2020年高考文科数学全国卷2附答案解析版

合集下载

2020年高考文科数学全国卷2-答案

2020年高考文科数学全国卷2-答案

2020年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学答案解析一、选择题1.【答案】D【解析】解绝对值不等式化简集合A B ,的表示,再根据集合交集的定义进行求解即可. 因为{}{}321012A x x x Z =<∈=--,,,,,,{}{}111B x x x Z x x x x Z =>∈=><-∈,或,, 所以{}22A B =-,.故选:D .【考点】绝对值不等式的解法,集合交集的定义2.【答案】A【解析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.()()()()2422221i [1i ]12i i 2i 4-=-=-+=-=- 故选:A .【考点】复数的乘方运算性质3.【答案】C【解析】根据原位大三和弦满足34k j j i -=-=,,原位小三和弦满足43k j j i -=-=,,从1i =开始,利用列举法即可解出.根据题意可知,原位大三和弦满足:34k j j i -=-=,.∴158i j k ===,,;269i j k ===,,;3710i j k ===,,;4811i j k ===,,;5912i j k ===,,.原位小三和弦满足:43k j j i -=-=,.∴148i j k ===,,;259i j k ===,,;3610i j k ===,,;4711i j k ===,,;5812i j k ===,,.故个数之和为10.故选:C .【考点】列举法的应用4.【答案】B【解析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为50016001200900+-=, 故需要志愿者9001850=名. 故选:B【考点】函数模型的简单应用5.【答案】D【解析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可. 由已知可得:11cos601122a b a b ︒==⨯⨯=. A :因为215(2)221022a b b a b b +=+=+⨯=≠,所以本选项不符合题意; B :因为21(2)221202a b b a b b +=+=⨯+=≠,所以本选项不符合题意; C :因213(2)221022a b b a b b -=-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -=-=⨯-=,所以本选项符合题意. 故选:D .【考点】平面向量数量积的定义和运算性质,两平面向量数量积为零则这两个平面向量互相垂直6.【答案】B【解析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.设等比数列的公比为q ,由53641224a a a a -=-=,可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)12221112n nn n n n n a q a a q S q ----=====---,, 因此1121222n n n n n S a ---==-. 故选:B .【考点】等比数列的通项公式的基本量计算,等比数列前n 项和公式的应用7.【答案】C【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值.模拟程序的运行过程0,0k a ==第1次循环,2011011a k =⨯+==+=,,210>为否第2次循环,2113112a k =⨯+==+=,,310>为否第3次循环,2317213a k =⨯+==+=,,710>为否第4次循环,27115314a k =⨯+==+=,,1510>为是退出循环输出4k =.故选:C .【考点】求循环框图的输出值8.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为()0a a a >,,,可得圆的半径为a ,写出圆的标准方程,利用点()21,在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.由于圆上的点()21,在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()11,或()55,,圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=.故选:B .【考点】圆心到直线距离的计算9.【答案】B 【解析】因为2222:1(00)x y C a b a b-=>,>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE △的面积为8,可得ab 值,根据2c =结合均值不等式,即可求得答案.2222:1(00)x y C a b a b-=>,> ∴双曲线的渐近线方程是b y x a=± 直线x a =与双曲线()2222:100x y C a b a b-=>>,的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x a b y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b , 联立x a b y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -,∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△ 双曲线()2222:100x y C a b a b-=>>, ∴其焦距为28c ==当且仅当a b ==∴C 的焦距的最小值:8故选:B .【考点】求双曲线焦距的最值问题10.【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在()0+∞,上单调递增,在()0-∞,上单调递增, 而331y x x-==在()0+∞,上单调递减,在()0-∞,上单调递减, 所以函数()331f x x x =-在()0+∞,上单调递增,在()0-∞,上单调递增. 故选:A .【考点】利用函数的解析式研究函数的性质11.【答案】C【解析】根据球O 的表面积和ABC △的面积可求得球O 的半径R 和ABC △外接圆半径r ,由球的性质可知所求距离d =.设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △的等边三角形,212a ∴,解得:3a =,2233r ∴=∴球心O 到平面ABC 的距离1d ===.故选:C .【考点】球的相关问题的求解12.【答案】A【解析】将不等式变为2323x x y y ----<,根据()23t t f t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2233x y x y ----<得:2323x x y y ----<,令()23t t f t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误; x y -与1的大小不确定,故CD 无法确定.故选:A .【考点】对数式的大小的判断问题二、填空题 13.【答案】19【解析】直接利用余弦的二倍角公式进行运算求解即可.22281cos212sin 12()1399x x =-=-⨯-=-=. 故答案为:19. 【考点】余弦的二倍角公式的应用14.【答案】25【解析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案.{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-=可得1152a d a d +++=即:()2252d d -++-+=整理可得:66d =解得:1d = 根据等差数列前n 项和公式:*1(1)2n n n S na d n N -=+∈, 可得:()1010(101)1022045252S ⨯-=-+=-+= ∴1025S =.故答案为:25.【考点】求等差数列的前n 项和15.【答案】8【解析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x =-,在平面区域内找到一点使得直线1122y x z =-+在纵轴上的截距最大,求出点的坐标代入目标函数中即可. 不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大, 此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩, 因此2z x y =+的最大值为:2238+⨯=.故答案为:8.【考点】线性规划的应用,数形结合思想16.【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【考点】空间中线面关系有关命题真假的判断三、解答题17.【答案】(1)3A π=(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【解析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出; 因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)根据余弦定理可得222b c a bc +-=,将b c -=代入可找到a b c ,,关系, 再根据勾股定理或正弦定理即可证出. 因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【考点】诱导公式和平方关系的应用18.【答案】(1)12000(2)0.94(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【解析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可; 样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=;(2)利用公式20()()i i x x y y r --=∑ 样本()i i x y ,的相关系数为20()()0.943i i x x y y r --===≈∑ (3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样. 由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样 先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取19.【答案】(1)12(2)1C :2211612x y +=,2C :28y x =.【解析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设A C ,在第一象限,运用代入法求出A B C D ,,,点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可; 解:(1)因为椭圆1C 的右焦点坐标为:()c 0F ,,所以抛物线2C 的方程为24y cx =,其中c = 不妨设A C ,在第一象限,因为椭圆1C 的方程为:22221x y a b+=, 所以当x c =时,有222221c y b y a b a +=⇒=±,因此A B ,的纵坐标分别为2b a ,2b a-; 又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⇒=±,所以C D ,的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =. 由4||||3CD AB =得2843b c a =,即2322c c a a ⎛⎫=- ⎪⎝⎭,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为ABC △,(20)c -,,(0),(0),,2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =. 【考点】椭圆的离心率,椭圆和抛物线的标准方程,椭圆的四个顶点的坐标,抛物线的准线方程 20.【答案】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)24【解析】(1)由M N ,分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1//MN AA ,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN平面11EB C F NP = //AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心. ∴1111sin606sin60333ON AC ==⨯⨯=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F 平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC △中EF AP BC AM = 即323AP BC EF AM ⨯=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⨯=四边形 111113B EBC F EB C F V S h -∴=四边形,h 为M 到PN 的距离sin 603MH ==,∴1243243V =⨯⨯=.【考点】证明线线平行和面面垂直,求四棱锥的体积21.【答案】(1)1c -≥;(2)()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间 【解析】(1)不等式()2f x x c +≤转化为()20f x x c --≤,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;函数()f x 的定义域为:()0+∞,()()()2202ln 120f x x c f x x c x x c +⇒--⇒+--*≤≤≤,设()()2ln 120h x x x c x =+-->,则有()()2122x h x x x-'=-=, 当1x >时,()()0h x x h '<,单调递减,当01x <<时,()()0h x h x '>,单调递增, 所以当1x =时,函数()h x 有最大值,即()()max 12ln11211h c x h c ==+-⨯-=--,要想不等式()*在()0+∞,上恒成立, 只需()max 0101h x c c ⇒--⇒-≤≤≥;(2)对函数()g x 求导,把导函数()g x '分子构成一个新函数()m x ,再求导得到()m x ',根据()m x '的正负,判断()m x 的单调性,进而确定()g x '的正负性,最后求出函数()g x 的单调性.()()()()2ln 12ln 12ln ln 0x a x a g x x a x ax x a +---==≠-->且 因此()()()22ln ln x a x x x a g x a x x --+'=-,设()()2ln ln m x x a x x x a =--+,则有()()2ln ln m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间. 【考点】利用导数研究不等式恒成立问题,利用导数判断含参函数的单调性22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 的【解析】(1)分别消去参数θ和t 即可得到所求普通方程;由22cos sin 1θθ+=得1C 的普通方程为:4x y +=; 由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =, ∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 【考点】极坐标与参数方程的综合应用问题23.【答案】(1)31122x x x ⎧⎫⎨⎬⎩⎭≤或≥ (2)(][),13,-∞-+∞【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为31122x x x ⎧⎫⎨⎬⎩⎭≤或≥. (2)利用绝对值三角不等式可得到()()21f x a -≥,由此构造不等式求得结果.()()()()22222121211f x x a x a x a x a a a a =-+-+---+=-+-=-≥(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a -≤或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值的问题。

2020年高考全国II卷文科数学试题(含解析)

2020年高考全国II卷文科数学试题(含解析)

2020年全国统一高考数学试卷(文科)(全国新课标II )一、选择题1.已知集合{||3,}A x x x Z =<∈,{||1,}B x x x Z =>∈,则A B ⋂= ( )A.∅B.{3,2,2,3}--C.{2,0,2}-D.{2,2}-【答案】D【解析】{|1||3,}{2,2}A B x x x Z ⋂=<<∈=-,故选D . 2.4(1)i -= ( )A.4-B.4C.4i -D.4i【答案】A【解析】42(1)(2)4i i -=-=-,故选A .3.如图,将钢琴上的12个键依次记为1212,,...,a a a ,设112i j k ≤<<≤.若3k j -=且4j i -=,则称,,i j k a a a 为原位大三和弦;若4k j -=且3j i -=,则称,,i j k a a a 为原位小三和弦,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 ( )A. 5B. 8C.10D. 15【答案】C【解析】原位大三和弦:1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =共5个;原位小三和弦:1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =共5个;总计10个.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( )A.10名B.18名C.24名D.32名【答案】B【解析】积压500份订单未配货,次日产生新订单超过1600份的概率为0.05,其中1200份不需要志愿者配货,志愿者只需负责400份配货,也就是需要志愿者配货的为900份,故需要18名志愿者.5.已知单位向量a ,b 的夹角为60︒,则在下列向量中, 与b 垂直的是 ( )A.2a b +B.2a b +C.2a b -D.2a b -【答案】D【解析】21(2)2211102a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D . 6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a = ( )A.21n- B.122n--C.122n -- D.121n--【答案】 B 【解析】设等比数列{}n a 的通项公式为11n n a a q -=,根据5312a a -=,6424a a -=.解得11a =,2q =,故12n n a -=,122112nn n S -==--,可得122n n n S a -=- ,故选B .7.执行右面的程序框图,若输入0k =,0a =,则输出的k 为 ( )A.2B.3C.4D.5【答案】C【解析】当0k =,0a =运行后:1a =,1k =,再次运行后: 3a =,2k =,再次运行后: 7a =,3k =,再次运行后:15a =,4k =,此时达到输出条件,所以输出4k =,故选C .8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )A.5B.5C.5D.5【答案】B【解析】依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --==标为(5,5)时,其到直线230x y --==,综上,可知B 正确. 9.设O 为坐标原点,直线x a =与双曲线22221(0,0)x ya b a b-=>>的两边渐近线分别交于D ,E 两点.若ODE ∆的面积为8,则C 的焦距的最小值为( )A.4B.8C.16D.32【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==立,所以min 4c =,焦距min (2)8c =. 10.设函数331()f x x x=-,则()f x ( )A.是奇函数,且在(0,)+∞单调递增B.是奇函数,且在(0,)+∞单调递减C.是偶函数,且在(0,)+∞单调递增D.是偶函数,且在(0,)+∞单调递减【答案】A【解析】因为331()f x x x=-,所以()333311()()()0f x f x x x x x +-=-+--=-,所以函数()f x 是奇函数.又因为331()f x x x =-由函数31y x =(为(0,)+∞增函数)加上函数231y x =-(为(0,)+∞增函数)得到,所以函数331()f x x x =-为(0,)+∞增函数,故选A . 判断单调性时也可以这样处理:因为当(0,)x ∈+∞,243()30f x x x '=+>,所以()f x 在(0,)+∞上是单调递增的.11.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 ( )B.32C.1【答案】C【解析】2ABC S AB ∆==3AB =.设球O 的半径为R ,则2416R ππ=,解得2R =.设O 在ABC ∆内的射影为'O ,'O 是ABC ∆的重心,故2'3O A ==O 到平面ABC 的距离1h ==,故选C .12. 若2233x y x y ---<-,则( )A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln ||0x y ->D.ln ||0x y -<【答案】A【解析】11223323232233xyxy x x y y x y x y -----<-⇒-<-⇒-<-.设1()23xx f x =-,已知()f x 是定义在R 上的增函数,故由112233xyx y -<-可得x y <,所以011y x y x ->⇒-+>,从而ln(1)0y x -+>,故选A .二、填空题 13.若2sin 3x =-,则cos2x = . 【答案】19【解析】22281cos 212sin 12()1399x x =-=--=-=. 14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =______. 【答案】25【解析】由262a a +=,可得1152a d a d +++=,因为12a =-,可求出1d =,由数列的前n 项和公式得1010(101)21012045252S ⨯-=-⨯+⨯=-+=. 15.若x ,y 满足约束条件1121x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是_______.【答案】8【解析】方法一:如图当2x =,3y =时,max 8z =.方法二:联立11x y x y +=-⎧⎨-=-⎩,得(1,0)-,联立121x y x y +=-⎧⎨-=⎩,得(0,1)-,联立121x y x y -=-⎧⎨-=⎩,得(2,3),代入验证可得当2x =,3y =时,max 8z =. 16.设有下列四个命题:1:p 两两相交且不过同一点的三条直线必在同一平面内.2:p 过空间中任意三点有且仅有一个平面. 3:p 若空间两条直线不相交,则这两条直线平行. 4:p 若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下列命题中所有真命题的序号是 . ①14p p ∧ ②21p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 【答案】①③④【解析】对于1:p 可设1l 与2l 相交,所得平面为α.若3l 与1l 相交,则交点A 必在α内,同理,3l 与2l 交点B 也在α内,故AB 直线在α内,即3l 在α内,故1p 为真命题. 对于2:p 过空间中任意三点,若三点共线,可形成无数多平面,故2p 为假命题. 对于3:p 空间中两条直线的位置关系有相交、平行、异面,故3p 为假命题. 对于4:p 若m ⊥平面α,则m 垂直于平面α内的所有直线,故m l ⊥,故4p 为真命题.综上可知:14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题,故正确的有:①③④.三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)3b c a -=,证明:ABC ∆是直角三角形. 【解析】(1)由25cos ()cos 24A A π++=可得:25sin cos 4A A +=,2214cos 4cos 10(2cos 1)0cos 2A A A A -+=⇒-=⇒=,∵(0,)A π∈,∴3A π=.(2)解法1:由b c -=可得)a b c =-,又2221cos 22b c a A bc +-==,即222b c a bc +-=,∴2223()b c b c bc +--=,(2)(2)0b c b c ⇒--=,∴2b c =或2c b=(舍),∴a =,即222a c b +=,故三角形为直角三角形.解法2:因为b c -=,由正弦定理得1sin sin 2B C A -==,由于A B C π++=,于是1sin()sin 32C C π+-=,又因为1sin()sin sin sin 32C C C C C π+-=+-1sin sin()23C C C π=-=-,又因为(,)333C πππ-∈-,于是36C ππ-=,6C π=,所以()2B AC ππ=-+=,故三角形为直角三角形.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,1,2(,...,0)2)(i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160ii x==∑,2011200i i y ==∑,2021()80ii x x =-=∑,2021()9000i i y y =-=∑,201()()800i i i x x y y =--=∑,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本,1,2(,...,0)2)(i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:()()niix x y y r --=∑1.414≈【解析】(1) 由题意可知,1个样区这种野生动物数量的平均数12006020==,故这种野生动物数量的估计值6020012000=⨯=;(2)由参考公式得()()0.94niix x yy r --===≈∑;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C 、D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程.【解析】(1)由题意知:222242232b p a p c a b c ⎧=⋅⎪⎪⎪=⎨⎪=+⎪⎪⎩,∴ 24243b c a =⋅,∴ 2232()ac a c =-,即222320c ac a +-=,∴22320e e +-=,∴12e =或2e =-,∵01e <<,即1C 的离心率为12. (2)设1C 的四个顶点到2C 的准线距离为1d ,2d ,3d ,4d ,则:∵123422d a c d a c p d c p d c =-⎧⎪=+⎪⎪⎨==⎪⎪==⎪⎩,又∵ 123412d d d d +++=∴122a c a c c c pc -++++=⎧⎪⎨=⎪⎩ ∴6a c += ∵12c a = ∴26c c +=∴216a =,24c =,24p c == ∴212b =∴221:11612x y C +=,22:8C y x =.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F (1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C ∆的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.【解析】(1)证明∵M ,N 分别为BC ,11B C 的中点,底面为正三角形,∴1B N BM =,四边形1BB NM 为矩形,∴1//BB MN ,而11//AA BB ,∴1//AA MN ,可得1,,,A A M N 共面,由四边形1BB NM 为矩形,得11MN B C ⊥,由11B N NC =,得111A N B C ⊥,又1MN A N N ⋂=,得11B C ⊥面1A AMN ,11B C ⊂面11EB C F ∴面1A AMN ⊥面11EB C F ;(2)因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA平面11EB C F NP =,所以//AO NP ,又因为//NO AP ,所以四边形AONP 为平行四边形,6AO NP ==,ON AP ==M 做MH 垂直于NP ,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH⊥平面11EB C F,由PM =,6AO =,MN =,得PM MNMH PN⋅==11111()242EB C FS B C EF NP =+⋅=,由//BC 平面11EB C F,所以11111113B EB F M EBC FB C C E F V V S MH --==⋅⋅= 21.已知函数()2ln 1f x x =+,(1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.【解析】(1)()2f x x c ≤+等价于2ln 21x x c -≤-,设()2ln 2h x x x =-,22(1)'()2x h x x x-=-=, 当01x <<时,()0h x '>,所以()h x 在(0,1)上递增, 当1x >时,()0h x '<,所以()h x 在(1,)+∞递减,故max ()(1)2h x h ==-,所以12c -≥-.即1c ≥-,所以c 的取值范围是[1,)-+∞; (2)2(ln ln )()(0,,0)x a g x x x a a x a-=>≠>-,所以2222()2ln 2ln 2ln 2ln 2'()()()a x a x a x a x x g x x a x a --+--++==--,令2()2ln 2ln 2(0)a w x x a x x =--++>,则22222()'()a a x w x x x x -=-=, 令'()0w x >得0x a <<,'()0w x <得x a >,所以()w x 在(0,)a 上单调递增,在(,)a +∞上单调递减,所以,()()0w x w a ≤=,即'()0g x <,所以,()g x 在(0,)a 和(,)a +∞上单调递减.四、选做题22.已知1C ,2C 的参数方程分别为2124cos :4sin x C y θθ⎧=⎨=⎩,(θ为参数),21:1x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数)(1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由题:1C 的普通方程为:40x y +-=,(0,0)x y ≥≥; 因为222222212:12x t t C y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,故2C 的普通方程为:224x y -=;联立1C ,2C ,22404x y x y +-=⎧⎨-=⎩解得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P 坐标为:53(,)22P ,设以设所求圆圆心为(,0)Q a ,半径为a ,故圆心(,0)Q a 到53(,)22P 的距离a =,得1710a =,所以圆Q 的圆心为17(,0)10Q ,半径为1710,圆Q 的直角坐标方程为:2221717()1010()x y -+=,即221705x y x +-=,所以所求圆的极坐标方程为:17cos 5ρθ=.23.已知函数2()|||21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【解析】当2a =时,()|4||3|f x x x =-+-,即 ()27,31,3427,4x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩所以()4f x ≥的解集为32x ≤或112x ≥. (2)222()|||21||(21)||(1)|f x x a x a x a x a a =-+-+≥---+=-,又()4f x ≥,所以2|(1)|4a -≥,则3a ≥或1a ≤-.。

2020年全国卷二文科数学高考试题(word版+详细解析版)

2020年全国卷二文科数学高考试题(word版+详细解析版)

绝密★启用前2020年普通高等学校招生全国统一考试全国卷二文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑。

如需改动,用橡皮擦干净后,在选涂其它答案标号框。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{||3,}A x x x =<∈Z ,{||1,}B x x x =>∈Z ,则A B =A .∅B .{3223}--,,, C .{202}-,, D .{22}-, 答案:D解析:{2,1,0,1,2}A =--,集合A 中满足绝对值大于1的只有-2,2两个元素,故{22}AB =-,,故选D2.4(1i)-=A .–4B .4C .–4iD .4i答案:A解析:因为2(1i)2i -=-,所以4222(1i)[(1i)](2i)4-=-=-=-,故选A3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A .5B .8C .10D .15答案:C解析:由原位大三和弦的定义知,7k i -=,故i 可取1,2,3,4,5,共有5个,所以原位大三和弦共有5个,同理原位小三和弦也有5个,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为10,故选C4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A .10名B .18名C .24名D .32名答案:B解析:预计需要志愿者完成超过500+1600-1200=900份的概率为0.05,则需要志愿者完成不超过900份的概率为0.95,9005018÷=,故至少需要18名志愿者,故选B5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A .a +2bB .2a +bC .a –2bD .2a –b答案:D解析:因为单位向量a ,b 的夹角为60°,所以1||||cos602⋅=︒=a b a b . 215(2)2222+⋅=⋅+⨯=+=a b b a b b ,213(2)2222-⋅=⋅-⨯=-=-a b b a b b ,2(2)2112+⋅=⋅+=+=a b b a b b ,2(2)2110-⋅=⋅-=-=a b b a b b ,所以与b 垂直的是2a –b .故选D 6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =。

2020年高考文科数学(2卷):答案详细解析(最新版)

2020年高考文科数学(2卷):答案详细解析(最新版)

2020年普通高等学校招生全国统一考试文科数学(II 卷)答案详解一、选择题1.(集合)已知集合A ={}3,x x x Z <∈,B ={}1,x x x Z >∈,则A B = A. ∅B. {}3,2,2,3--C. {}2,0,2-D. {}2,2-【解析】∵{}2,1,0,1,2A x =--,∴{2,2}A B =-. 【答案】D2. (复数)41i -=() A.-4 B.4C.-4iD.4i【解析】[]224221(1)244i i i i ⎡⎤=-=-=-⎣⎦-=(). 【答案】A3.(概率统计)如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.15【解析】原位大三和弦:1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===;共5个. 原位小三和弦:1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===;共5个. 总计10个.【答案】C4. (概率统计)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B5.(平面向量)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是 A.2a b +B.2a b +C.2a b -D.2a b -【解析】解法一(待定系数法):设()ma nb b +⊥,则有21()02ma nb b ma b nb m n +⋅=⋅+=+=,即2m n =-,故选D.解法二:2o(2)2211cos6010a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D.特殊法:如图A5所示,画单位圆,作出四个选项的向量,只有2a b -与b 垂直.图A5【答案】D6.(数列)记n S 为等比数列{n a }的前n 项和. 若5a -3a =12, 6a -4a =24,则nnS a =A .21n -B .122n --C. 122n --D .121n --【解析】设{}n a 的公比为q ,∵6453()1224a a a a q q -=-==,∴ 2q =,∵22253311(1)(1)1212a a a q a q q a -=-=-==,∴ 11a =,∴111111(1)2111=22222n n n n n n n n a q S q a a q -------==-=- . 【答案】B7. (算法框图)执行右面的程序框图,若输入的k =0,a =0,则输出的k 为 A. 2B. 3C. 4D. 5【解析】① 输入00k a ==,,得211a a =+=,11k k =+=,10a >否,继续;② 输入11k a ==,,得213a a =+=,12k k =+=,10a >否,继续; ③ 输入23k a ==,,得217a a =+=,13k k =+=,10a >否,继续; ④ 输入37k a ==,,得2115a a =+=,14k k =+=,10a>是,程序退出循环,此时4k =.【答案】C8. (解析几何)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 A .5 B. 25 C. 35 D. 45【解析】如图A8所示,设圆的方程为222()()x a y b r -+-=,∵ 圆过点(2, 1)且与两坐标轴都相切,∵ 222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===, 即圆心坐标为(1,1)或(5,5), 圆心到直线230x y --=22211325521⨯--+或22255325=521⨯--+.图A8【答案】B9.(解析几何)设O 为坐标原点,直线x a =与双曲线C :22221x y a b-=(a >0,b >0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A .4B .8C .16D .32【解析】如图A9所示,双曲线C :22221x y a b -=(a >0,b >0)的渐近线为by x a=±,由题意可知,(,)D a b ,(,)E a b -, ∵ 1282ODE S a b ab ∆=⋅==, ∵ 焦距22226422248c a b a a=+=+≥⨯=,当且仅当22a =时,等号成立. 故C 的焦距的最小值为8.图A9【答案】B10.(函数)设函数331()f x x x=-,则()f x A. 是奇函数,且在(0,+∞)单调递增 B. 是奇函数,且在(0,+∞)单调递减 C. 是偶函数,且在(0,+∞)单调递增 D. 是偶函数,且在(0,+∞)单调递减 【解析】∵333311()()()()f x x x f x x x -=--=-+=--,∴()f x 是奇函数, 243()3f x x x'=+,当x >0,()0f x '>,∵()f x 在(0,+∞)单调递减. 【答案】A11.(立体几何)已知∵ABC 93的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A .3B .32C .1D 3【解析】由题意可知239344ABC S AB ∆==,∴3AB =, 如图A11所示,设球O 的半径为R ,则24π16πR =,∵2R =, 设O 在∵ABC 上的射影为O 1,则O 1是∵ABC 的外接圆的圆心,故1233332O A =⨯=∵ O 到平面ABC 的距离22111OO R O A =-=.图A11【答案】C12. (函数)若2233x y x y ---<-,则 A. ln(1)0y x -+> B. ln(1)0y x -+< C. ln ||0x y ->D. ln ||0x y -<【解析】2233x y x y ---<-可化为2323x x y y ---<-,设1()2323xx xx f x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-, ∵ x y <,∵0y x ->,∵11y x -+>,∵In(1)0y x -+>.【答案】A二、填空题:本题共4小题,每小题5分,共20分。

2020年全国2卷 文科数学真题(pdf版含解析)

2020年全国2卷 文科数学真题(pdf版含解析)

2020年全国2卷文科数学真题(解析版)一、选择题:(每小题5分,共60分.)1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A.∅B.{–3,–2,2,3)C.{–2,0,2}D.{–2,2}【答案】D【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =- .故选:D.考点:集合的运算2.(1–i )4=()A.–4B.4C.–4iD.4i【答案】A 【详解】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.考点:复数的运算3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【答案】C【详解】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===.原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===.故个数之和为10.故选:C .考点:数列的运算4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名 B.18名C.24名D.32名【答案】B【详解】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B考点:统计与概率5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a –2bD.2a –b【答案】D【详解】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯= .A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠ ,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠ ,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠ ,所以本选项不符合题意;D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-= ,所以本选项符合题意.故选:D.考点:向量的运算6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n –1B.2–21–nC.2–2n –1D.21–n –1【答案】B【详解】设公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩,所以1111(1)122,21112n n n n nn n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.故选:B.考点:数列基本量的运算7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为()A.2B.3C.4D.5【答案】C【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程0,0k a ==第1次循环,2011a =⨯+=,011k =+=,210>为否第2次循环,2113a =⨯+=,112k =+=,310>为否第3次循环,2317a =⨯+=,213k =+=,710>为否第4次循环,27115a =⨯+=,314k =+=,1510>为是退出循环输出4k =.故选:C.考点:算法的运算8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为()A.5 B.25 C.355D.55【答案】B【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线230x y --=的距离均为2555d -==;所以,圆心到直线230x y --=的距离为5.故选:B.考点:圆的方程与点线距问题9.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B【详解】 2222:1(0,0)x y C a b a b-=>>∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩故(,)D a b 联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩故(,)E a b -∴||2ED b=∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =当且仅当a b ==取等号∴C 的焦距的最小值:8故选:B.考点:双曲线的性质10.设函数331()f x x x=-,则()f x ()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【答案】A【详解】因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-,所以函数()f x 为奇函数.又因为函数3y x =在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x-==在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数()331f x x x=-在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .考点:函数的奇偶性与单调性11.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.B.32C.1D.2【答案】C【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为21393224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.考点:外接圆与球12.若2233x y x y ---<-,则()A.ln(1)0y x -+>B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.考点:构造新函数,单调性;二、填空题:本题共4小题,每小题5分,共20分.13.若2sin 3x =-,则cos 2x =__________.【答案】19【详解】22281cos 212sin 12()1399x x =-=-⨯-=-=.故答案为:19.考点:三角函数给值求值14.记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.【答案】25【详解】设公差d ,可得1152a d a d +++=整理可得:66d =解得:1d =∴()1010(101)1022045252S ⨯-=-+=-+=故答案为:25.考点:等差数列基本量计算15.若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.【答案】8【详解】不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩,因此2z x y =+的最大值为:2238+⨯=.故答案为:8.考点:线性规划16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.考点:空间点线面的位置关系三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若3b c a -=,证明:△ABC 是直角三角形.【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.考点:解三角形18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i i x x =-=∑(,2021)9000i i y y =-=∑(,201)800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((=1.414.【详解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i i x y的相关系数为20()220.943iix x y y r --=≈∑(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.考点:变量间的相关性19.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2ba-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±,所以,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.考点:椭圆与抛物线20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【详解】(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF=11//B C EF∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMN EF ⊂ 平面11EB C F ∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP=//AO NP ∴又 //NO AP ∴6AO NP == O 为111A B C △的中心.∴1111sin 606sin 6033ON A C =︒=⨯⨯︒=故:ON AP ==,则3AM AP ==,平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F又 在等边ABC 中EF APBC AM=即2AP BC EF AM ⋅===由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN的距离sin 603MH =︒=,∴1243243V =⨯⨯=.考点:立体几何的平行与垂直证明,点面距问题21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.【详解】(1)函数()f x 的定义域为:(0,)+∞()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x-'=-=,当1x >时,()0,()h x h x '<单调递减,当01x <<时,()0,()h x h x '>单调递增,所以当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--,要想不等式()*在(0,)+∞上恒成立,只需max ()0101h x c c ≤⇒--≤⇒≥-;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠因此22(ln ln )()()x a x x x a g x x x a --+'=-,设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.考点:导数中恒成立问题,单调性分类讨论(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.考点:极坐标与参数方程[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式4)(≥x f 的解集;(2)若4)(≥x f ,求a 的取值范围.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .考点:绝对值不等式的解法,绝对值三角不等式。

2020年高考文科数学试题(全国2卷试卷版+解析版)

2020年高考文科数学试题(全国2卷试卷版+解析版)

2020全国2卷高考文科数学试题(试卷版+解析版)
1.已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(A B ⋂=)
A.∅B.{3-,2-,2,3}C.{2-,0,2}D.{2-,2}
2.4(1)(i -=)
A.4-B.4C.4i -D.4i
3.如图,将钢琴上的12个键依次记为1a ,2a ,⋯,12a .设112i j k <<.若3k j -=且4j i -=,则i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()
A.5B.8C.10D.15
4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过。

2020年普通高等学校招生全国统一考试文科数学试卷(全国Ⅱ卷)(含解析)

2020年普通高等学校招生全国统一考试文科数学试卷(全国Ⅱ卷)(含解析)

绝密★启用前 2020年普通高等学校招生全国统一考试 文科数学(全国Ⅱ卷)(含解析)1.答卷前,考生务必将自己的姓名,准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,在选涂其他答案标号。

回答选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}3,x x x Z <∈,B={}1,x x x Z >∈,则A B =A. ∅B. {}3,2,2,3--C. {}2,0,2-D. {}2,2-2. 41i =-()A.-4B.4C.-4iD.4i 3.如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A.2+a bB.2+a bC.2-a bD.2-a b6.记n S 为等比数列{n a }的前n 项和. 若5a -3a =12, 6a -4a =24,则n nS a = A .2n -1 B . 2-2t n - C. 2-n-12 D .t-n 2-17. 执行右面的程序框图,若输入的k=0,a=0,则输出的k 为:A. 2B. 3C. 4D. 58. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .5 B. 25 C. 35 D. 45 9.设O 为坐标原点,直线x a =与双曲线C :2222x 1y a b-=(a>0,b>0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A.4B.8C.16D.3210.设函数331()f x x x=-,则()f x A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.已知△ABC 是面积为93的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A.3B.32C.1D.32 12. 若2233x y x y ---<-,则A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<二、填空题:本题共4小题,每小题5分,共20分。

2020年高考文科数学全国2卷(word版,含答案)

2020年高考文科数学全国2卷(word版,含答案)

1.【ID:4005113】已知集合,,则()A.B.C.D.【答案】D【解析】解:集合,,.故选:D.2.【ID:4005114】()A.B.C.D.【答案】A【解析】解:.故选:A.3.【ID:4005115】如图,将钢琴上的个键依次记为,,,.设.若且,则称,,为原位大三和弦;若且,则称,,为原位小三和弦.用个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.B.C.D.【答案】C【解析】解:若且,则,,为原位大三和弦,即有,,;,,;,,;,,;,,,共个;若且,则,,为原位小三和弦,可得,,;,,;,,;,,;,,,共个,总计个.故选:C.4.【ID:4002671】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压份订单未配货,预计第二天的新订单超过份的概率为.志愿者每人每天能完成份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于,则至少需要志愿者()A. 名B. 名C. 名D. 名【答案】B【解析】解:第二天的新订单超过份的概率为,就按份计算,第二天完成积压订单及当日订单的配货的概率不小于就按份计算,因为公司可以完成配货份订单,则至少需要志愿者为名,故选:B.5.【ID:4005117】已知单位向量,的夹角为,则在下列向量中,与垂直的是()A.B.C.D.【答案】D【解析】解:单位向量,,对于A,,所以与不垂直;对于B,,所以与不垂直;对于C,,所以与不垂直;对于D,,所以与垂直.故选:D.6.【ID:4005118】记为等比数列的前项和,若,,则()A.B.C.D.【答案】B【解析】解:设等比数列的公比为,,,,,,,,,,故选:B.7.【ID:4005119】执行如图的程序框图,若输入的,,则输出的为()A.B.C.D.【答案】C【解析】解:模拟程序的运行,可得,,执行循环体,,;执行循环体,,;执行循环体,,;执行循环体,,;此时,满足判断框内的条件,退出循环,输出的值为.故选:C.8.【ID:4002673】若过点的圆与两坐标轴都相切,则圆心到直线的距离为()A.B.C.D.【答案】B【解析】解:由题意可得所求的圆在第一象限,设圆心为,则半径为,.故圆的方程为,再把点代入,求得或,故要求的圆的方程为或.故所求圆的圆心为或;故圆心到直线的距离或;故选:B.9.【ID:4002676】设为坐标原点,直线与双曲线:的两条渐近线分别交于,两点,若的面积为,则的焦距的最小值为()A.B.C.D.【答案】B【解析】解:由题意可得双曲线的渐近线方程为,分别将,代入可得,即,,则,,当且仅当时取等号,的焦距的最小值为,故选:B.10.【ID:4005120】设函数,则()A. 是奇函数,且在单调递增B. 是奇函数,且在单调递减C. 是偶函数,且在单调递增D. 是偶函数,且在单调递减【答案】A【解析】解:因为,则,即为奇函数,根据幂函数的性质可知,在为增函数,故在为减函数,在为增函数,所以当时,单调递增,故选:A.11.【ID:4002678】已知是面积为的等边三角形,且其顶点都在球的球面上,若球的表面积为,则到平面的距离为()A.B.C.D.【答案】C【解析】解:由题意可知图形如图:是面积为的等边三角形,可得,,可得:,球的表面积为,外接球的半径为:,解得,所以到平面的距离为:.故选:C.12.【ID:4002679】若,则()A.B.C.D.【答案】A【解析】解:由,可得,令,则在上单调递增,且,所以,即,由于,故,故选:A.13.【ID:4005121】若,则________.【答案】【解析】解:,.故答案为:.14.【ID:4005122】记为等差数列的前项和.若,,则________.【答案】【解析】解:因为等差数列中,,,所以,,即,则.故答案为:.15.【ID:4005123】若,满足约束条件,则的最大值是________.【答案】【解析】解:作出不等式组对应的平面区域如图:由得,平移直线由图象可知当直线经过点时,直线的截距最大,此时最大,由,解得,此时,故答案为:.16.【ID:4002684】设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.:过空间中任意三点有且仅有一个平面.:若空间两条直线不相交,则这两条直线平行.:若直线平面,直线平面,则.则下述命题中所有真命题的序号是________.①②③④【答案】①③④【解析】解:设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.根据平面的确定定理可得此命题为真命题,:过空间中任意三点有且仅有一个平面.若三点在一条直线上则有无数平面,此命题为假命题,:若空间两条直线不相交,则这两条直线平行,也有可能异面的情况,此命题为假命题,:若直线平面,直线平面,则.由线面垂直的定义可知,此命题为真命题;由复合命题的真假可判断①为真命题,②为假命题,③为真命题,④为真命题,故真命题的序号是:①③④,故答案为:①③④,17. 的内角,,的对边分别为,,,已知.(1)【ID:4005124】求.【答案】【解析】解:由已知得,即.所以,,由于,故.(2)【ID:4005125】若,证明:是直角三角形.【答案】见解析【解析】解:由正弦定理及已知条件可得.由知,所以,即,.由于,故,从而是直角三角形.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的个地块,从这些地块中用简单随机抽样的方法抽取个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,.(1)【ID:4002687】求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数).【答案】【解析】由已知得样本平均数为,,该地区这种野生动物数量的估计值为.(2)【ID:4002688】求样本的相关系数(精确到).【答案】【解析】.(3)【ID:4002689】根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,.【答案】见解析【解析】分层抽样.根据植被覆盖面积分层再随机抽样.理由:由于植被覆盖面积差异较大,即总体由差异明显的几个部分组成,分层抽样有利于保持样本结构与总体结构的一致性,提高样本代表性.19. 已知椭圆:的右焦点与抛物线的焦点重合,的中心与的顶点重合.过且与轴垂直的直线交于、两点,交于,两点,且.(1)【ID:4005126】求的离心率.【答案】【解析】解:解法一:右焦点与右焦点与重合,设抛物线方程为,则,设抛物线方程为.在椭圆中,当时,,解得:,,在抛物线中,当时,,,又,,①又,②联立①②可得:,解得:或(舍去),的离心率.解法二:由已知可设的方程为,其中.不妨设,在第一象限,由题设得,的纵坐标分别为,;,的纵坐标分别为,,故,.由已知得,即,解得(舍去),,所以的离心率为.(2)【ID:4005127】若的四个顶点到的准线距离之和为,求与的标准方程.【答案】,【解析】解:由知,,故:.所以的四个顶点坐标分别为,,,,的准线方程为.由已知得,即,所以的标准方程为,的标准方程为.20. 如图,已知三棱柱的底面是正三角形,侧面是矩形,,分别为,的中点,为上一点,过和的平面交于,交于.(1)【ID:4005128】证明:,且平面平面.【答案】见解析【解析】解:解法一:三棱柱,故,由矩形,为中点,为中点,.平行四边形,.矩形,.平行四边形,矩形,.等边中,为中点,.,面.又,面.又面,面面.解法二:因为,分别为,的中点,所以,又由已知得,故.因为是正三角形,所以.又,故平面.所以平面平面.(2)【ID:4005129】设为的中心,若,平面,且,求四棱锥的体积.【答案】【解析】解:平面,平面,平面平面,设,又,故四边形是平行四边形,所以,,,,因为平面,所以四棱锥的顶点到底面的距离等于点到底面的距离.作,垂足为,则由知,平面,故.故面的面积为,所以四棱锥的体积为.21. 已知函数.(1)【ID:4005130】若,求的取值范围.【答案】【解析】解:设,则,其定义域为,.当时,;当时,.所以在区间单调递增,在单调递减,从而当时,取得最大值,所以.故当且仅当,即时,.所以的取值范围为.(2)【ID:4005131】设,讨论函数的单调性.【答案】在,单调递减.【解析】解:,,.取得,,则由知,当时,即,故当时,,从而.所以在,单调递减.22. 已知曲线,的参数方程分别为:(为参数),:(为参数).(1)【ID:4002697】将,的参放方程化为普通方程.【答案】:,,,:【解析】解::,,,由的参数方程得,,则:.(2)【ID:4002698】以坐标原点为极点,轴正半轴为极轴建立极坐标系,设,的交点为.求圆心在极轴上,且经过极点和的圆的极坐标方程.【答案】【解析】解:,,,设,,满足题意,则,即,,:,即,极坐标方程为,即.23. 已知函数.(1)【ID:4002699】当时,求不等式的解集.【答案】【解析】当时,,不等式的解集为.(2)【ID:4002700】若,求的取值范围.【答案】【解析】,,当时,等号成立,,,,,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。
数学试卷 第 3 页(共 6 页)
17.(12 分)
△ABC
的内角
A,B,C
的对边分别为a,b,c
,已知cos2
A 2
cos
A
.
5 4
(1)求 A ;
(2)若 b c 3 a ,证明:△ABC 是直角三角形. 3
表面积为16 ,则 O 到平面 ABC 的距离为
3
A. 3
B.
C.1
2
() D. 3
2
12.若 2x 2 y<3x 3 y ,则
A. ln y x 1>0
B. ln y x 1<0
()
C. ln x y>0
D. ln x y<0
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
D.5
8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2 x y 3 0 的距离为( )
5
25
35
A. 5
B. 5
C. 5
x2 y2 9.设 O 为坐标原点,直线 x a 与双曲线C : a2b2
45 D. 5
1( a 0,b 0 )的两条渐近
线分别交于 D , E 两点.若△ODE 的面积为 8,则 C 的焦距的最小值为 ( )
(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以
获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,
并说明理由. 附:相关系数r
n
xi x y i y
i1
n
2n
, 2 1.414 .
量,并计算得
20
20
20
2
20
2
20
xi =60,y i=1200,x - ix =80, y- y =i9 000, x - xy - yi =8i 00.
i =1
i =1
i =1
i =1
i=1
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这
种野生动物数量的平均数乘以地块数); (2)求样本(xi,yi)(i=1,2,,20)的相关系数(精确到 0.01);
18.(12 分)
某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查
该地区某种野生动物的数量,将其分为面积相近的 200 个地块,从这些地块中用简单 随机抽样的方法抽取 20 个作为样区,调查得到样本数据(xi,yi)(i=1,2,,20), 其中 xi 和 yi 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数
毕业学校
姓名
考生号
绝密★启用前

2020 年普通高等学校招生全国统一考试·全国Ⅱ卷
文科数学
注意事项:

1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号
框涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案
13.若 sin x 2 ,则 cos 2x
.
3
14.记 Sn 为等差数列 a n 的前n 项和,若 a 1 2 , a 2 a 6 2 ,则 S 10
.
x y≥1
15.若 x , y 满足约束条件x y≥1, 则 z x 2 y 的最大值是
.
2x y≤1,
16.设有下列四个命题: P1:两两相交且不过同一点的三条直线必在同一 C.2,0,2 D.2,2
2.(1 i)4=
A. 4
B. 4
答 3.如图,将钢琴上的 12 个
键依次记为a1 , a2 ,…,
a12 .设 1≤i<j<k≤12 .
若k j 3且 ji 4,

则称ai , a j , ak 为原位
C. 4i
D. 4i
()
大三和弦;若 k j 4 且 j i 3 ,则称ai , a j , ak 为原位小三和弦.用这 12 个键可以构成的原位大三和弦与原

位小三和弦的个数之和为
A.5
B.8
C.10

D.15
数学试卷 第 1 页(共 6 页)
()
4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成 1 200 份订单的配
货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配 货工作,已知该超市某日积压 500 份订单未配货,预计第二天的新订单超过 1 600 份
写在答题卡上。写在本试卷上无效。 卷
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
上 1.已知集合 A x x 3,x Z , B x x 1,x Z ,则 A B
()
的概率为 0.05.志愿者每人每天能完成 50 份订单的配货,为使第二天完成积压订单及
当日订单的配货的概率不小于 0.95,则至少需要志愿者
()
A.10 名
B.18 名
C.24 名
D.32 名
5.已知单位向量a , b 的夹角为 60°,则在下列向量中,与 b 垂直的是
()
A. a 2b
B. 2a b
P2:过空间中任意三点有且仅有一个平面. P3 :若空间两条直线不相交,则这两条直线平行.
p4 :若 直线l 平面 , 直线m 平面 ,则 m l .
则下述命题中所有真命题的序号是
① p1 p4
② p1 p 2
. ③ p2 p3
④ p3 p4
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考
C.a 2b
D. 2a b
6.记 Sn 为等比数列a n的前n 项和.若 a5 a 3 12 , a 6 a4 24 ,则
Sn ( an
)
A. 2n 1
B.2 21n
C. 2 2n1
D. 21n 1
7.执行右面的程序框图,若输入的k 0 , a 0 ,则输出的k 为
()
A.2
B.3
C.4
A.4
B.8
C.16
D.32
数学试卷 第 2 页(共 6 页)
10.设函数
f (x)
x3
1 ,则 x3
f (x)
A.是奇函数,且在 0,+ 单调递增
B.是奇函数,且在0,+单调递减
C.是偶函数,且在0,+单调递增
D.是偶函数,且在0,+单调递减
()
11.已知△ABC 是面积为 9 3 的等边三角形,且其顶点都在球O 的球面上,若球O 的 4
相关文档
最新文档