风机叶片防冰、除冰方案探讨

合集下载

探究风力发电机叶片的防覆冰技术

探究风力发电机叶片的防覆冰技术

探究风力发电机叶片的防覆冰技术摘要:现今,风力发电已成为我国电能生产的主要方式之一,其不仅具有较强的清洁无污染特性,而且还能有效降低生产成本,提高资源、能源利用率。

但是有些风能发电地区的冬季温度较低,一旦外界环境温差较大,就会导致风力发电机叶片上出现覆冰情况,进而严重影响机组的正常运行,使得风力发电质量和效率大大降低,因此,要想改善现状,就要对风力发电机叶片的防覆冰技术的应用加大研究力度。

本文也会结合风力发电机叶片结冰原因及危害,对相应的防覆冰技术进行着重分析,并提出科学合理的除冰措施,仅供参考。

关键词:风力发电机;叶片覆冰;防控技术;除冰措施在风力发电过程中,机组叶片经常在大雾或冻雨天气下出现明显的覆冰现象,这样就会增加叶片重量,使其在运行过程中出现失稳、失速等不良情况,严重时,还会导致风机变桨控制和偏航控制出现判断失误现象,进而影响到最终的发电质量。

因此,要想避免覆冰情况的发生,就要对风力发电机叶片材质和结构进行全面改进,并采取科学合理的防覆冰和除冰技术,保证机组运行安全,最大化减少发电损失。

1、风机叶片覆冰原因及产生的危害分析1.1覆冰原因由于大部分风能发电地区都处于比较寒冷的地带,而每年11月至次年的2、3月份,这些地区就会出现较多的大雾及冻雨天气,所以这种环境下就会极易导致风机叶片出现覆冰情况,如雾凇、雨凇等结冰情况。

这其中,雾凇是一种霜,其是由密度为0.25 g/cm3白色不透明粒状结构物沉积而成,当风速过大时,冷却水与0℃以下的风机叶片一旦接触,就会在叶片表面形成一层毛玻璃状密度较大的晶状雾凇;反之,若风速不大,且冷却水较少时,也会在风机叶片表面形成粒状雾凇。

由于这类覆冰结构比较密室,所以一旦形成就很难清除和脱落,若是冰层过厚过重势必会导致风机叶片出现弯折或断裂情况。

而雨凇是由超冷却的雨水遇到温度低于0℃的风机叶片时所形成,这种冰透明坚硬,密度大约为0.85g/cm3,一旦形成就会导致整个风机外表面形成一层冰铠甲,并且机组背风面和迎风面的冰层厚度不尽相同[1]。

风机叶片防冰、除冰方案探讨

风机叶片防冰、除冰方案探讨

风机叶片防冰、除冰方案探讨摘要:对于安装在湿度大、高寒地区的风机,其叶片、风速仪等部件容易结冰。

叶片结冰会对风机运行造成极大的危害,该文重点介绍叶片防冰、除冰的措施方案,比较分析各方案的优缺点。

关键词:叶片结冰防冰除冰风能是一种取之不尽、用之不歇的可再生能源。

近年来,风力发电得到世界各国的普遍关注和优先发展,然而丰富的风资源基本上分布高寒地区和湿度大的沿海地带,环境极其恶劣。

风力发电机在低温条件下,若遇到潮湿空气、雨水、冰霜、雪,特别是遇到过冷却水滴时,其部件就会发生冰冻现象。

叶片结冰对风场、机组运行及人员安全都会带来一定的影响[1-3],降低发电效率,增加运行载荷与噪音,甚至危及风机及现场维护人员的安全。

因此,叶片防冰、除冰工作显得尤为重要1 叶片防冰、除冰方案国外风机厂商,如Enercon、Siemens、Vestas等针对叶片防冰、除冰做了很多研究工作。

尽管他们的研究成果尚未成熟、未商业化,但其极具参考意义。

机械除冰可分为人工除冰、膨胀管技术除冰两种。

人工除冰借助于操作平台,效率低下,且操作危险系数高,只在覆冰极严重的情况使用。

膨胀管技术除冰,原理如图1。

在最容易结冰的叶片前缘粘贴橡胶膨胀管,利用巨大的叶片离心载荷使其自动膨胀,膨胀后冰层自然脱落。

2 被动式除冰2.1 吸热涂料叶片外表面喷涂黑色涂料,使叶片呈现黑色。

黑色比其他颜色吸热效果好,可以增加叶片表面温度,实现除冰目的。

[4]2.2 疏水涂料防结冰油漆是目前应用范围最为广泛的叶片抗结冰材料,其工作原理是降低叶片表面能,提高疏水性。

优点是成本低,无需特殊的雷电防护,后期维护简单,易于推广。

2.3 化学药剂对于叶片结冰严重的现象,用化学药剂除冰也是可行的。

除冰速度快,效率高;但会污染叶片表面,需要经常维护。

3 主动式除冰3.1 电加热除冰可分为内部电加热和外部电加热两种方式。

内部电加热方案是在叶片内部贴上导电器件,如加热丝。

在叶片结冰时,通电提高叶片内部温度,利用热平衡原理将内部热量传导到叶片外部。

叶片结冰处置方案

叶片结冰处置方案

叶片结冰处置方案叶片结冰是风力发电机运行过程中常见的问题之一、结冰会导致风力发电机的性能下降甚至停机,因此必须采取相应的处置措施。

下面是一种针对叶片结冰的处置方案。

1.预防措施:为了避免叶片结冰问题的发生,可以采取以下预防措施:(1)选择适合的叶片材料:选择具有良好抗结冰性能的叶片材料,可以有效地减少结冰的可能性。

(2)优化叶片设计:采用气动光滑的叶片设计,减少冰粒附着的可能性。

另外,叶片表面可以覆盖一层具有抗冻性的防冰涂层。

(3)安装加热器:在叶片表面安装加热器,通过加热叶片表面的方式,避免冰粒的形成。

2.检测方法:为了及时了解叶片结冰的情况,可以采取以下检测方法:(1)安装温度传感器:在叶片表面安装温度传感器,通过检测叶片表面的温度变化来判断是否结冰。

(2)使用红外线摄像机:利用红外线摄像机可以实时观察叶片表面的温度变化,从而判断是否有结冰的情况。

3.结冰处置方案:一旦发现叶片结冰的情况,需要及时采取以下处置方案:(1)运行速度调整:降低风力发电机的转速,减小风扇叶片与冰的接触面积,从而减少结冰的可能性。

(2)启动加热器:如果安装了加热器,可以启动加热器对叶片进行加热,迅速融化结冰物质。

(3)喷洒抗冰剂:使用抗冰剂喷洒在叶片表面,抗冰剂可在冰的表面形成一层保护膜,防止冰再次附着。

4.日常维护:为了保持风力发电机的正常运行(1)定期检查:定期检查叶片表面是否存在冰粒、积雪等,及时清除。

(2)保持清洁:保持叶片表面的清洁,避免灰尘、油脂等物质的积累,减少冰粒的附着。

(3)加强防护:在叶片表面涂上防冰涂层,增加叶片的抗冰性能。

总之,针对叶片结冰问题的处置方案主要包括预防措施、检测方法、结冰处置方案和日常维护。

通过以上措施的综合应用,可以有效减少叶片结冰问题的发生,提高风力发电机的稳定性和可靠性。

风机叶片防冰、除冰方案探讨

风机叶片防冰、除冰方案探讨
涂料 颜 色为黑色 , 与 现 在 要 求 的 灰
吸 热涂 料 ( 黑色涂 料 )
操 作简单 , 不用 引入其 他复 杂体 系, 且可以适 用于在 役叶片, 成本 相对 较低
白色表面 相 违背; 除冰 效 果受 制于 光 照条件 ; 夏季 太阳辐射 严重 时,
防结 冰
被 动防结 涂 装 冰 方案 疏 水涂 料 操 作简单 , 不用 引入 其他复 杂 的部 件, 可 以适用 于在役叶片, 并且成 本低
电加 热
除 冰效率 不 高, 不用额 外考虑 雷 电防护 问题 温 度测 量及 控制 系统 , 使 叶片系统 复杂化 风 险较大 ; 维护 困难 ; 成本 高

外部 电加 热
主 动 除 冰方案
除 冰效率 高 , 加 热区 域设 计灵活 除 冰效率 比较 高

耗 能较 高 ; 热 气产生 系统 , 并且需要 在叶片 内部安 装热 气管道 及空 气置换 通 道 使叶片 系统复 杂化 ; 成本 较高
E — l 2 6 7 . 5 M W风 机 叶片叶 根 、 叶 中段粘 贴
5 )。
【 5 1 A . A l b e r s. SU m m a r Y Of a
Te c h n i C a 1 V a 1 i d a t i o n o f EN ER C0 N ’ s Rotor Bl ade D e— I c i ng Sys t em . 2 01 1 .
温 度过 高会影 响叶 片材 料性 能 , 一定
的时 间年 限需 要进行 维 护 涂 料 性能 测试 结果 不理 想 ; 涂料 的
防结 冰能 力需 要考察 , 一定年限
薷要进行维护
化 学除 冰药 剂 应 用于 叶片表面 , 降低冰 点, 除 冰效率 相对 较高 腐蚀 性 强, 会破 坏叶片表 面油漆 系统 , 需 要经 常维 护, 维护 成本高 能 耗 高; 需 设计加 入器件 布线 , 引入 内部 电加 热

风力发电叶片防冰技术的研究与发展

风力发电叶片防冰技术的研究与发展

风力发电叶片防冰技术的研究与发展引言风力发电是一种清洁、可再生的能源发电方式,其在全球范围内得到了广泛的应用和发展。

然而,随着风电装机容量的不断增加,风力发电叶片结冰问题也日益显现。

冰雪覆盖在叶片上不仅会降低发电效率,还可能导致叶片损坏甚至停机。

因此,风力发电叶片防冰技术的研究与发展显得尤为重要。

1. 风力发电叶片结冰问题的影响在冷雨、雾气、雨夹雪等气候条件下,风力发电叶片很容易结冰。

当叶片结冰时,风力发电机组的发电效率会大大降低,甚至完全无法发电。

此外,冰雪覆盖在叶片上会增加叶片的负荷,提高叶片的表面摩擦,增加振动,严重时会导致叶片的损坏。

因此,风力发电叶片结冰问题不仅影响风力发电站的经济效益,还对风力发电设备的性能和寿命产生不良影响。

2. 风力发电叶片防冰技术的现状目前,有许多不同的风力发电叶片防冰技术被广泛应用。

这些技术包括被动防冰技术和主动防冰技术。

被动防冰技术主要通过改良叶片的表面形态来减少冰雪的附着和增强排冰效果。

常见的被动防冰技术包括采用特殊材料、表面涂层、纳米涂层、凹凸表面等。

这些技术的主要原理是通过降低冰雪附着的能力、提高冰雪脱落的能力,从而减少叶片的结冰问题。

主动防冰技术则通过向叶片表面供给热能或改变叶片表面温度的方法来减少或消除冰雪的积聚。

常见的主动防冰技术包括直接加热、间接加热、超声波加热、微波加热等。

这些技术的主要原理是通过提供足够的热量,使冰雪迅速熔化或产生脱落。

3. 风力发电叶片防冰技术存在的问题与挑战尽管风力发电叶片防冰技术取得了一定的成果,但仍然存在一些问题和挑战。

首先,部分防冰技术的成本较高,造成了风电站建设和运营成本的增加。

在一些寒冷的地区,特别是高纬度地区,需要大量投入用于防冰技术的研发和应用。

其次,现有的防冰技术并非完全可靠。

由于气象条件的多变性和不确定性,特别是在极端天气条件下,叶片上的冰雪可能会再次积聚,导致防冰技术失效。

此外,现有的防冰技术对环境的影响也需要进一步的研究和评估。

风力发电机组叶片覆冰影响因素与防冻除冰技术思考

风力发电机组叶片覆冰影响因素与防冻除冰技术思考

风力发电机组叶片覆冰影响因素与防冻除冰技术思考摘要:现阶段,风力发电机组中的叶片出现覆冰情况后,设备的风能利用率会受到影响,进而对发电效率造成影响,发电机设备也会因此受到损伤,每年会因此造成较多的发电量损失,此外,还会给风电场的后续运行留下较多安全隐患。

本文以上述内容为基础,针对叶片覆冰问题的成因及防冻除冰技术展开研究,说明不同的防冻除冰技术优势,希望本次研究可以为同领域工作者提供合理参考作用。

关键词:风力发电机;防冻除冰系统;覆冰检测;叶片覆冰前言:在比较极端的气候条件下,部分发电机设备的叶片可能会出现结冰现行,这种情况很有可能会在后续阶段带来毁灭性影响。

基于此,为进一步克服这些不良影响,需要对叶片覆冰问题进行综合分析,明确各种覆冰处理技术、防冻除冰技术的应用注意事项,在保证除冰作业效率的同时,降低对叶片装置造成的不良影响。

一、风力发电机叶片覆冰机理说明(一)云中覆冰叶片处于工作状态时发生结冰现象,这种覆冰形式类似于飞机覆冰现象,是一种撞击结冰,主要是由过冷水滴撞击叶片外表面以后,冻结形成的冰体,按照过冷却水直径差异,主要分为雨凇与雾凇两种形态[1]。

雾凇冰:在液滴产生撞击作用后完全冻结,一般会产生一种不透明的白色堆积物,外表呈流线型,并且表面相对比较粗糙,此类积冰问题即为雾凇冰。

雾凇冰大多是在低环境温度(-5℃)、低运行速度以及低云水浓度值同步状态下会形成一种状态较为疏松、自身比重小、冰体黏附力小且对风机危害水平相对较低的冰体结构。

雨凇冰:是直径相对较大的过冷水滴,在其与风电叶片外表面产生撞击作用后散开,进而形成冰凌。

上述反应一般是在0~5℃之间发生,尤其是在空气中携带大量水滴以后,风电叶片表面会出现一层透明且比较光滑的冰层,同时,这种冰层本身的黏附力较强,并且比重相对较高,会对风机设备形成较大影响。

(二)降水覆冰当叶片处于静止状态时,空气中携带的过冷却水滴或者其他湿润雪花,会附着其上,如果温度低于0℃,则叶片的外表面上会形成新的覆冰结构。

叶片结冰处置方案

叶片结冰处置方案

叶片结冰处置方案在冬季的寒冷天气里,风力发电机的叶片很容易被结冰,这会导致风力发电机的发电效率降低,同时也会对机器带来危害。

为了有效减少叶片结冰带来的危害,以下是几种常用的叶片结冰处置方案。

方案一:使用加热装置叶片加热装置是最常见的防止结冰的方法之一。

通过使用加热电缆或直接加热器来加热叶片表面,使其不易结冰。

加热装置可以通过控制器或温度传感器进行控制,有效地保护叶片。

这种方法的好处是可以在冬季及时清除不易晾干的积雪,但是安装和维护成本较高,需要定期进行检查和维护,同时加热装置也会增加功耗,降低系统的运行效率。

方案二:使用风扇预防结冰在寒冷的气候条件下,使用一些适当的风扇可以帮助防止结冰。

风扇可以起到消除积雪、不断的加热叶片和保持空气流通的作用,从而防止结冰的发生。

这种方法相对简单,安装和维护成本也比较低,但是需要在常规的检查中注意清洁,以免在恶劣的天气条件下失效。

方案三:使用喷淋或喷洒水预防结冰在温度降低的季节,可以使用喷淋或喷洒水来防止叶片结冰。

水可以通过喷洒在叶片表面来形成外层保护膜,有效地防止叶片落雪和结冰。

这种方法相对来说较为简单,但需要用到大量的水资源,而且当空气温度特别低时,水会迅速结冰从而带来更多的问题,因此需要选择合适的时间和使用场所。

方案四:使用化学防霜剂化学防霜剂可以有效地预防叶片结冰。

通常使用的防冰剂可分为两种类型:一种是涂布型的防冰剂,可以涂在叶片表面,具有长效防冰的效果;另一种是喷洒型的防冰剂,可以通过喷洒形成保护膜,具有较短时间的保护作用。

这种方法需要注意,一旦使用化学防霜剂,有可能会对机器带来损坏,因此在施工过程中必须要选用正确的防霜剂来进行处理,以免给机器带来不可逆的损害。

结束语总体上来说,叶片结冰问题对于风力发电机是一个严峻的挑战。

在解决叶片结冰问题时,需要根据实际情况确定最适合的方案,比较常用的有加热装置、风扇预防结冰、喷淋或喷洒水预防结冰、化学防霜剂等方法。

风力发电机组叶片防冻除冰技术研究进展

风力发电机组叶片防冻除冰技术研究进展

风力发电机组叶片防冻除冰技术研究进展摘要:在我国较为寒冷的地区,风力发电机组叶片易出现覆冰情况,对机组的安全运行和现场相关人员的人身安全都会造成一定程度的威胁。

本文对风力发电机组叶片表面出现覆冰情况的过程以及对其造成影响的因素,进行了分析讨论,并提出了叶片覆冰过程的不同阶段进行防冻除冰的技术方法。

关键词:叶片覆冰;除冰技术;风力发电机组清洁无污染、分布广泛和取之不尽用之不竭都是风能的主要优点。

现在风能已经被世界各个国家和地区作为一个有重大意义的新型能源进行充分的开发与利用。

世界上大部分的风能资源主要集中在加拿大、西北欧沿海、美国西部沿海地区以及南北回归线附近等地区。

因其分布,所以风电场大部分都建立在这些高纬度的寒冷地区,部分地区由于海拔高气温愈加低,风能资源更加丰富,但同时由于其温度低的特性,直接导致这些区域风电机组叶片在冬季极易出现覆冰现象。

欧洲将近20%的地区,例如西班牙、英国等均发生过叶片覆冰现象。

而在我国,由于幅员辽阔、地理位置的不同,所以风能的分布并不均匀,多数集中在东北、华北气候寒冷的开阔地区。

这些区域是每年冷空气入侵的首要地区,所以风力发电机组叶片也会出现一定程度的覆冰现象。

1风力发电机组叶片覆冰的研究1.1风力发电机组叶片覆冰的危害风力发电机组的叶片出现覆冰情况之后,首先其翼型会随之发生不规则的改变,出现叶片表面高度不均匀、粗糙度增加等情况,这样会使叶片的阻力升高,降低其气动性,最终的结果会造成其专属性能下降,风能发电的利用率会有不同程度的降低;其次会造成叶片及其他零部件的负荷增加,覆冰的不均匀会导致质量不平衡,这样有可能会激发叶片震动并产生较大振幅,从而对叶片造成不同程度的损害,导致风力发电机组的稳定性受到影响。

1.2叶片覆冰的原因风力发电机组一般都建立在风能资源丰富的地区,这些地区往往冬季气温较低且空气湿度大。

由于这些地区环境的特性,外加随处可见的水雾,容易形成的低冰点并且浓度较大的溶液滴,这些溶液滴的冰点低于水的冰点,具有在一定的条件下保持液态且不会发生冻结的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风机叶片防冰、除冰方案探讨
摘要:对于安装在湿度大、高寒地区的风机,其叶片、风速仪等部件容易结冰。

叶片结冰会对风机运行造成极大的危害,该文重点介绍叶片防冰、除冰的措施方案,比较分析各方案的优缺点。

关键词:叶片结冰防冰除冰
风能是一种取之不尽、用之不歇的可再生能源。

近年来,风力发电得到世界各国的普遍关注和优先发展,然而丰富的风资源基本上分布高寒地区和湿度大的沿海地带,环境极其恶劣。

风力发电机在低温条件下,若遇到潮湿空气、雨水、冰霜、雪,特别是遇到过冷却水滴时,其部件就会发生冰冻现象。

叶片结冰对风场、机组运行及人员安全都会带来一定的影响[1-3],降低发电效率,增加运行载荷与噪音,甚至危及风机及现场维护人员的安全。

因此,叶片防冰、除冰工作显得尤为重要
1 叶片防冰、除冰方案
国外风机厂商,如Enercon、Siemens、Vestas等针对叶片防冰、除冰做了很多研究工作。

尽管他们的研究成果尚未成熟、未商业化,但其极具参考意义。

机械除冰可分为人工除冰、膨胀管技术除冰两种。

人工除冰借助于操作平台,效率低下,且操作危险系数高,只在覆冰极严重的情况
使用。

膨胀管技术除冰,原理如图1。

在最容易结冰的叶片前缘粘贴橡胶膨胀管,利用巨大的叶片离心载荷使其自动膨胀,膨胀后冰层自然脱落。

2 被动式除冰
2.1 吸热涂料
叶片外表面喷涂黑色涂料,使叶片呈现黑色。

黑色比其他颜色吸热效果好,可以增加叶片表面温度,实现除冰目的。

[4]
2.2 疏水涂料
防结冰油漆是目前应用范围最为广泛的叶片抗结冰材料,其工作原理是降低叶片表面能,提高疏水性。

优点是成本低,无需特殊的雷电防护,后期维护简单,易于推广。

2.3 化学药剂
对于叶片结冰严重的现象,用化学药剂除冰也是可行的。

除冰速度快,效率高;但会污染叶片表面,需要经常维护。

3 主动式除冰
3.1 电加热
除冰可分为内部电加热和外部电加热两种方式。

内部电加热方案
是在叶片内部贴上导电器件,如加热丝。

在叶片结冰时,通电提高叶片内部温度,利用热平衡原理将内部热量传导到叶片外部。

外部电加热方案[5]是在叶片外部贴上导电器件,如导电膜(图2)等,在叶片结冰时或者结冰后,通电提高叶片表面温度,从而避免结冰或者融冰。

3.2 内部通热风
Enercon首创了该除冰方案,在叶根靠近法兰的筋板上安装暖风机(如图3),热风流动通过筋板的引导,沿着前缘流向叶尖,再回到两筋板之间(见图4)。

利用这种方式加热,叶片内部最高可达72℃,除冰效率高。

3.3 组合除冰方案
将两种或两种以上除冰方案组合,以此来实现各方案的优缺点互补。

Enercon E-126 7.5MW风机叶片叶根、叶中段粘贴电加热膜,叶尖采用热风加热(原理如图5)。

4 各种方案优缺点分析
综合对比以上各种防冰、除冰方案,其优缺点对比见表1。

5 结语
(1)风电行业的发展前景广阔,但风机叶片结冰缺乏有效的解决
方案,一定程度上阻碍了风电的发展。

研究叶片除冰、防冰方案,有利于推动风电行业健康有序的发展。

(2)采用抗结冰油漆(疏水涂料)方式是经济性最好的可行方案。

研究抗结冰性能更好的涂料,是解决风机叶片的首选方案。

(3)对于主动式除冰方案,尤其是Enercon的组合方案,其高效率、低风险,也是叶片除冰方案的发展方向之一。

(4)随着新技术的产生与发展,会有更多新科技用于叶片防冰、除冰,如微波除冰、导电油漆、金属镀膜等方案。

参考文献
[1] Homola M.C.Impacts and Causes of Icing on Wind Turbines.Narvik University College.2005.
[2] Ian Baring-Gould. al.Wind energy projects in cold climates.2012.
[3] Seifert H.Technical requirements for rotor blades operating in cold climate.Deutsches Windenergie-Institut GmbH.2003.
[4] John Maissan,JP Pinard.Wind Energy Research, Development and Operation in Harsh Arctic Environments.2011.
[5] A. Albers.Summary of a Technical Validation of ENERCON’
s Rotor Blade De-Icing System.2011.
[6] Christoffer Jonsson.Further development of ENERCON’S de-icing system.2012.
[7] Vestas De-icing Solution.http://winterwind.se/2012/download-presentations.
[8] Hans Gedda.State of the art and benefit of de-icing and anti icing technologies.2012.。

相关文档
最新文档