应用也得到了广泛的发展,如在物理学、经济学和计算机科学等领域的应用。
总结起来,数学的发展历史可以追溯到古代文明时期,经过古希腊、中世纪、文艺复兴和现代数学的发展阶段。
数学发展史

数学发展简史数学发展史大致可以分为四个阶段:一、数学起源时期二、初等数学时期三、近代数学时期四、现代数学时期一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。
数学起源于四个“河谷文明”地域:非洲的尼罗河;这个区域主要是埃及王国:采用10进制,只有加法。
埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。
西亚的底格里斯河与幼发拉底河;这个区域主要是巴比伦:采用10进制,并发明了60进制。
巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。
中南亚的印度河与恒河;东亚的黄河与长江在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
人类现在主要采用十进制,与“人的手指共有十个”有关。
而记数也是伴随着计数的发展而发展的。
四个“河谷文明”地域的记数归纳如下:刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。
古埃及的象形数字出现在约公元前3400年;巴比伦的楔形数字出现在约公元前2400年;中国的甲骨文数字出现在约公元前1600年。
古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。
二、初等数学时期(前6世纪——公元16世纪)这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成现在中学数学的主要内容。
这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。
下面我们分别介绍:1.古希腊(前6世纪——公元6世纪)毕达哥拉斯——“万物皆数”欧几里得——几何《原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之:出入相补原理,割圆术,算术。
数学的发展历史

开创写下了不可磨灭的一章
阿基米德的墓碑上刻的图
此后是千余年的停滞
• 随着希腊科学的终结,在欧洲出现了科学萧条,数学 发展的中心移到了印度、中亚细亚和阿拉伯国 家.在这些地方从5世纪到15世纪的一千年中间, 数学主要由于计算的需要而发展.印度人发明了 现代记数法 后来传到阿拉伯,从发掘出的材料看, 中国是使用十进制最早的国家 ,引进了负数.
的大小关系,平行线理论,三角形和多角形等积 面积相等 的条件,第一卷最 后两个命题是 毕达哥拉斯定理的正逆定理;
第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、 13命题相当于余弦定理。
第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为 是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十 卷是篇幅最大的一卷,主要讨论无理量 与给定的量不可通约的量 ,其中第 一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容.
学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾 股数”及二次方程求解的记录。
莱茵德纸草书 1650 B.C.
莫斯科纸草书 vh(a2 abb2)
3
古巴比伦的“记事泥板”中关于 “整勾股数”的记载”
约公元前1000年
马其顿,1988年
20世纪在两河流域有约50万块泥版文 书出土,其中300多块与数学有关
秦九韶的《数书九章》 卷一“大衍总数术”
“贾宪三角”, 也称“杨辉三角”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
埃舍尔的镶嵌图形
埃舍尔的“迷惑的图画”
埃舍尔“迷惑的图画”
瀑布
1961
埃舍尔“迷惑的图画”
现实 1953
对称是人类文明开始的形态
对称是人类文明开始的形态
三星堆和金沙遗址出土的“太阳”器,圆形对称。
对称
庄重、稳定、平衡
对称布局会突出和加强中轴线
THANK YOU
谢 谢 观 看
同,叫做半正镶嵌图。半正镶嵌图有8种。
4+6
3 + 12
4 + 6 + 12
3+4+6
3+6
3+6
3+4
3+4
伊斯兰清真寺装饰图案馆
三角形镶嵌
旧金山圣玛丽教堂
张拉膜结构
美国丹佛机场候机楼
慕尼黑奥林匹克体育场
慕尼黑奥林匹克体育场张拉膜结构
张拉膜结构常用肥皂膜来比拟。
埃舍尔的几何艺术
摩里茨·科奈里斯·埃舍尔 M.C.Escher (1898-1972) 荷兰艺术家。 1922年毕业于Arnhem(阿纳姆) 建筑与装饰艺术学院,建筑专 业。 埃舍尔把自己称为一个“图形 艺术家”。
埃舍尔的镶嵌图形
埃舍尔的镶嵌图形
埃舍尔的镶嵌图形
圆之界限 1959
方之界限 1959
建筑与数学
几何图形
高层建筑体型再复杂,楼层都必须是水平的。确定水平与垂直, 至今仍是建筑行业建造活动中最基本和最重要的工作。
迪拜“舞蹈大楼”
扎哈
阿布扎比 “首都之门”
多伦多“梦露大厦” 马岩松
镶嵌图形
通过“拉伸”或“压扁”,等腰三角形、长方形、扁六边形,也能以单一个体无间隙镶嵌。
用不同的正多边形来拼铺整个平面,但每一个交叉点周围的正多边形种类和顺序都相