鄂州市2019年中考数学试题及答案(WORD解析版)
湖北省鄂州市年中考数学真题试题(含解析)

2019年湖北省鄂州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.-2019的绝对值是()A. 2019B. −2019C. 12019D. −120192.下列运算正确的是()A. a3⋅a2 =a6B. a7÷a3 =a4C. (−3a)2 =−6a2D. (a−1)2=a2 −13.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学记数法可表示为()A. 0.1031×106B. 1.031×107C. 1.031×108D. 10.31×1094.如图是由7个小正方体组合成的几何体,则其左视图为()A.B.C.D.5.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为()A. 45∘ B. 55∘C. 65∘D. 75∘6.已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为()A. 3B. 4.5C. 5.2D. 67. 关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1、x 2,且x 1+3x 2=5,则m 的值为( )A. 74B. 75C. 76D. 08. 在同一平面直角坐标系中,函数y =-x +k 与y =aa (k 为常数,且k ≠0)的图象大致是( )A. B.C. D.9. 二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论:①abc <0;②3a +c >0;③(a +c )2-b 2<0;④a +b ≤m (am +b )(m 为实数).其中结论正确的个数为( )A. 1个B. 2个C. 3个D. 4个10. 如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线y =√33x上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( )A. 22a √3B. 22a −1√3C. 22a −2√3D. 22a −3√3二、填空题(本大题共6小题,共18.0分) 11. 因式分解:4ax 2-4ax +a =______.12. 若关于x 、y 的二元一次方程组{a +5a =5a −3a =4a +3的解满足x +y ≤0,则m 的取值范围是______.13. 一个圆锥的底面半径r =5,高h =10,则这个圆锥的侧面积是______. 14. 在平面直角坐标系中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =|aa 0+aa 0+a |√22,则点P (3,-3)到直线y =-23x +53的距离为______. 15. 如图,已知线段AB =4,O 是AB 的中点,直线l 经过点O ,∠1=60°,P 点是直线l 上一点,当△APB 为直角三角形时,则BP =______.16. 如图,在平面直角坐标系中,已知C (3,4),以点C 为圆心的圆与y 轴相切.点A 、B 在x 轴上,且OA =OB .点P 为⊙C 上的动点,∠APB =90°,则AB 长度的最大值为______.三、解答题(本大题共8小题,共72.0分)17. 先化简,再从-1、2、3、4中选一个合适的数作为x 的值代入求值.(a 2−2a a 2−4a +4-4a −2)÷a −4a 2−418. 如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB 、CD 边于点E 、F . (1)求证:四边形DEBF 是平行四边形; (2)当DE =DF 时,求EF 的长.19. 某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别 ABCDE类型 新闻 体育 动画 娱乐戏曲 人数112040m4请你根据以上信息,回答下列问题:(1)统计表中m 的值为______,统计图中n 的值为______,A 类对应扇形的圆心角为______度; (2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数; (3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.20. 已知关于x 的方程x 2-2x +2k -1=0有实数根.(1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且a 2a 1+a 1a 2=x 1•x 2,试求k 的值.21. 为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB ,他站在距离教学楼底部E 处6米远的地面C 处,测得宣传牌的底部B 的仰角为60°,同时测得教学楼窗户D 处的仰角为30°(A 、B 、D 、E 在同一直线上).然后,小明沿坡度i =1:1.5的斜坡从C 走到F 处,此时DF 正好与地面CE 平行. (1)求点F 到直线CE 的距离(结果保留根号);(2)若小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果22.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;,BC=1,求PO的长.(3)若cos∠PAB=√101023.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24.如图,已知抛物线y=-x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.答案和解析1.【答案】A【解析】解:-2019的绝对值是:2019.故选:A.直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】B【解析】解:A、原式=a5,不符合题意;B、原式=a4,符合题意;C、原式=9a2,不符合题意;D、原式=a2-2a+1,不符合题意,故选:B.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.【答案】B【解析】解:将1031万用科学记数法可表示为1.031×107.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左面看易得其左视图为:故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左主视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.【答案】B【解析】解:如图,作EF∥AB∥CD,∴∠2=∠AEF=35°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°-35°=55°,根据平行线的性质和直角的定义解答即可.此题考查平行线的性质,关键是根据平行线的性质得出∠2=∠AEF=35°,∠1=∠FEC.6.【答案】C【解析】解:∵一组数据7,2,5,x,8的平均数是5,∴5=(7+2+5+x+8),∴x=5×5-7-2-5-8=3,∴s2=[(7-5)2+(2-5)2+(5-5)2+(3-5)2+(8-5)2]=5.2,故选:C.先由平均数是5计算x的值,再根据方差的计算公式,直接计算可得.本题考查的是算术平均数和方差的计算,掌握方差的计算公式:一般地设n个数据,x1,x 2,…x n的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(x n-)2],是解题的关键.7.【答案】A【解析】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2-4x+m=0得:()2-4×+m=0,解得:m=,故选:A.根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x2=是解题的关键.8.【答案】C【解析】解:∵函数y=-x+k与y=(k为常数,且k≠0),∴当k>0时,y=-x+k经过第一、二、四象限,y=经过第一、三象限,故选项A、B 错误,当k<0时,y=-x+k经过第二、三、四象限,y=经过第二、四象限,故选项C正确,选项D错误,故选:C.根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.9.【答案】D解:①∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴右侧,∴b<0∵抛物线与y轴交于负半轴,∴c>0,∴abc<0,①正确;②当x=-1时,y>0,∴a-b+c>0,∵,∴b=-2a,把b=-2a代入a-b+c>0中得3a+c>0,所以②正确;③当x=1时,y<0,∴a+b+c<0,∴a+c<-b,∵a>0,c>0,-b>0,∴(a+c)2<(-b)2,即(a+c)2-b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+mb+c,即a+b≤m(am+b),所以④正确.故选:D.①由抛物线开口方向得到a>0,对称轴在y轴右侧,得到a与b异号,又抛物线与y 轴正半轴相交,得到c>0,可得出abc<0,选项①正确;②把b=-2a代入a-b+c>0中得3a+c>0,所以②正确;③由x=1时对应的函数值<0,可得出a+b+c<0,得到a+c<-b,由a>0,c>0,-b>0,得到()a+c)2-b2<0,选项③正确;④由对称轴为直线x=1,即x=1时,y有最小值,可得结论,即可得到④正确.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.【答案】D【解析】解:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n-1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=,B2B3=2,…,B n B n+1=2n,∴S1=×1×=,S2=×2×2=2,…,S n=×2n-1×2n=;直线y=x与x轴的成角∠B1OA1=30°,可得∠OB2A2=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知A1B1=1,B2A2=OA2=2,B3A3=4,…,B n A n=2n-1;根据勾股定理可得B1B2=,B2B3=2,…,B n B n+1=2n,再由面积公式即可求解;本题考查一次函数的图象及性质,等边三角形和直角三角形的性质;能够判断阴影三角形是直角三角形,并求出每边长是解题的关键.11.【答案】a(2x-1)2【解析】解:原式=a(4x2-4x+1)=a(2x-1)2,故答案为:a(2x-1)2原式提取a,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】m≤-2【解析】解:,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤-2.故答案是:m≤-2.首先解关于x和y的方程组,利用m表示出x+y,代入x+y≤0即可得到关于m的不等式,求得m的范围.本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.13.【答案】25√5a【解析】解:∵圆锥的底面半径r=5,高h=10,∴圆锥的母线长为=5,∴圆锥的侧面积为π×5×5=,故答案为:.利用勾股定理易得圆锥的母线长,进而利用圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.本题考查圆锥侧面积公式的运用,注意运用圆锥的高,母线长,底面半径组成直角三角形这个知识点.√1314.【答案】813【解析】解:∵y=-x+∴2x+3y-5=0∴点P(3,-3)到直线y=-x+的距离为:=,故答案为:.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.15.【答案】2或2√3或2√7 【解析】解:∵AO=OB=2,∴当BP=2时,∠APB=90°,当∠PAB=90°时,∵∠AOP=60°,∴AP=OA•tan∠AOP=2,∴BP==2,当∠PBA=90°时,∵∠AOP=60°,∴BP=OB•tan∠1=2,故答案为:2或2或2.分∠APB=90°、∠PAB=90°、∠PBA=90°三种情况,根据直角三角形的性质、勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.16.【答案】16【解析】解:连接OC 并延长,交⊙C 上一点P ,以O 为圆心,以OP 为半径作⊙O ,交x 轴于A 、B ,此时AB 的长度最大,∵C (3,4),∴OC==5,∵以点C 为圆心的圆与y 轴相切.∴⊙C 的半径为3,∴OP=OA=OB=8,∵AB 是直径,∴∠APB=90°,∴AB 长度的最大值为16,故答案为16.连接OC 并延长,交⊙C 上一点P ,以O 为圆心,以OP 为半径作⊙O ,交x 轴于A 、B ,此时AB 的长度最大,根据勾股定理和题意求得OP=8,则AB 的最大长度为16.本题考查了切线的性质,坐标和图形的性质,圆周角定理,找到OP 的最大值是解题的关键.17.【答案】解:原式=[a (a −2)(a −2)2-4a −2]÷a −4a 2−4=[a a −2-4a −2])÷a −4a 2−4=a −4a −2•(a −2)(a +2)a −4 =x +2∵x -2≠0,x -4≠0,∴x ≠2且x ≠4,∴当x =-1时,原式=-1+2=1.【解析】先化简分式,然后将x 的值代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.18.【答案】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO ,又因为∠DOF =∠BOE ,OD =OB ,∴△DOF ≌△BOE (ASA ),∴DF =BE ,又因为DF ∥BE ,∴四边形BEDF 是平行四边形;(2)解:∵DE =DF ,四边形BEDF 是平行四边形∴四边形BEDF 是菱形,∴DE =BE ,EF ⊥BD ,OE =OF ,设AE =x ,则DE =BE =8-x在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2∴x 2+62=(8-x )2,解之得:x =74, ∴DE =8-74=254,在Rt △ABD 中,根据勾股定理,有AB 2+AD 2=BD2 ∴BD =√62+82=10,∴OD =12 BD =5,在Rt △DOE 中,根据勾股定理,有DE 2 -OD 2=OE 2,∴OE =√(254)2−52=154, ∴EF =2OE =152.【解析】(1)根据矩形的性质得到AB ∥CD ,由平行线的性质得到∠DFO=∠BEO ,根据全等三角形的性质得到DF=BE ,于是得到四边形BEDF 是平行四边形;(2)推出四边形BEDF 是菱形,得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理即可得到结论.本题考查了矩形的性质,平行四边形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.19.【答案】25 25 39.6【解析】解:(1)∵样本容量为20÷20%=100,∴m=100-(11+20+40+4)=25,n%=×100%=25%,A 类对应扇形的圆心角为360°×=39.6°,故答案为:25、25、39.6.(2)1500×=300(人)答:该校最喜爱体育节目的人数约有300人;(3)画树状图如下:共有12种情况,所选2名同学中有男生的有6种结果,所以所选2名同学中有男生的概率为.(1)先根据B 类别人数及其百分比求出总人数,再由各类别人数之和等于总人数求出m ,继而由百分比概念得出n 的值,用360°乘以A 类别人数所占比例即可得;(2)利用样本估计总体思想求解可得.本题考查了扇形统计图,条形统计图,树状图等知识点,能正确画出树状图是解此题的关键.20.【答案】(1)解:∵原方程有实数根,∴b 2-4ac ≥0∴(-2)2-4(2k -1)≥0∴k ≤1(2)∵x 1,x 2是方程的两根,根据一元二次方程根与系数的关系,得:x 1+x 2 =2,x 1 •x 2 =2k -1 又∵a 2a 1+a 1a 2=x 1•x 2,∴a 12+a 22a 1⋅a 2=a 1⋅a 2∴(x 1+x 2)2-2x 1 x 2 =(x 1 •x 2)2∴22-2(2k -1)=(2k -1)2解之,得:a 1=√52,a 2=−√52.经检验,都符合原分式方程的根 ∵k ≤1∴a =−√52.【解析】(1)根据一元二次方程x 2-2x+2k-1=0有两个不相等的实数根得到△=(-2)2-4(2k-1)≥0,求出k 的取值范围即可;(2)根据根与系数的关系得出方程解答即可.本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.21.【答案】解:(1)过点F 作FG ⊥EC 于G ,依题意知FG ∥DE ,DF ∥GE ,∠FGE =90° ;∴四边形DEFG 是矩形;∴FG =DE ;在Rt △CDE 中,DE =CE •tan ∠DCE ;=6×tan30 o =2√3 (米);∴点F 到地面的距离为2√3 米; (2)∵斜坡CF i =1:1.5.∴Rt △CFG 中,CG =1.5FG =2√3×1.5=3√3,∴FD =EG =3√3+6.在Rt △BCE 中,BE =CE •tan ∠BCE =6×tan60 o =6√3.∴AB =AD +DE -BE .=3√3+6+2√3-6√3=6-√3≈4.3 (米).答:宣传牌的高度约为4.3米.【解析】(1)过点F 作FG ⊥EC 于G ,依题意知FG ∥DE ,DF ∥GE ,∠FGE=90° ;得到四边形DEFG 是矩形;根据矩形的性质得到FG=DE ;解直角三角形即可得到结论;(2)解直角三角形即可得到结论.本题考查的是解直角三角形的应用-仰角俯角问题,正确标注仰角和俯角、熟记锐角三角函数的定义是解题的关键.22.【答案】(1)证明:连结OB ,∵AC 为⊙O 的直径,∴∠ABC =90°,∵AB ⊥PO ,∴PO ∥BC∴∠AOP =∠C ,∠POB =∠OBC ,OB =OC ,∴∠OBC =∠C ,∴∠AOP =∠POB ,在△AOP 和△BOP 中, {aa =aa∠aaa =∠aaa aa =aa,∴△AOP ≌△BOP (SAS ),∴∠OBP =∠OAP ,∵PA 为⊙O 的切线,∴∠OAP =90°,∴∠OBP =90°,∴PB 是⊙O 的切线;(2)证明:连结AE ,∵PA 为⊙O 的切线,∴∠PAE +∠OAE =90°,∵AD ⊥ED ,∴∠EAD +∠AED =90°,∵OE =OA ,∴∠OAE =∠AED ,∴∠PAE =∠DAE ,即EA 平分∠PAD ,∵PA 、PD 为⊙O 的切线,∴PD 平分∠APB∴E 为△PAB 的内心;(3)解:∵∠PAB +∠BAC =90°,∠C +∠BAC =90°,∴∠PAB =∠C ,∴cos ∠C =cos ∠PAB =√1010,在Rt △ABC 中,cos ∠C =aa aa =1aa =√1010,∴AC =√10,AO =√102,∵△PAO ∽△ABC , ∴aa aa =aa aa ,∴PO =aa aa ⋅aa =√1021⋅√10=5.【解析】(1)连结OB ,根据圆周角定理得到∠ABC=90°,证明△AOP ≌△BOP ,得到∠OBP=∠OAP ,根据切线的判定定理证明;(2)连结AE ,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA 平分∠PAD ,根据三角形的内心的概念证明即可;(3)根据余弦的定义求出OA ,证明△PAO ∽△ABC ,根据相似三角形的性质列出比例式,计算即可.本题考查的是三角形的内切圆和内心、相似三角形的判定和性质、切线的判定,掌握切线的判定定理、相似三角形的判定定理和性质定理是解题的关键.23.【答案】解:(1)由题意可得:y =100+5(80-x )整理得y =-5x +500;(2)由题意,得:w =(x -40)(-5x +500)=-5x 2+700x -20000=-5(x -70)2+4500∵a =-5<0∴w 有最大值即当x =70时,w 最大值=4500∴应降价80-70=10(元)答:当降价10元时,每月获得最大利润为4500元;(3)由题意,得:-5(x -70)2+4500=4220+200解之,得:x 1=66,x 2 =74,∵抛物线开口向下,对称轴为直线x =70,∴当66≤x ≤74时,符合该网店要求而为了让顾客得到最大实惠,故x =66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.【解析】(1)直接利用销售单价每降1元,则每月可多销售5条得出y 与x 的函数关系式;(2)利用销量×每件利润=总利润进而得出函数关系式求出最值;(3)利用总利润=4220+200,求出x 的值,进而得出答案.此题主要考查了二次函数的应用,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案,正确得出w 与x 之间的函数关系式是解题关键.24.【答案】解:(1))∵点A 、B 关于直线x =1对称,AB =4,∴A (-1,0),B (3,0),代入y =-x 2+bx +c 中,得:{−1−a +a =0−9+3a +a =0,解得{a =3a =2,∴抛物线的解析式为y =-x 2+2x +3,∴C 点坐标为(0,3);(2)设直线BC 的解析式为y =mx +n ,则有:{3a +a =0a =3,解得{a =3a =−1,∴直线BC 的解析式为y =-x +3,∵点E 、F 关于直线x =1对称,又E 到对称轴的距离为1,∴EF =2,∴F 点的横坐标为2,将x =2代入y =-x +3中,得:y =-2+3=1,∴F (2,1);(3)①如下图,MN =-4t 2+4t +3,MB =3-2t ,△AOC 与△BMN 相似,则aa aa =aa aa 或aaaa ,即:3−2a −4a 2+4a +3=3或13,解得:t =32或-13或3或1(舍去32、-13、3),故:t =1;②∵M (2t ,0),MN ⊥x 轴,∴Q (2t ,3-2t ),∵△BOQ 为等腰三角形,∴分三种情况讨论,第一种,当OQ =BQ 时,∵QM ⊥OB ∴OM =MB∴2t =3-2t∴t =34;第二种,当BO =BQ 时,在Rt △BMQ 中∵∠OBQ =45°,∴BQ =√2aa ,∴BO =√2aa ,即3=√2(3−2a ),∴t =6−3√24;第三种,当OQ =OB 时,则点Q 、C 重合,此时t =0而t >0,故不符合题意综上述,当t =34秒或6−3√24秒时,△BOQ 为等腰三角形.【解析】(1)将A 、B 关坐标代入y=-x 2+bx+c 中,即可求解;(2)确定直线BC 的解析式为y=-x+3,根据点E 、F 关于直线x=1对称,即可求解;(3)①△AOC 与△BMN 相似,则,即可求解;②分OQ=BQ 、BO=BQ 、OQ=OB 三种情况,分别求解即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
湖北省鄂州市2019年中考数学真题试题(含解析)

2019年湖北省鄂州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.-2019的绝对值是()A. 2019B. −2019C. 12019D. −120192.下列运算正确的是()A. a3⋅a2 =a6B. a7÷a3 =a4C.(−3a)2 =−6a2D. (a−1)2=a2 −13.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学记数法可表示为()A. 0.1031×106B. 1.031×107C. 1.031×108D. 10.31×1094.如图是由7个小正方体组合成的几何体,则其左视图为()A.B.C.D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( ) A. 45∘ B. 55∘ C. 65∘ D. 75∘6. 已知一组数据为7,2,5,x ,8,它们的平均数是5,则这组数据的方差为( ) A. 3B. 4.5C. 5.2D. 67. 关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1、x 2,且x 1+3x 2=5,则m 的值为( ) A. 74B. 75C. 76D. 08. 在同一平面直角坐标系中,函数y =-x +k 与y =aa (k 为常数,且k ≠0)的图象大致是( ) A. B. C.D.9. 二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论:①abc <0;②3a +c >0;③(a +c )2-b 2<0;④a +b ≤m (am +b )(m 为实数).其中结论正确的个数为( ) A. 1个B. 2个C. 3个D. 4个10. 如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n在直线y =√33x 上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( )A. 22a√3B. 22a−1√3C. 22a−2√3D. 22a−3√3二、填空题(本大题共6小题,共18.0分)11.因式分解:4ax2-4ax+a=______.12.若关于x、y的二元一次方程组{a+5a=5a−3a=4a+3的解满足x+y≤0,则m的取值范围是______.13.一个圆锥的底面半径r=5,高h=10,则这个圆锥的侧面积是______.14.在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=00√22,则点P(3,-3)到直线y=-23x+53的距离为______.15.如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P点是直线l上一点,当△APB为直角三角形时,则BP=______.16.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为______.三、解答题(本大题共8小题,共72.0分)17. 先化简,再从-1、2、3、4中选一个合适的数作为x 的值代入求值.(a 2−2aa 2−4a +4-4a −2)÷a −4a 2−418. 如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB 、CD 边于点E 、F . (1)求证:四边形DEBF 是平行四边形; (2)当DE =DF 时,求EF 的长.19.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E类型新闻体育动画娱乐戏曲人数11 20 40 m 4(1)统计表中m的值为______,统计图中n的值为______,A类对应扇形的圆心角为______度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.20.已知关于x的方程x2-2x+2k-1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且a2a1+a1a2=x1•x2,试求k的值.21.为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB,他站在距离教学楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°,同时测得教学楼窗户D处的仰角为30°(A、B、D、E在同一直线上).然后,小明沿坡度i=1:1.5的斜坡从C走到F处,此时DF正好与地面CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若小明在F处又测得宣传牌顶部A的仰角为45°,求宣传牌的高度AB(结果精确到0.1米,√2≈1.41,√3≈1.73).22.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=√1010,BC=1,求PO的长.23.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24.如图,已知抛物线y=-x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M 作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.答案和解析1.【答案】A【解析】解:-2019的绝对值是:2019.故选:A.直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】B【解析】解:A、原式=a5,不符合题意;B、原式=a4,符合题意;C、原式=9a2,不符合题意;D、原式=a2-2a+1,不符合题意,故选:B.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.【答案】B【解析】解:将1031万用科学记数法可表示为1.031×107.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】。
2019年湖北省鄂州市中考数学试卷(word版,含解析).

2019年湖北省鄂州市中考数学试卷、选择题(每小题3分,共30分)1 .(3分)-2019的绝对值是(B . - 20192 . ( 3分)下列运算正确的是( )八3c 2 6A. a ?a = a2 2C . ( - 3 a) =- 6aC. D.- -2019 2019B . a7十a3= a43 . (3分)据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031可表示为()4 . (3分)如图是由7个小正方体组合成的几何体,则其左视图为()5 . (3分)如图,一块直角三角尺的一个顶点落在直尺的一边上,若/ 2 = 35 °,则/ 1 的度数为()B . 55A . 45 C . 65 D . 75A. 2019万用科学记数法A . 0.1031 x 10 6B . 1.031 x 10 8C . 1.031 x 10D . 10.31 x 102(3分)二次函数y = ax +bx + c 的图象如图所示,oo> 0 ;3( a +c ) - b v 0 :④a +b < m (am + b ) (m 为实数).其中结论正确的个数为(10 . (3分)如图,在平面直角坐标系中, 点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线y =' xV 1上,若A i ( 1 , 0 ),且厶A i B i A 2、A A 2B 2A 3-^ A n B n A n +1都是等边三角形,从左到右的小三角形(阴 影部分)的面积分别记为 S 1、S 2、S 3-S n .则S n 可表示为((3 分) 已知一组数据为 7 , 2 , 5 , x , 8,它们的平均数是 5,则这组数据的方差为((3 分) 关于 为(B . 4.5C . 5.2x 的一元二次方程 平面直角坐标系中, (3分)在同2x - 4x +m = 0的两实数根分别为 X i、函数y =- x +k 与y = 一( k 为常数,X 2,且 X i +3X 2= 5,则 m 的值且k 丰0)的图象大致是( )对称轴是直线x = 1 . F 列结论:①abc v 0 :②3a +c211 . (3 分)因式分解:4ax - 4ax+a =13 . (3分)一个圆锥的底面半径r = 5,高h = 10 ,则这个圆锥的侧面积是 ____________14 . (3分)在平面直角坐标系中,点P(X。
2019湖北省鄂州中考数学试题(word版,含答案)

鄂州市2021年初中毕业生学业考试数学试题学校:________考生姓名:________ 准考证号:本卷须知:1.本试题卷共6页 ,总分值120分 ,考试时间120分钟 .2.答题前 ,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上 ,并将准考证号条形码粘贴在答题卡上的指定位置 .3.选择题每题选出答案后 ,用2B铅笔把答题卡上对应题目的答案标号涂黑 .如需改动 ,用橡皮擦干净后 ,再选涂其他答案标号 .答在试题卷上无效 .4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内 .答在试题卷上无效 .5.考生必须保持答题卡的整洁 .考试结束后 ,请将本试题卷和答题卡一并上交 .6.考生不准使用计算器 .一、选择题 (每题3分 ,共30分 )1. -2021的绝||对值是 ( )A. 2021B. -2021C.12019D.12019-2. 以下运算正确的选项是 ( )A. a3·a2 = a6B. a7÷a3 = a4C. ( -3a)2 = -6a2D. (a -1)2 = a2 -13. 据统计 ,2021年全国高|考人数再次突破千万 ,高达1031万人.数据1031万用科学计数法可表示为 ( )A. 0.1031×106B. 1.031×107C. 1.031×108D. 10.31×1094. 如图是由7个小正方体组合成的几何体 ,那么其左视图为 ( )A. B. C. D.5. 如图 ,一块直角三角尺的一个顶点落在直尺的一边上 ,假设∠2=35o ,那么∠1的度数为 ( )A. 45oB. 55oC. 65oD. 75o6. 一组数据为7 ,2 ,5 ,x ,8 ,它们的平均数是5 ,那么这组数据的方差为 ( )A. 3B. 4.5C. 5.2D. 67. 关于x的一元二次方程x2 -4x +m=0的两实数根分别为x1、x2 ,且x1 +3x2=5 ,那么m的值为 ( )A.74B.75C.76D. 08. 在同一平面直角坐标系中 ,函数y x k=-+与kyx=(k为常数 ,且k≠ 0)的图象大致是 ( )A. B. C. D. (第5题图 )(第4题图)(第9题图) 9. 二次函数2y ax bx c =++的图象如下列图 ,对称轴是直线x =1.以下结论:①abc ﹤0 ②3a +c ﹥0③(a +c )2 -b 2﹤0 ④a +b ≤m (am +b )(m 为实数).其中结论正确的个数为 ( )A. 1个B. 2个C. 3个D. 4个10. 如图 ,在平面直角坐标系中 ,点A 1、A 2、A 3…A n 在x 轴上 ,B 1、B 2、B 3…B n 在直线 y =33x 上 ,假设A 1 (1 ,0 ) ,且△A 1B 1A 2、△A 2B 2A 3 … △A n B n A n +1都是等边三角形 ,从左到右的小三角形 (阴影局部 )的面积分别记为S 1、S 2、S 3…S n .那么S n 可表示为 ( ) A. 22n √3 B. 22n−1√3 C. 22n−2√3 D. 22n−3√3二.填空题 (每题3分 ,共18分 )11. 因式分解:4ax 2-4ax +a =_______.12. 假设关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩ 的解满足x +y ≤0 ,那么m 的取值范围是_________.13. 一个圆锥的底面半径r =5 ,高h =10 ,那么这个圆锥的侧面积是________. 14. 在平面直角坐标系中,点P (x 0 ,y 0 )到直线 Ax +By +C =0的距离公式为: 0022Ax By Cd A B++=+ ,那么点P (3 , -3 )到直线2533y x =-+的距离为_____.15. 如图 ,线段AB =4 ,O 是AB 的中点 ,直线l 经过点O ,∠1=60° ,P 点是直线l 上一点 ,当△APB 为直角三角形时 ,那么BP =____________.16. 如图 ,在平面直角坐标系中 ,C (3 ,4 ) ,以点C 为圆心的圆与yA 、B 在x 轴上 ,且OA =OB .点P 为⊙C 上的动点 ,∠APB =90°,那么AB 长度的最||大值为 _______.三.解答题 (17~21题每题8分 ,22、23题每题10分 ,24题12分 ,共72分 )17. (此题总分值8分)先化简 ,再从 -1、2、3、4中选一个适宜的数作为x 的值代入求值.222244()4424x x x x x x x ---÷-+--18. (此题总分值8分)如图 ,矩形ABCD 中 ,AB =8 ,AD =6 ,点O 是对角线BD 的中点 ,过点O 的直线分别交AB 、CD 边于点E 、F .(1 )求证:四边形DEBF 是平行四边形; (2 )当DE =DF 时 ,求EF 的长.(第10题图) (第15题图) (第16题图)19. (此题总分值8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况 ,随机选取该校局部学生进行调查 ,要求每名学生从中选出一类最||喜爱的电视节目 ,以下是根据调查结果绘制的统计图表的一局部.类别 ABCDE类型 新闻 体育 动画 娱乐戏曲 人数112040m4请你根据以上信息 ,答复以下问题:(1 )统计表中m 的值为____ ,统计图中n 的值为____ ,A 类对应扇形的圆心角为____度; (2 )该校共有1500名学生 ,根据调查结果 ,估计该校最||喜爱体育节目的学生人数;(3 )样本数据中最||喜爱戏曲节目的有4人 ,其中仅有1名男生. 从这4人中任选2名同学去欣赏戏曲表演 ,请用树状图或列表求所选2名同学中有男生的概率.20. (此题总分值8分)关于x 的方程x 2-2x +2k -1 =0有实数根.(1 )求k 的取值范围; (2 )设方程的两根分别是x 1、x 2 ,且211212x xx x x x +=⋅ ,试求k 的值.AB ,他站在距离教学楼底部E 处6米远的地面C 处 ,测得宣传牌的底部B 的仰角为60° ,同时测得教学楼窗户D 处的仰角为30° (A 、B 、D 、E 在同一直线上 ).然后,小明沿坡度iC 走到F 处 ,此时DF 正好与地面CE 平行.(1 )求点F 到直线CE 的距离(结果保存根号);(2 )假设小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果精确到0.1米 ,√2 ≈1.41 ,√3 ≈1.73 ).22.(此题总分值10分)如图 ,PA 是⊙O 的切线 ,切点为A , AC 是⊙O 的直径 ,连接OP 交⊙O 于E .过A 点作AB⊥PO 于点D ,交⊙O 于B ,连接BC ,PB . (1 )求证:PB 是⊙O 的切线; (2 )求证:E 为△PAB 的内心;(第18题图) (第21题图 ) (第19题图)(第22题图)(3 )假设cos ∠PAB =1010, BC =1 ,求PO 的长.23. (此题总分值10分) "互联网 +〞时代 ,网上购物备受消费者青睐. 某网店专售一款休闲裤 ,其本钱为每条40元 ,当售价为每条80元时 ,每月可销售100条.为了吸引更多顾客 ,该网店采取降价措施. 据市场调查反映:销售单价每降1元 ,那么每月可多销售5条. 设每条裤子的售价为x 元 (x 为正整数 ) ,每月的销售量为y 条.(1 )直接写出y 与x 的函数关系式;(2 )设该网店每月获得的利润为w 元 ,当销售单价降低多少元时 ,每月获得的利润最||大 ,最||大利润是多少 ?(3 )该网店店主热心公益事业 ,决定每月从利润中捐出200元资助贫困学生. 为了保证捐款后每月利润不低于4220元 ,且让消费者得到最||大的实惠 ,该如何确定休闲裤的销售单价 ?24. (此题总分值12分 )如图 ,抛物线y = -x 2+b x +c 与x 轴交于A 、B 两点 ,AB =4 ,交y 轴于点C ,对称轴是直线x =1.(1 )求抛物线的解析式及点C 的坐标;(2 )连接BC ,E 是线段OC 上一点 ,E 关于直线x =1的对称点F 正好落在BC 上 ,求点F 的坐标; (3 )动点M 从点O 出发 ,以每秒2个单位长度的速度向点B 运动 ,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t(t>0)秒.①假设△AOC 与△BMN 相似 ,请直接写出t 的值;②△BOQ 能否为等腰三角形 ?假设能 ,求出t 的值;假设不能 ,请说明理由.(第24题图 ) (第24题备用图1 ) (第24题备用图2 )鄂州市2021年初中毕业生学业考试 数学试题参考答案及评分标准一、选择题 (每题3分 ,共30分 )1~5 A B B A B 6~10 C A C C D 二、填空题 (每题3分 ,共18分 )11. a(2x -1)2. 12. m ≤ -2. 13. 25√5π.14. 813√13 15. 2或2√3或2√7(说明:3解中每对一个得1分 ,假设有错误答案得0分)16. 16 三、解答题17. (8分 )解:原式=x +2 ………… 4′ ∵ x -2≠0 ,x -4≠0 ∴ x ≠2且x ≠4 ………… 7′∴当x = -1时 ,原式=-1 +2=1 ………… 8′ ① (或当x =3时 ,原式=3 +2=5 ………… 8′ )②注:①或②任做对一个都可以 18. (1 )证明:∵ 四边形ABCD 是矩形∴ AB ∥CD∴ ∠DFO =∠BEO , 又因为∠DOF =∠BOE ,OD =OB ∴△DOF ≌ △BOE ∴DF =BE 又因为DF ∥BE ,∴四边形BEDF 是平行四边形. ………… 4′ (2 )解:∵DE =DF ,四边形BEDF 是平行四边形∴ BEDF 是菱形 ∴ DE =BE ,EF ⊥BD ,OE =OF 设AE =x ,那么DE =BE =8 -x在Rt △ADE 中 ,根据勾股定理 ,有AE 2 +AD 2=DE 2∴ x 2 +62 = (8 -x)2解之得:x = 74∴ DE =8 - 74 = 254………… 6′在Rt △ABD 中 ,根据勾股定理 ,有AB 2 +AD 2=BD 2∴BD =√62+82 =10 ∴ OD = 12BD = 5, 在Rt △DOE 中 ,根据勾股定理 ,有DE 2- OD 2=OE 2, ∴ OE = √(254)2−52 = 154∴ EF = 2OE = 15 2 ………… 8′ (此题有多种解法 ,方法正确即可分 )19. (1 )25 25 ………… 3′(2 )1500×20100 = 300 (人 ) 答:该校最||喜爱体育节目的人数约有300人. ………… 5′ (3)P = 12 (说明:直接写出答案的只给1分 ,画树状图或列表的按步骤给分 ) ………… 8′20. (1 )解:∵原方程有实数根 ,∴b 2 -4ac ≥0 ∴( -2)2-4(2k -1) ≥0∴k ≤1 ………… 3′(2 )∵x 1,x 2是方程的两根 ,根据一元二次方程根与系数的关系 ,得: x 1 + x 2 = 2 ,x 1 ·x 2 =2k -1又∵∴x 12+x 22x 1·x 2=x 1·x 2∴(x 1 + x 2)2 -2x 1 x 2 = (x 1 ·x 2)2………… 5′∴ 22 -2(2k -1) = (2k -1)2解之 ,得: k 1=√52 , k 2=−√52.经检验 ,都符合原分式方程的根 ………… 6 ∵ k ≤1 ………… 7′ ∴k =−√52. ………… 8′21.解: (1 )过点F 作FG ⊥EC 于G ,依题意知FG ∥DE ,DF ∥GE ,∠FGE =90o∴四边形DEFG 是矩形 ∴FG =DE在Rt △CDE 中 , DE =CE ·tan ∠DCE= 6×tan30 o=2√3 (米 )∴点F 到地面的距离为2√3 米. …………3′∴Rt △CFG 中 ,CG =1.5FG =2√3 ×1.5=3√3 ∴FD =EG =3√3 +6 ………… 5′ 在Rt △BCE 中 ,BE =CE ·tan ∠BCE = 6×tan60 o=6√3 ………… 6′ ∴AB =AD +DE -BE=3√3 +6 +2√3 -6√3 =6 -√3≈4.3 (米)答:宣传牌的高度约为4.3米. ………… 8′ 22. (1 )证明:连结OB∵AC 为⊙O 的直径∴∠ABC =90o又∵AB ⊥PO ∴PO ∥BC∴∠AOP =∠C ,∠POB =∠OBC而OB =OC ∴∠OBC =∠C ∴∠AOP =∠POB 在△AOP 和△BOP 中{OA =OB∠AOP =∠POB PO =PO∴△AOP ≌△BOP ∴∠OBP =∠OAP∵PA 为⊙O 的切线 ∴∠OAP =90o ∴∠OBP =90o∴PB 是⊙O 的切线 …………3′(2 )证明:连结AE∵PA 为⊙O 的切线 ∴∠PAE +∠OAE =90o∵AD ⊥ED ∴∠EAD +∠AED =90o∵OE =OA ∴∠OAE =∠AED ∴∠PAE =∠DAE 即EA 平分∠PAD ∵PA 、PD 为⊙O 的切线 ∴PD 平分∠APB∴E 为△PAB 的内心 …………6′(3 )∵∠PAB +∠BAC =90o ∠C +∠BAC =90o∴∠PAB =∠C ∴cos ∠C = cos ∠PAB = √1010 在Rt △ABC 中 ,cos ∠C = BCAC =1AC = √1010 ∴AC =√10 ,AO =√102…………8′由△PAO ∽△ABC ∴PO AC=AOBC∴PO =AO BC·AC =√1021·√10=5 …………10′(此题有多种解法 ,解法正确即可 )23.解: (1 )y =100 +5 (80-x )或y =-5x +500 …………2′(2 )由题意 ,得:W =(x -40)( -5x +500)= -5x 2+700x -20000= -5(x -70)2+4500 …………4′∵a = -5<0 ∴w 有最||大值即当x =70时 ,w 最||大值=4500 ∴应降价80-70=10 (元 ) 答:当降价10元时 ,每月获得最||大利润为4500元 …………6′ (3 )由题意 ,得:-5(x -70)2+4500=4220 +200 解之 ,得:x 1=66 x 2 =74 …………8′ ∵抛物线开口向下 ,对称轴为直线x =70 ,∴当66≤x ≤74时 ,符合该网店要求 而为了让顾客得到最||大实惠 , 故x =66∴当销售单价定为66元时 ,即符合网店要求 ,又能让顾客得到最||大实惠. …………10′24.解: (1 ) )∵点A 、B 关于直线x =1对称 ,AB =4∴A (-1 ,0 ) ,B (3 ,0 ) …………1′代入y = -x 2+bx +c 中 ,得:{−9+3b +c =0−1−b +c =0 解得 {b =2c =3∴抛物线的解析式为y = -x 2+2x +3 …………2′∴C 点坐标为 (0 ,3 ) …………3′(2 )设直线BC 的解析式为y =mx +n ,那么有:{n =33m +n =0解得 {m =−1n =3∴直线BC 的解析式为y = -x +3 …………4′ ∵点E 、F 关于直线x =1对称 ,又E 到对称轴的距离为1 , ∴ EF =2∴F 点的横坐标为2 ,将x =2代入y = -x +3中 ,得:y = -2 +3 =1∴F (2 ,1 ) …………6′(3 )○1t =1 (假设有t = 32 ,那么扣1分) …………9′○2∵M (2t,0 ),MN ⊥x 轴∴Q (2t,3 -2t )∵△BOQ 为等腰三角形, ∴分三种情况讨论第|一种 ,当OQ =BQ 时 , ∵QM ⊥OB ∴OM =MB∴2t =3 -2t∴t = 34 …………10′第二种 ,当BO =BQ 时 ,在Rt △BMQ 中∵∠OBQ =45O∴ BQ=√2BM∴BO=√2BM即3=√2(3−2t)∴t=6−3√24…………11′第三种 ,当OQ=OB时 ,那么点Q、C重合 ,此时t =0 而t>0 ,故不符合题意综上述 ,当t =34秒或6−3√24秒时 ,△BOQ为等腰三角形. …………12′ (解法正确即可 )。
2019年湖北省鄂州市中考数学试卷附分析答案

一、选择题(每小题 3 分,共 30 分) 1.(3 分)﹣2019 的绝对值是( )
A.2019
B.﹣2019
2.(3 分)下列运算正确的是( )
C. ⺁
D.
⺁
A.a3•a2 =a6
B.a7÷a3 =a4
C.(﹣3a)2 =﹣6a2
D.(a﹣1)2=a2 ﹣1
3.(3 分)据统计,2019 年全国高考人数再次突破千万,高达 1031 万人.数据 1031 万用科
A.22n
B.22n﹣1
C.22n﹣2
D.22n﹣3
【解答】解:∵△A1B1A2、△A2B2A3…△AnBnAn+1 都是等边三角形,
∴A1B1∥A2B2∥A3B3∥…∥AnBn,B1A2∥B2A3∥B3A4∥…∥BnAn+1,△A1B1A2、△A2B2A3…
学去观赏戏曲表演,请用树状图或列表求所选 2 名同学中有男生的概率.
20.(8 分)已知关于 x 的方程 x2﹣2x+2k﹣1=0 有实数根.
第 4页(共 23页)
(1)求 k 的取值范围;
(2)设方程的两根分别是 x1、x2,且
x1•x2,试求 k 的值.
21.(8 分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块 大型宣传牌,如下图.小明同学为测量宣传牌的高度 AB,他站在距离教学楼底部 E 处 6 米远的地面 C 处,测得宣传牌的底部 B 的仰角为 60°,同时测得教学楼窗户 D 处的仰角 为 30°(A、B、D、E 在同一直线上).然后,小明沿坡度 i=1:1.5 的斜坡从 C 走到 F 处,此时 DF 正好与地面 CE 平行. (1)求点 F 到直线 CE 的距离(结果保留根号); (2)若小明在 F 处又测得宣传牌顶部 A 的仰角为 45°,求宣传牌的高度 AB(结果精确 到 0.1 米, 1.41, 1.73).
(高清版)2019年湖北省鄂州中考数学试卷

正确的,本题得以解决.
【解析】解:函数 y=-x k 与 y= k (k 为常数,且 k≠0 ), x
当 k>0 时, y=-x k 经过第一、二、四象限, y= k 经过第一、三象限,故选项 A、 x
B 错误, 当 k<0 时, y=-x k 经过第二、三、四象限, y= k 经过第二、四象限,故选项 C 正确,
(1)求 k 的取值范围;
(2)设方程的两根分别是
x1、x2
,且
x2 x1
x1 x2
x1 x2 ,试求 k
的值.
节目,以下是根据调查结果绘制的统计图表的一部分. 卷
类别 A
B
C
D
E
类型 新闻 体育 动画 娱乐 戏曲
上
人数 11
20
40
m
4
请你根据以上信息,回答下列问题:
(1)统计表中 m 的值为
,统计图中 n 的值为
数学试卷 第 4页(共 22页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ ___________
------------- -------------------- ----------------- ------------------ ------------------- ------------------ ------------------ --------------- --------------
,A 类对应扇形的圆
心角为
度;
答 (2)该校共有 1 500 名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;
(3)样本数据中最喜爱戏曲节目的有 4 人,其中仅有 1 名男生.从这 4 人中任选 2
2019年湖北省鄂州市中考数学试题(含解析)

2019年湖北省鄂州市中考试题解析(满分150分,考试时间120分钟)一、选择题(本大题共10题,每小题3分,共30分)1.(2019湖北鄂州,1,3分)﹣2019的绝对值是()A.2019 B.﹣2019 C.12019D.−12019【答案】A【解析】解:﹣2019的绝对值是2019.故选:A.【知识点】绝对值2.(2019湖北鄂州,2,3分)下列运算正确的是()A.a3•a2 =a6B.a7÷a3 =a4C.(﹣3a)2 =﹣6a2D.(a﹣1)2=a2 ﹣1【答案】B【解析】解:A、原式=a5,不符合题意;B、原式=a4,符合题意;C、原式=9a2,不符合题意;D、原式=a2﹣2a+1,不符合题意,故选:B.【知识点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;完全平方公式3.(2019湖北鄂州,3,3分)据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学记数法可表示为()A.0.1031×106B.1.031×107C.1.031×108D.10.31×109【答案】B【解析】解:将1031万用科学记数法可表示为1.031×107.故选:B.【知识点】科学记数法—表示较大的数4.(2019湖北鄂州,4,3分)如图是由7个小正方体组合成的几何体,则其左视图为()【答案】A【解析】解:从左面看易得其左视图为:故选:A.【知识点】简单组合体的三视图5.(2019湖北鄂州,5,3分)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为()A.45°B.55°C.65°D.75°【答案】B【解析】解:如图,作EF∥AB∥CD,∴∠2=∠AEF=35°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°﹣35°=55°,故选:B.【知识点】平行线的性质6.(2019湖北鄂州,6,3分)已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为()A.3 B.4.5 C.5.2 D.6【答案】C【解析】解:∵一组数据7,2,5,x,8的平均数是5,∴5=15(7+2+5+x+8),∴x=5×5﹣7﹣2﹣5﹣8=3,∴s2=15[(7﹣5)2+(2﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=5.2,故选:C .【知识点】算术平均数;方差7. (2019湖北鄂州,7,3分)关于x 的一元二次方程x 2﹣4x +m =0的两实数根分别为x 1、x 2,且x 1+3x 2=5,则m 的值为( )A .74B .75C .76D .0【答案】A【解析】解:∵x 1+x 2=4,∴x 1+3x 2=x 1+x 2+2x 2=4+2x 2=5,∴x 2=12,把x 2=12代入x 2﹣4x +m =0得:(12)2﹣4×12+m =0, 解得:m =74,故选:A .【知识点】一元二次方程根与系数的关系8. (2019湖北鄂州,8,3分)在同一平面直角坐标系中,函数y =﹣x +k 与y =k x (k 为常数,且k ≠0)的图象大致是( )【答案】C【解析】解:∵函数y =﹣x +k 与y =k x (k 为常数,且k ≠0),∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =k x 经过第一、三象限,故选项A 、B 错误,当k <0时,y =﹣x +k 经过第二、三、四象限,y =k x 经过第二、四象限,故选项C 正确,选项D 错误, 故选:C .【知识点】一次函数的图象;反比例函数的图象9.(2019湖北鄂州,9,3分)二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论:①abc <0;②3a +c >0;③(a +c )2﹣b 2<0;④a +b ≤m (am +b )(m 为实数).其中结论正确的个数为( )A.1个B.2个C.3个D.4个【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴右侧,∴b<0∵抛物线与y轴交于负半轴,∴c>0,∴abc<0,①正确;②当x=﹣1时,y>0,∴a﹣b+c>0,∵−b2a=1,∴b=﹣2a,把b=﹣2a代入a﹣b+c>0中得3a+c>0,所以②正确;③当x=1时,y<0,∴a+b+c<0,∴a+c<﹣b,∵a>0,c>0,﹣b>0,∴(a+c)2<(﹣b)2,即(a+c)2﹣b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+mb+c,即a+b≤m(am+b),所以④正确.故选:D.【知识点】二次函数图象与系数的关系10.(2019湖北鄂州,10,3分)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=√33x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A .22n √3B .22n ﹣1√3C .22n ﹣2√3D .22n ﹣3√3 【答案】D【解析】解:∵△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,∴A 1B 1∥A 2B 2∥A 3B 3∥…∥A n B n ,B 1A 2∥B 2A 3∥B 3A 4∥…∥B n A n +1,△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,∵直线y =√33x 与x 轴的成角∠B 1OA 1=30°,∠OA 1B 1=120°,∴∠OB 1A 1=30°,∴OA 1=A 1B 1,∵A 1(1,0),∴A 1B 1=1,同理∠OB 2A 2=30°,…,∠OB n A n =30°,∴B 2A 2=OA 2=2,B 3A 3=4,…,B n A n =2n ﹣1, 易得∠OB 1A 2=90°,…,∠OB n A n +1=90°,∴B 1B 2=√3,B 2B 3=2√3,…,B n B n +1=2n √3,∴S 1=12×1×√3=√32,S 2=12×2×2√3=2√3,…,S n =12×2n ﹣1×2n √3=22n−3√3; 故选:D .【知识点】规律型:点的坐标;一次函数的图象二、填空题(本大题共6小题,每小题3分,共18分)11. (2019湖北鄂州,11,3分)因式分解:4ax 2﹣4ax +a = .【答案】a (2x ﹣1)2【解析】解:原式=a (4x 2﹣4x +1)=a (2x ﹣1)2,故答案为:a (2x ﹣1)2【知识点】提公因式法与公式法的综合运用12. (2019湖北鄂州,12,3分)若关于x 、y 的二元一次方程组{x −3y =4m +3x +5y =5的解满足x +y ≤0,则m 的取值范围是 .【答案】m ≤﹣2【解析】解:{x −3y =4m +3①x +5y =5②, ①+②得2x +2y =4m +8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤﹣2.故答案是:m≤﹣2.【知识点】二元一次方程组的解;解一元一次不等式13.(2019湖北鄂州,13,3分)一个圆锥的底面半径r=5,高h=10,则这个圆锥的侧面积是.【答案】25√5π【解析】解:∵圆锥的底面半径r=5,高h=10,∴圆锥的母线长为√52+102=5√5,∴圆锥的侧面积为π×5√5×5=25√5π,故答案为:25√5π.【知识点】圆锥的计算14.(2019湖北鄂州,14,3分)在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=00√A+B ,则点P(3,﹣3)到直线y=−23x+53的距离为.【答案】813√13.【解析】解:∵y=−23x+53∴2x+3y﹣5=0∴点P(3,﹣3)到直线y=−23x+53的距离为:√222=813√13,故答案为:813√13.【知识点】一次函数的性质;一次函数的图象15.(2019湖北鄂州,15,3分)如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P点是直线l上一点,当△APB为直角三角形时,则BP=.【答案】2或2√3或2√7【解析】解:∵AO=OB=2,∴当BP=2时,∠APB=90°,当∠P AB=90°时,∵∠AOP=60°,∴AP=OA•tan∠AOP=2√3,∴BP=√AB2+AP2=2√7,当∠PBA=90°时,∵∠AOP=60°,∴BP=OB•tan∠1=2√3,故答案为:2或2√3或2√7.【知识点】勾股定理16.(2019湖北鄂州,16,3分)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为.【答案】16【解析】解:连接OC并延长,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB 的长度最大,∵C(3,4),∴OC=√32+42=5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OA=OB=8,∵AB是直径,∴∠APB=90°,∴AB长度的最大值为16,故答案为16.【知识点】坐标与图形性质;圆周角定理;切线的性质三、解答题(本大题共9小题,满分72分,各小题都必须写出解答过程)17. (2019湖北鄂州,17,8分)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值. (x 2−2xx 2−4x+4−4x−2)÷x−4x 2−4【思路分析】先化简分式,然后将x 的值代入计算即可. 【解题过程】解:原式=[x(x−2)(x−2)−4x−2]÷x−4x 2−4 =[x x−2−4x−2])÷x−4x 2−4=x−4x−2•(x−2)(x+2)x−4=x +2∵x ﹣2≠0,x ﹣4≠0,∴x ≠2且x ≠4,∴当x =﹣1时,原式=﹣1+2=1.【知识点】分式的化简求值18. (2019湖北鄂州,18,8分)如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB 、CD 边于点E 、F .(1)求证:四边形DEBF 是平行四边形;(2)当DE =DF 时,求EF 的长.【思路分析】(1)根据矩形的性质得到AB ∥CD ,由平行线的性质得到∠DFO =∠BEO ,根据全等三角形的性质得到DF =BE ,于是得到四边形BEDF 是平行四边形;(2)推出四边形BEDF 是菱形,得到DE =BE ,EF ⊥BD ,OE =OF ,设AE =x ,则DE =BE =8﹣x 根据勾股定理即可得到结论.【解题过程】解:(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO ,又因为∠DOF =∠BOE ,OD =OB ,∴△DOF ≌△BOE (ASA ),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=7 4,∴DE=8−74=254,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=√62+82=10,∴OD=12BD=5,在Rt△DOE中,根据勾股定理,有DE2 ﹣OD2=OE2,∴OE=√(254)2−52=154,∴EF=2OE=15 2.【知识点】全等三角形的判定与性质;平行四边形的判定与性质;矩形的性质;勾股定理19.(2019湖北鄂州,19,8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E类型新闻体育动画娱乐戏曲人数11 20 40 m 4请你根据以上信息,回答下列问题:(1)统计表中m的值为,统计图中n的值为,A类对应扇形的圆心角为度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.【思路分析】(1)先根据B 类别人数及其百分比求出总人数,再由各类别人数之和等于总人数求出m ,继而由百分比概念得出n 的值,用360°乘以A 类别人数所占比例即可得;(2)利用样本估计总体思想求解可得.【解题过程】解:(1)∵样本容量为20÷20%=100,∴m =100﹣(11+20+40+4)=25,n %=25100×100%=25%,A 类对应扇形的圆心角为360°×11100=39.6°, 故答案为:25、25、39.6.(2)1500×20100=300(人) 答:该校最喜爱体育节目的人数约有300人;(3)画树状图如下:共有12种情况,所选2名同学中有男生的有6种结果,所以所选2名同学中有男生的概率为12. 【知识点】用样本估计总体;统计表;扇形统计图;列表法与树状图法20. (2019湖北鄂州,20,8分)已知关于x 的方程x 2﹣2x +2k ﹣1=0有实数根.(1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且x 2x 1+x 1x 2=x 1•x 2,试求k 的值.【思路分析】(1)根据一元二次方程x 2﹣2x +2k ﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k ﹣1)≥0,求出k 的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解题过程】解:(1)解:∵原方程有实数根,∴b 2﹣4ac ≥0∴(﹣2)2﹣4(2k ﹣1)≥0∴k ≤1(2)∵x 1,x 2是方程的两根,根据一元二次方程根与系数的关系,得:x 1+x 2 =2,x 1 •x 2 =2k ﹣1又∵x 2x 1+x 1x 2=x 1•x 2, ∴x 12+x 22x 1⋅x 2=x 1⋅x 2∴(x 1+x 2)2﹣2x 1 x 2 =(x 1 •x 2)2∴22﹣2(2k ﹣1)=(2k ﹣1)2解之,得:k 1=√52,k 2=−√52.经检验,都符合原分式方程的根∵k ≤1∴k =−√52.【知识点】一元二次方程及应用21. (2019湖北鄂州,21,8分)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB ,他站在距离教学楼底部E 处6米远的地面C 处,测得宣传牌的底部B 的仰角为60°,同时测得教学楼窗户D 处的仰角为30°(A 、B 、D 、E 在同一直线上).然后,小明沿坡度i =1:1.5的斜坡从C 走到F 处,此时DF 正好与地面CE 平行.(1)求点F 到直线CE 的距离(结果保留根号);(2)若小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果精确到0.1米,√2≈1.41,√3≈1.73).【思路分析】(1)过点F 作FG ⊥EC 于G ,依题意知FG ∥DE ,DF ∥GE ,∠FGE =90° ;得到四边形DEFG 是矩形;根据矩形的性质得到FG =DE ;解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解题过程】解:(1)过点F 作FG ⊥EC 于G ,依题意知FG ∥DE ,DF ∥GE ,∠FGE =90° ;∴四边形DEFG 是矩形;∴FG =DE ;在Rt △CDE 中,DE =CE •tan ∠DCE ;=6×tan30 o =2√3 (米);∴点F 到地面的距离为2√3 米;(2)∵斜坡CF i=1:1.5.∴Rt△CFG中,CG=1.5FG=2√3×1.5=3√3,∴FD=EG=3√3+6.在Rt△BCE中,BE=CE•tan∠BCE=6×tan60o=6√3.∴AB=AD+DE﹣BE.=3√3+6+2√3−6√3=6−√3≈4.3 (米).答:宣传牌的高度约为4.3米.【知识点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题22.(2019湖北鄂州,22,10分)如图,P A是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△P AB的内心;(3)若cos∠P AB=√1010,BC=1,求PO的长.【思路分析】(1)连结OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;(2)连结AE,根据切线的性质定理得到∠P AE+∠OAE=90°,证明EA平分∠P AD,根据三角形的内心的概念证明即可;(3)根据余弦的定义求出OA,证明△P AO∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解题过程】解:(1)证明:连结OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,{OA=OB∠AOP=∠POBPO=PO,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵P A为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连结AE,∵P A为⊙O的切线,∴∠P AE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠P AE=∠DAE,即EA平分∠P AD,∵P A、PD为⊙O的切线,∴PD平分∠APB∴E为△P AB的内心;(3)解:∵∠P AB+∠BAC=90°,∠C+∠BAC=90°,∴∠P AB=∠C,∴cos∠C=cos∠P AB=√10 10,在Rt△ABC中,cos∠C=BCAC=1AC=√1010,∴AC=√10,AO=√10 2,∵△P AO∽△ABC,∴POAC=AOBC,∴PO=AOBC⋅AC=√1021⋅√10=5.【知识点】圆周角定理;切线的判定与性质;三角形的内切圆与内心;解直角三角形23.(2019湖北鄂州,23,10分)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?【思路分析】(1)直接利用销售单价每降1元,则每月可多销售5条得出y与x的函数关系式;(2)利用销量×每件利润=总利润进而得出函数关系式求出最值;(3)利用总利润=4220+200,求出x的值,进而得出答案.【解题过程】解:(1)由题意可得:y=100+5(80﹣x)整理得y=﹣5x+500;(2)由题意,得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500∵a=﹣5<0∴w有最大值即当x=70时,w最大值=4500∴应降价80﹣70=10(元)答:当降价10元时,每月获得最大利润为4500元;(3)由题意,得:﹣5(x﹣70)2+4500=4220+200解之,得:x 1=66,x 2 =74,∵抛物线开口向下,对称轴为直线x =70,∴当66≤x ≤74时,符合该网店要求而为了让顾客得到最大实惠,故x =66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.【知识点】一元二次方程的应用;二次函数的应用24. (2019湖北鄂州,24,12分)如图,已知抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点,AB =4,交y 轴于点C ,对称轴是直线x =1.(1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线x =1的对称点F 正好落在BC 上,求点F 的坐标;(3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t (t >0)秒.①若△AOC 与△BMN 相似,请直接写出t 的值;②△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.【思路分析】(1)将A 、B 关坐标代入y =﹣x 2+bx +c 中,即可求解;(2)确定直线BC 的解析式为y =﹣x +3,根据点E 、F 关于直线x =1对称,即可求解;(3)①△AOC 与△BMN 相似,则MB MN =OA OC 或OC OA ,即可求解;②分OQ =BQ 、BO =BQ 、OQ =OB 三种情况,分别求解即可.【解题过程】解:(1))∵点A 、B 关于直线x =1对称,AB =4,∴A (﹣1,0),B (3,0),代入y =﹣x 2+bx +c 中,得:{−9+3b +c =0−1−b +c =0,解得{b =2c =3, ∴抛物线的解析式为y =﹣x 2+2x +3,∴C 点坐标为(0,3);(2)设直线BC 的解析式为y =mx +n ,则有:{n =33m +n =0,解得{m =−1n =3, ∴直线BC 的解析式为y =﹣x +3,∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴EF=2,∴F点的横坐标为2,将x=2代入y=﹣x+3中,得:y=﹣2+3=1,∴F(2,1);(3)①如下图,MN=﹣4t2+4t+3,MB=3﹣2t,△AOC与△BMN相似,则MBMN =OAOC或OCOA,即:3−2t−4t2+4t+3=3或13,解得:t=32或−13或3或1(舍去32、−13、3),故:t=1;②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),∵△BOQ为等腰三角形,∴分三种情况讨论,第一种,当OQ=BQ时,∵QM⊥OB∴OM=MB∴2t=3﹣2t∴t=3 4;第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ=45°,∴BQ=√2BM,∴BO=√2BM,即3=√2(3−2t),∴t=6−3√24;第三种,当OQ=OB时,则点Q、C重合,此时t=0 而t>0,故不符合题意综上述,当t=34秒或6−3√24秒时,△BOQ为等腰三角形.【知识点】二次函数综合;相似三角形的性质与判定;等腰三角形;。
湖北省鄂州市2019年中考数学试题

根与系数的关系为:x1+x2=- b ,x1•x2= c 是解题的关键.
a
a
4.下列运算正确的是( )
试卷第 2 页,总 26 页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
第 I 卷(选择题)
请点击修改第 I 卷的文字说明
评卷人 得分
一、单选题
1.在同一平面直角坐标系中,函数 y=x+k 与 y k (k 为常数,k≠0)的图象大致是 x
()
A.
B.
C.
D.
【答案】B 【解析】 【分析】 【详解】 选项 A 中,由一次函数 y=x+k 的图象知 k<0,由反比例函数 y= 的图象知 k>0,矛盾,
解:A、原式 a 5 ,不符合题意;
B、原式 a 4 ,符合题意;
C、原式 9 a 2 ,不符合题意;
D、原式 a 2 2 a 1 ,不符合题意,
故选:B. 【点睛】 此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 5.据统计,2019 年全国高考人数再次突破千万,高达 1031 万人.数据 1031 万用科学 记数法可表示为( )
绝密★启用前
湖北省鄂州市 2019 年中考数学试题
试卷副标题
考试范围:xxx;考试时间:100 分钟;命题人:xxx
学校:___________姓名:___________班级:___________考号:___________
题号
一
二
三
总分
得分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2019•鄂州)的绝对值的相反数是()A.B.C.2D.﹣2考点:绝对值;相反数.分析:根据绝对值的定义,这个数在数轴上的点到原点的距离,﹣的绝对值为;再根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数为﹣;解答:解:﹣的绝对值为:|﹣|=,的相反数为:﹣,所以﹣的绝对值的相反数是为:﹣,故选:B.点评:此题考查了绝对值及相反数,关键明确:相反数的定义,只有符号不同的两个数是互为相反数;绝对值的定义,这个数在数轴上的点到原点的距离.2.(3分)(2019•鄂州)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=﹣8x6,错误;B、原式=9a2﹣6ab+b2,错误;C、原式=x5,正确;D、原式不能合并,错误,故选C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(3分)(2019•鄂州)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.点评:本题考查简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)(2019•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°考点:平行线的性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.(3分)(2019•鄂州)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±考点:反比例函数图象上点的坐标特征;等边三角形的性质.分析:分两种情况:点A在第一象限或第二象限,从而得出点B的坐标,再根据△AOB为等边三角形,△AOB的边长为2,求出点A坐标,即可得出k值.解答:解:当点A在第一象限时,过A作AC⊥OB于C,如图1,∵OB=2,∴B点的坐标是(2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(1,),∵点A为双曲线y=(k≠0)上一点,∴k=;当点A在第二象限时,过A作AC⊥OB于C,如图2,∵OB=2,∴B点的坐标是(﹣2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(﹣1,),∵点A为双曲线y=(k≠0)上一点,∴k=﹣;故选D.点评:本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,是基础题难度不大.6.(3分)(2019•鄂州)圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°考点:圆锥的计算.专题:计算题.分析:设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.解答:解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选D.点评:本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)(2019•鄂州)在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当=()时,四边形BHDG为菱形.A.B.C.D.考点:菱形的判定.分析:首先根据菱形的性质可得BG=GD,然后设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x ﹣y,再根据勾股定理可得y2+x2=(3x﹣y)2,再整理得=,然后可得y=x,再进一步可得的值.解答:解:∵四边形BGDH是菱形,∴BG=GD,设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x﹣y,∵在Rt△AGB中,AG2+AB2=GB2,∴y2+x2=(3x﹣y)2,整理得:=,y=x,∴===,故选:C.点评:此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边形相等.8.(3分)(2019•鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2019年达到2160元.设李师傅的月退休金从2011年到2019年年平均增长率为x,可列方程为()A.2019(1﹣x)2=1500 B.1500(1+x)2=2160C.1500(1﹣x)2=2160 D.1500+1500(1+x)+1500(1+x)2=2160考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该厂缴税的年平均增长率为x,那么根据题意可用x表示今年缴税数,然后根据已知可以得出方程.解答:解:如果设李师傅的月退休金从2011年到2019年年平均增长率为x,那么根据题意得今年缴税1500(1+x)2,列出方程为:1500(1+x)2=2160.故选B.点评:考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.(3分)(2019•鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形A n B n C n D n面积为.A.①②③B.②③④C.①③④D.①②③④考点:中点四边形.专题:规律型.分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;∴四边形A3B3C3D3是矩形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故①②正确;③根据中位线的性质易知,A7B7═A5B5A3B3=A1B1=AC,B7C7=B5C5=B3C3=B1C1=BD,∴四边形A7B7C7D7的周长是2×(a+b)=,故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是,故本选项错误;综上所述,②③①正确.故选A.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.10.(3分)(2019•鄂州)已知抛物线的顶点为y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A (1,y A),B(0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.3考点:二次函数的性质.专题:计算题.分析:由0<2a<b得x0=﹣<﹣1,作AA1⊥x轴于点A1,CD⊥y轴于点D,连接BC,过点A 作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则AA1=y A,OA1=1,BD=y B ﹣y C,CD=1,易证得Rt△AFA1∽Rt△BCD,利用相似比得到=;过点E作EG⊥AA1于点G,易得△AEG∽△BCD,利用相似比得=,再把点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)代入抛物线y=ax2+bx+c得y A=a+b+c,y B=c,y C=a ﹣b+c,y E=ax12+bx1+c,所以=1﹣x1,整理得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),由于y0≥0恒成立,则有x2≤x1<﹣1,所以1﹣x2≥1﹣x1,即1﹣x2≥3,于是得到≥3,所以的最小值为3.解答:解:由0<2a<b,得x0=﹣<﹣1,由题意,如图,过点A作AA1⊥x轴于点A1,则AA1=y A,OA1=1,连接BC,过点C作CD⊥y轴于点D,则BD=y B﹣y C,CD=1,过点A作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则∠FAA1=∠CBD.于是Rt△AFA1∽Rt△BCD,所以=,即=,过点E作EG⊥AA1于点G,易得△AEG∽△BCD.有=,即=,∵点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)在抛物线y=ax2+bx+c上,得y A=a+b+c,y B=c,y C=a﹣b+c,y E=ax12+bx1+c,∴=1﹣x1,化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,则1﹣x2≥1﹣x1,即1﹣x2≥3.∴≥3,∴的最小值为3.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x 的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题:(每小题3分,共18分)11.(3分)(2019•鄂州)的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.(3分)(2019•鄂州)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为144.考点:算术平均数.分析:先根据平均数的定义由五次成绩的平均数为144得出这五次成绩的总数为144×5,再根据平均数的定义即可求出他七次练习成绩的平均数.解答:解:∵小林五次成绩(143、145、144、146、a)的平均数为144,∴这五次成绩的总数为144×5=720,∵小林自己又记载了两次练习成绩为141、147,∴他七次练习成绩的平均数为(720+141+147)÷7=1008÷7=144.故答案为144.点评:本题考查了平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.(3分)(2019•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x 的解集为﹣2≤x≤﹣1.考点:一次函数与一元一次不等式.专题:数形结合.分析:先确定直线OA的解析式为y=﹣2x,然后观察函数图象得到当﹣2≤x≤﹣1时,y=kx+b的图象在x轴上方且在直线y=﹣2x的下方.解答:解:直线OA的解析式为y=﹣2x,当﹣2≤x≤﹣1时,0≤kx+b≤﹣2x.故答案为﹣2≤x≤﹣1.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.14.(3分)(2019•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为≤k≤3.考点:两条直线相交或平行问题.专题:计算题.分析:由于当x=1时,y=0,所以直线y=kx﹣k过定点(1,0),因为直线y=kx﹣k(k≠0)与线段AB有交点,所以当直线y=kx﹣k过B(4,7)时,k值最小;当直线y=kx﹣k过A(2,3)时,k值最大,然后把B点和A点坐标代入y=kx﹣k可计算出对应的k的值,从而得到k的取值范围.解答:解:∵y=k(x﹣1),∴x=1时,y=0,即直线y=kx﹣k过定点(1,0),∵直线y=kx﹣k(k≠0)与线段AB有交点,∴当直线y=kx﹣k过B(4,7)时,k值最小,则4k﹣k=7,解得k=;当直线y=kx﹣k过A (2,3)时,k值最大,则2k﹣k=3,解得k=3,∴k的取值范围为≤k≤3.故答案为≤k≤3.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.(3分)(2019•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积16﹣4﹣.考点:扇形面积的计算;正方形的性质.分析:如解答图,作辅助线,利用图形的对称性求解.解题要点是求出弓形OmC的面积.解答:解:如图,设点O为弧的一个交点.连接OA、OB,则△OAB为等边三角形,∴∠OBC=30°.过点O作EF⊥CD,分别交AB、CD于点E、F,则OE为等边△OAB的高,∴OE=AB=,∴OF=2﹣.过点O作PQ⊥BC,分别交AD、BC于点P、Q,则OQ=1.S弓形OmC=S扇形OBC﹣S△OBC=﹣×2×1=﹣1.∴S阴影=4(S△OCD﹣2S弓形OmC)=4[×2×(2﹣)﹣2(﹣1)]=16﹣4﹣.故答案为:16﹣4﹣.点评:本题考查了扇形的面积公式和正方形性质的+应用,主要考查学生的计算能力,题目比较好,难度不大.16.(3分)(2019•鄂州)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为﹣1.考点:正方形的性质;二次函数的最值;全等三角形的判定与性质.分析:如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°设CM=x,CN=y,MN=z,根据x2+y2=z2,和x+y+z=2,整理根据△=4(z﹣2)2﹣32(1﹣z)≥0可以解题.解答:解:延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,∴△AMN≌△AML,∴∠MAN=∠MAL=45°,设CM=x,CN=y,MN=zx2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z∴(2﹣y﹣z)2+y2=z2,整理得2y2+(2z﹣4)y+(4﹣4z)=0,∴△=4(z﹣2)2﹣32(1﹣z)≥0,即(z+2+2)(z+2﹣2)≥0,又∵z>0,∴z≥2﹣2,当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=2﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.故答案为﹣1.点评:本题考查了勾股定理在直角三角形中的应用,考查了正方形各边相等,各内角是直角的性质,本题求证三角形全等是解题的关键.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(8分)(2019•鄂州)先化简,再求值:(+)÷,其中a=2﹣.考点:分式的化简求值.分析:将括号内的部分通分,相加后再将除法转化为乘法,然后约分.解答:解:原式=(+)•=•=•=,当a=2﹣时,原式==﹣.点评:本题考查了分式的化简求值,熟悉约分、通分、因式分解是解题关键.18.(8分)(2019•鄂州)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.解答:证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,∴∠DMB=∠BCD=90°,∴BH⊥DE.点评:本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.19.(8分)(2019•鄂州)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A 90<S≤100 xB 80<S≤90 15C 70<S≤80 10D S≤70 3合计30根据上面提供的信息回答下列问题(1)表中x=2,甲班学生成绩的中位数落在等级B中,扇形统计图中等级D部分的扇形圆心角n=36°.(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).考点:频数(率)分布表;扇形统计图;列表法与树状图法.分析:(1)利用总人数30减去其它各组的人数就是x的值,根据中位数的定义求得中位数的值,利用360°乘以对应的比例就可求得圆心角的度数;(2)甲班的人用甲表示,乙班的人用乙表示,利用列举法即可求得概率.解答:解:(1)x=30﹣15﹣10﹣3=2;中位数落在B组;等级D部分的扇形圆心角n=360°×=36°;故答案是:2,B,36°;(2)乙班A等级的人数是:30×10%=3,则甲班的二个人用甲表示,乙班的三个人用乙表示.,共有20种情况,则抽取到两名学生恰好来自同一班级的概率是:=.点评:考查了频数(率)分布表,本题用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.20.(8分)(2019•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.考点:根的判别式;根与系数的关系.分析:(1)根据关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,得出m≠0且(﹣2m)2﹣4•m•(m﹣2)≥0,求出m的取值范围即可;(2)根据方程两实根为x1,x2,求出x1+x2和x1•x2的值,再根据|x1﹣x2|=1,得出(x1+x2)2﹣4x1x2=1,再把x1+x2和x1•x2的值代入计算即可.解答:解:(1)∵关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,∴m≠0且△≥0,即(﹣2m)2﹣4•m•(m﹣2)≥0,解得m≥0,∴m的取值范围为m>0.(2)∵方程两实根为x1,x2,∴x1+x2=2,x1•x2=,∵|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,∴22﹣4×=1,解得:m=8;经检验m=8是原方程的解.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根.21.(9分)(2019•鄂州)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF 中可求出AB的长度.解答:解:(1)过点A作AE⊥CB于点E,设AE=x,在Rt△ACE中,∠C=30°,∴CE=x,在Rt△ADE中,∠ADE=45°,∴DE=AE=x,∴CE﹣DE=10,即x﹣x=10,解得:x=5(+1),∴AD=x=5+5答:AD的长为(5+5)米.(2)由(1)可得AC=2AE=(10+10)米,过点B作BF⊥AC于点F,∵∠1=75°,∠C=30°,∴∠CAB=45°,设BF=y,在Rt△CBF中,CF=BF=y,在Rt△BFA中,AF=BF=y,∴y+y=(10+10),解得:y=10,在Rt△ABF中,AB==10米.答:树高AB的长度为10米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用锐角三角函数及已知线段表示未知线段,有一定难度.22.(9分)(2019•鄂州)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD 于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若=,求cos∠DAB.考点:切线的判定.分析:(1)连接OC,推出∠DAC=∠CAB,∠OAC=∠OCA,求出∠DAC=∠OCA,得出OC∥AD,推出OC⊥DC,根据切线的判定判断即可;(2)连接BC,可证明△ACD∽△ABC,得出比例式,求出BC,求出圆的直径AB,再根据勾股定理得出CE,即可求出答案.解答:(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线;(2)解:连接BC,∵AB为直径,∴∠ACB=90°,∵AC平分∠BAD,∴∠CAD=∠CAB,∵=,∴令CD=3,AD=4,得AC=5,∴=,∴BC=,由勾股定理得AB=,∴OC=,∵OC∥AD,∴=,∴=,解得AE=,∴cos∠DAB===.点评:本题考查了切线的判定以及角平分线的定义、勾股定理和解直角三角形,是中学阶段的重点内容.23.(10分)(2019•鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?考点:二次函数的应用.分析:(1)由表格可以看出销售量p件与销售的天数x成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价﹣成本,分别求出在1≤x<25和25≤x≤50时,求得y与x的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可.解答:解:(1)设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120;(2)当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+﹣40)(﹣2x+120)=﹣2250;(3)当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y=﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,于是,x=25时,y=﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元.点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.(12分)(2019•鄂州)如图,在平面直角坐标系xOy中,一次函数y=x+m的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C 两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究+是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1.若当1<x≤m时,y2≥﹣x 恒成立,求m的最大值.考点:二次函数综合题.分析:(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F•M2F=M1M2,最后可求+=1;(3)设y2=﹣x2的两根分别为x0,x0,因为抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大,所以当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.解答:解:(1)∵一次函数y=x+m的图象与x轴交于A(﹣1,0)∴0=﹣+m∴m=.∴一次函数的解析式为y=x+.∴点C的坐标为(0,).∵y=ax2+bx+c(a≠0)经过A、C两点且对称轴是x=2,∴,解得∴y=﹣x2+x+.∴m的值为,抛物线C1的函数表达式为y=﹣x2+x+.(2)要使△ADF的周长取得最小,只需AF+DF最小连接BD交x=2于点F,因为点B与点A关于x=2对称,根据轴对称性质以及两点之间线段最短,可知此时AF+DF最小.令y=﹣x2+x+中的y=0,则x=﹣1或5∴B(5,0)∵D(0,)∴直线BD解析式为y=﹣x+,∴F(2,).令过F(2,)的直线M1M2解析式为y=kx+b则=2k+b,∴b=﹣2k则直线M1M2的解析式为y=kx+﹣2k.解法一:由得x2﹣(4﹣4k)x﹣8k=0∴x1+x2=4﹣4k,x1x2=﹣8k∵y1=kx1+﹣2k,y2=kx2+﹣2k∴y1﹣y2=k(x1﹣x2)∴M1M2======4(1+k2)M1F===同理M2F=∴M1F•M2F=(1+k2)=(1+k2)=(1+k2)=4(1+k2)=M1M2∴+===1;解法二:∵y=﹣x2+x+=﹣(x﹣2)2+,∴(x﹣2)2=9﹣4y设M1(x1,y1),则有(x1﹣2)2=9﹣4y1.∴M1F===﹣y1;设M2(x2,y2),同理可求得:M2F=﹣y2.∴+===①.直线M1M2的解析式为y=kx+﹣2k,即:y﹣=k(x﹣2).联立y﹣=k(x﹣2)与抛物线(x﹣2)2=9﹣4y,得:y2+(4k2﹣)y+﹣9k2=0,∴y1+y2=﹣4k2,y1y2=﹣9k2,代入①式,得:+==1.(3)设y2=﹣x2的两根分别为x0,x0,∵抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大∴当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得∴当x0=1时,对应的x0即为m的最大值将x0=1代入y2=﹣(x﹣h)2﹣x得(1﹣h)2=4∴h=3或﹣1(舍)将h=3代入y2=﹣(x﹣h)2=﹣x有﹣(x﹣3)2=﹣x∴x0=1,x0=9.∴m的最大值为9.点评:本题主要考查运用待定系数法求函数解析式、一元二次方程根与系数的关系及平面直角坐标系中两点距离公式的综合运用,对计算要求较高.。