学业水平测试数学模拟卷

合集下载

甘肃省2023年普通高中学业水平合格性考试模拟测试数学试题

甘肃省2023年普通高中学业水平合格性考试模拟测试数学试题

19.在正四棱锥 P ABCD 中, E, F 分别是 AB, AD 的中点,过直线 EF 的平面 分别与
侧棱 PB, PD 交于点 M , N .
(1)求证: MN //BD ; (2)求证: MN PC .
20.已知函数 f (x) 是定义在2,2 上的奇函数,当 0 x 2 时, f (x) x 2 2x . (1)求 f 1 (2)求: 2 x 0 时,函数 f x 的解析式;

A. z 2
B. z 的实部为 -1
C. y x3 C. z 的虚部为 i
D.
y
1 x
D.z 的共轭复数为
1 i
3.已知 a , b 是实数,则“ a 0 且 b 0 ”是“ a b 0 且 ab 0 ”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
词,此时 L 表示在时间 t 内该生能够记忆的单词个数.已知该生在 5min 内能够记忆 20 个
单词,则 k 的值约为( ln 0.9 0.105 , ln 0.1 2.303 )( )
A.0.021
B.0.221
C.0.461
D.0.661
二、填空题
13.命题 p : x 0, ( 1 )x 1的否定形式为
A.48
B.60
C.72
D.84
8.在 ABC 中, A, B,C 所对的边分别为 a,b, c ,若 a 1,b 7, c 3 ,则 B ( )
A.
5 6
B. 6
C. 3
D.
2 3
9.设函数
f
x
= sin
2x
π 3
,则下列结论正确的是

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03

一、单选题二、多选题1.已知,且,则( )A.B.C.D.2. 我国成功申办2022年第24届冬季奥林匹克运动会,届时冬奥会的高山速降运动将给我们以速度与激情的完美展现,某选手的速度服从正态分布,若在内的概率为,则他速度超过的概率为A.B.C.D.3. 已知函数恰有两个零点,则的取值范围为( )A.B.C.D.4.要得到函数的图象,只需将函数的图象上所有点的( )A.横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B.横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C .横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D .横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度5. 已知,,,则( )A.B.C.D.6. 若关于的不等式在内有解,则实数的取值范围是( )A.B.C.D.7. 若命题,,则是A .,B .,C .,D .,8. 设全集,,,则( )A.B.C.D.9. 已知函数的部分图象如图所示,将函数的图象先关于轴对称,然后再向左平移个单位长度后得到函数的图象,则下列说法正确的是()A.B.C .函数为奇函数D .函数在区间上单调递增10. 在数列中,若对于任意,都有,则( )A .当或时,数列为常数列B .当时,数列为递减数列,且C .当时,数列为递增数列D .当时,数列为单调数列江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03三、填空题四、解答题11.如图是某质点作简谐运动的部分图象,位移(单位:)与时间(单位:)之间的函数关系式是,则下列命题正确的是()A.该简谐运动的初相为B.该简谐运动的频率为C .前6秒该质点的位移为D .当时,位移随着时间的增大而增大12. 已知实数a ,b满足,则下列结论正确的是( )A.B .当时,C.D.13. 二项式的展开式中第四项的系数为______.14. 已知,则______.15.已知数列满足,令,数列的前项和为,若对任意的恒成立,则实数的取值范围为______.16. 已知函数为R 上的奇函数.(1)求实数的值;(2)若不等式对任意恒成立,求实数的取值范围.17. 设函数.(1)求的单调减区间;(2)若函数,求函数在区间上的最值.18. 如图,在平面四边形ABCD 中,,,,以BD为折痕把折起,使点A 到达点P 的位置,且.(1)证明:;(2)若M 为PB的中点,二面角的大小为60°,求直线PC 与平面MCD 所成角的正弦值.19. 从①,②这两个条件中任选一个,补充到下面已知条件中进行解答.已知中,角A,B,C的对边分别为a,b,c,且______.(填写①或②,只可以选择一个标号,并依此条件进行解答.)(1)求B;(2)若,的面积为,求a.20. 已知向量,函数的最大值为.(Ⅰ)求;(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求在上的值域.21. 设数列满足(1)求的通项公式;(2)设,记,证明:.。

浙江温州2023-2024学年上学期学业水平检测九年级数学模拟试卷+答案

浙江温州2023-2024学年上学期学业水平检测九年级数学模拟试卷+答案

温州市2023学年第一学期学业水平检测九年级数学模拟试卷学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每题3分,共30分)的半径为2.已知OA.P点5.如图,已知圆心角A.156°A .B .C .D .7.已知抛物线21y x x −−,与x 轴的一个交点为()0m ,,则代数式22023m m −+的值为( ) A .2021 B .2022 C .2023 D .20248.如图,将ABD △绕顶点B 顺时针旋转36°得到CBE △,且点C 刚好落在线段AD 上,若30CBD ∠=°,则E∠的度数是( )A .42°B .44°C .46°D .48°9.如图,Rt ABC △中,90BAC ∠=°,AD BC ⊥,垂足为D ,点E ,F 分别是AB ,AC 边上的动点,DE DF ⊥,若5BC =, 3.2CD =,那么DE 与DF 的比值是( )A .0.6B .0.75C .0.8D .不确定的值10.已知抛物线()20y ax bx c a ++≠与x 轴的交点为()0A 1,和()30B ,,点()111P x y ,,()222P x y ,是抛物线上不同于A B ,的两个点,记1P AB △的面积为1S ,2P AB △的面积为2S ,则下列结论正确的是( )二、填空题(每题分,共分)11.如图,ABC 中,40A ∠=°,60C ∠=°,O 与边AB ,AC 的另一个交点分别为D , E .则AED ∠的大小为 °.12.下表记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数 100 200 500 1000 2000 成活的棵数 81 156 395 8001600 成活的频率 0.81 0.78 0.790.8 0.8 由此估计这种苹果树苗的移植成活的概率为 .13.已知二次函数235y x =−,当14x −≤≤时,y 的最小值为 .14.如图(1)是一座石拱桥,它是一个横断面为抛物线形状的拱桥,当水面在图示位置时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的关系式是 .15.如图,已知D 、E 、F 分别是ABC 的边AB AC BC 、、上的点,DE BC EF AB ∥,∥,ADE EFC △、△的面积分别为1、4,四边形BFED 的面积为 .16.如图,△ABC 是⊙O 的内接三角形,∠A =30°,3BC =,则⊙O 的半径为 .17.如图1,筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且O 被水面截得的弦AB 长为4m ,O 的半径长为3m ,若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是 m .18.如图,在Rt ABC △中,90ACB ∠=°,点D 在AB 上,点E 为BC 上的动点,将BDE △沿DE 翻折得到FDE ,EF 与AC 相交于点G ,若3AB AD =,3AC =,6BC =,0.8CG =,则CE 的值为 .三、解答题(46分)19.(6分)如图,点D 是△ABC 的边AB 上一点,∠ABC =∠ACD .(1)求证:△ABC ∽△ACD ;(2)当AD =2,AB =3时,求AC 的长.20.(6分)已知二次函数2y x bx c ++=-经过点30A (,)与03B (,). (1)求b ,c 的值.(2)求该二次函数图象的顶点坐标.21.如图所示,已知AB 为O 的直径,CD 是弦,且AB CD ⊥于点E .连接AC 、OC BC 、.(1)求证:ACO BCD ∠=∠;(2)若96AE BE CD ==,,求O 的直径.(1)请用画树状图或列表的方法,求抽出的两张卡片上的图案都是片分别记为1A 、2A ,图案为“黑脸”的卡片记为(2)若第一次抽出后不放回,请直接写出求抽出的两张卡片上的图案都是y24.(8分)如图,ABC 内接于⊙O ,过点O 作OH BC ⊥于点H ,延长OH 交⊙O 于点D ,连接AD 、BD ,AD 与BC 交于点E ,9AD =(1)求证:BAD CAD ∠=∠. (2)若OH DH =.①求BAC ∠的度数.②若⊙O 的半径为6,求DE 的长.(3)设BD x =,AB CE y ⋅=,求y 关于x 的函数表达式.参考答案:答案第1页,共1页。

2024年广东省深圳市初中学业水平测试数学模拟试题

2024年广东省深圳市初中学业水平测试数学模拟试题

2024年广东省深圳市初中学业水平测试数学模拟试题一、单选题1.某班期末考试数学的平均成绩是83分,小亮得了90分,记作7+分,小英的成绩记作3-分,表示得了( )分. A .86B .83C .87D .802.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.港珠澳大桥是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,其总长度为55000米,则数据55000用科学记数法表示为() A .55510⨯B .45.510⨯C .50.5510⨯D .55.510⨯4.为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是( )A .9,8B .11,8C .10,9D .11,8.55.若点A (−1,a ),B (1,b ),C (2,c )在反比例函数2y x=的图象上,则a ,b ,c 的大小关系是( ) A .a b c <<B .b a c <<C .a c b <<D .c a b <<6.下列运算正确的是( ) A .()222a b a b +=+ B .()326a a -=C .()22236ab a b =D .()()2224b a ab -⋅-=-7.如图,a b ∥,1=20∠︒,则2∠的度数为( )A .40︒B .60︒C .50︒D .30︒8.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.521y x x y -=⎧⎨-=⎩B . 4.521x y x y -=⎧⎨-=⎩C . 4.512x y y x -=⎧⎪⎨-=⎪⎩D . 4.512y x yx -=⎧⎪⎨-=⎪⎩9.港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60︒,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30︒,则该主塔的高度是( )A .80米 B. C .160米D.10.已知:ABC V 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CEAC的值为( )A B C .23D二、填空题11.因式分解:34a a -=.12.一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为.13.如图,四边形ABCD 内接于O e ,如果BOD ∠的度数为122︒,则DCE ∠的度数为14.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),AB =A 在y 轴上,反比例函数经过点B ,求反比例函数解析式.15.如图,正方形ABCD 的边长是3,P 、Q 分别在AB 、BC 的延长线上,且BP CQ =,连接AQ 、DP 交于点O ,分别与边CD ,BC 交于点F ,E ,连接AE .现给出以下结论:AQ DP ⊥①;=AOD S V ②四边形OECF ;2=OA OE OP ⋅③;④当1BP =时,13tan 16OAE ∠=;其中正确的是(写出所有正确结论的序号)三、解答题16.计算:()012sin30 3.143π-+︒--+-17.先化简,再求值: 2224224442a a a a a a a -÷-++-+,其中3a =. 18.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了_______人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“_______”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.19.“4G 改变生活,5G 改变社会”,不一样的5G 手机给人们带来了全新的体验,某营业厅现有A ,B 两种型号的5G 手机出售,售出1部A 型、1部B 型手机共获利600元,售出3部A 型、2部B 型手机共获利1400元.(1)求A ,B 两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A ,B 两种型号手机共20部,其中B 型手机的数量不超过A 型手机数量的23,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.20.如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方); ②连接OC ,交O e 于点D ; ③连接BD ,与AC 交于点E . (1)求证:BD 为O e 的切线; (2)求AE 的长度.21.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中3m AB =,4m BC =,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系. 请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E ,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线透过A点恰好照射到C点,此时大棚截面的阴影为BK,求BK的长.22.在直角△ABC中,∠ACB=90°,AC=3,BC=4,点D、E和F分别是斜边AB、直角边AC和直角边BC上的动点,∠EDF=90°,(1)如图1,若四边形DECF是正方形,求这个正方形的边长.(2)如图2,若E点正好运动到C点,并且tan∠DCF=12,求BF的长.(3)如图3,当12DEDF时,求ADDB的值。

浙江省温州市2024年6月普通高中学业水平模拟测试数学试题

浙江省温州市2024年6月普通高中学业水平模拟测试数学试题

浙江省温州市2024年6月普通高中学业水平模拟测试数学试

学校:___________姓名:___________班级:___________考号:___________
二、多选题
13.下列选项中正确的是( )
A .33log 1.1log 1.2
<B .
()
()
3
3
1.1 1.2-<-C . 1.1 1.2
0.990.99<D .30.99
0.993<14.某不透明盒子中共有5个大小质地完全相同的小球,其中有3个白球2个黑球,现从
20.在ABC V 中,已知4BC =,4BC BD =uuu r uuu r ,连接AD ,满足
sin sin DB ABD DC ACD ×Ð=×Ð,则ABC V 的面积的最大值为四、解答题
21.某校为了解高二段学生每天数学学习时长的分布情况,随机抽取了100名高二学生进行调查,得到了这100名学生的日平均数学学习时长(单位:分钟),并将样本数据分成
[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100六组,绘制如图所示的频率分布
直方图.
20.3
【分析】分别在ADB
V和
由角平分线定理得到AB AC
cos BAC
Ð,即可得到sin
ADB
V。

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03

2x
2π 3
.
试卷第 4页,共 5页
(1)求 f x 在0, π 上的单调递增区间;
(2)若当
x
0,
π 4
时,关于
x
的不等式
f
x
m
恒成立,求实数
m
的取值范围.
试卷第 5页,共 5页
信噪比.当信噪比比较大时,公式中真数中的 1 可以忽略不计.按照香农公式,若不改变
带宽W ,而将信噪比 S 从 1000 提升到 8000,则 C 大约增加了( ) lg 2 0.301
N
A.10%
B.20%
C.30%
D.50%
27.已知在
ABC
中,AB
2
,AC
3 ,BAC
3
,点
D
为边
BC
上靠近
江苏省 2024 年普通高中学业水平合格性考试数学全真模拟 数学试题 03
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A x x2 x 6 0 , B 0,1,2,3 ,则 A B ( )
A.1, 2
A.﹣1
B.1
C.2
D.4
14.已知 x R,则“ x 3 1”是“ x2 x 6 0 ”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
15.青年大学习是共青团中央发起的青年学习行动,每期视频学习过程中一般有两个问
题需要点击回答.某期学习中假设同学小华答对第一、二个问题的概率分别为 1 , 3 ,且 35
D. x 0,1 , x2 x 0

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01

一、单选题1. 函数的部分图像大致为( )A.B .C.D.2. 设全集,集合,则( )A.B.C.D.3. 已知点F 为双曲线(,)的左焦点,过原点O 的直线与双曲线交于A 、B 两点(点B 在双曲线左支上),连接BF 并延长交双曲线于点C ,且,AF ⊥BC ,则该双曲线的离心率为( )A.B.C.D.4.设是首项大于零的等比数列,则“”是“数列是递增数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5. 已知均为实数,下列不等式恒成立的是( )A .若,则B.若,则C .若,则D .若,则6. 下列有关命题的说法正确的是( ).A .命题“若,则”的否命题为:“若,则”B .“”是“”的必要不充分条件C .命题“,使得”的否定是:“,均有”D .命题“若,则”的逆否命题为真命题7. 已知函数为的导函数,则的大致图象是( )A. B.江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01二、多选题三、填空题C. D.8. 设集合A={1,2,3},B={x |x 2-2x +m=0},若A ∩B={2},则B=( )A.B.C.D.9. 如图,在直三棱柱中,,,则()A .平面B.平面平面C .异面直线与所成的角的余弦值为D .点,,,均在半径为的球面上10. 已知,且,则( )A.B.C.D.11. 已知直线与椭圆交于两点,点为椭圆的下焦点,则下列结论正确的是( )A .当时,,使得B.当时,,C .当时,,使得D .当时,,12. 如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形,其中,则()A.B.C.D.四、解答题13. 已知函数,其中为常数,且,将函数的图象向左平移个单位所得的图象对应的函数在取得极大值,则的值为_____________________.14. 已知函数在处有极值8,则等于______.15. 样本数据的众数是______.16. 2024年1月,某市的高二调研考试首次采用了“”新高考模式.该模式下,计算学生个人总成绩时,“”的学科均以原始分记入,再选的“2”个学科(学生在政治、地理、化学、生物中选修的2科)以赋分成绩记入.赋分成绩的具体算法是:先将该市某再选科目原始成绩按从高到低划分为五个等级,各等级人数所占比例分别约为.依照转换公式,将五个等级的原始分分别转换到五个分数区间,并对所得分数的小数点后一位进行“四舍五入”,最后得到保留为整数的转换分成绩,并作为赋分成绩.具体等级比例和赋分区间如下表:等级比例赋分区间已知该市本次高二调研考试化学科目考试满分为100分.(1)已知转换公式符合一次函数模型,若学生甲、乙在本次考试中化学的原始成绩分别为84,78,转换分成绩为78,71,试估算该市本次化学原始成绩B 等级中的最高分.(2)现从该市本次高二调研考试的化学成绩中随机选取100名学生的原始成绩进行分析,其频率分布直方图如图所示,求出图中的值,并用样本估计总体的方法,估计该市本次化学原始成绩等级中的最低分.17. 北京时间2022年11月21日0时,卡塔尔世界杯揭幕战在海湾球场正式打响,某公司专门生产世界杯纪念品,今年的订单数量再创新高,为回馈球迷,该公司推出了盲盒抽奖活动,每位成功下单金额达500元的顾客可抽奖1次.已知每次抽奖抽到一等奖的概率为10%,奖金100元;抽到二等奖的概率为30%,奖金50元;其余视为不中奖.假设每人每次抽奖是否中奖互不影响.(1)任选2名成功下单金额达500元的顾客,求这两名顾客至少一人中奖的概率;(2)任选2名成功下单金额达500元的顾客,记为他们获得的奖金总数,求的分布列和数学期望.18. “学习强国”学习平台软件主要设有“阅读文章”“视听学习”两个学习模块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题模块,还有“四人赛”“双人对战”两个比赛模块.“四人赛”积分规则为首局第一名积3分,第二、三名积2分,第四名积1分;第二局第一名积2分,其余名次积1分;每日仅前两局得分.“双人对战”积分规则为第一局获胜积2分,失败积1分,每日仅第一局得分.某人在一天的学习过程中,完成“四人赛”和“双人对战”.已知该人参与“四人赛”获得每种名次的概率均为,参与“双人对战”获胜的概率为,且每次答题相互独立.(1)求该人在一天的“四人赛”中积4分的概率;(2)设该人在一天的“四人赛”和“双人对战”中累计积分为,求的分布列和.19. 已知,求的值.20. 近段时间,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取120名学生对线上教学进行调查,其中男生与女生的人数之比为,男生中喜欢上网课的为,女生中喜欢上网课的为,得到如下列联表.喜欢上网课不喜欢上网课合计男生女生合计(1)请将列联表补充完整,试判断能否有的把握认为喜欢上网课与否与性别有关;(2)从不喜欢上网课的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,若所选2名学生中的女生人数为X,求X的分布列及数学期望.附:,其中.0.1500.1000.0500.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.82821. 函数f(x)=的定义域为集合,关于的不等式的解集为,求使的实数的取值范围.。

安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷

安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题1.已知集合{}{}21,0,1,2,3,230M N x x x =-=--<,则M N =I ( )A .{}1,0,1-B .{}1,0,1,2,3-C .{}0,1,2D .{}1-2.下列图象中,表示定义域和值域均为[0,1]的函数是( )A .B .C .D .3.已知向量()()1,3,3,a b m =-=r r ,若a b r r∥,则m =( ) A .9B .9-C .1D .1-4.已知函数()()222,22,2x x x f x f x x ⎧-++≤⎪=⎨->⎪⎩,则()3f =( )A .1-B .1C .2D .35.若函数()25742xy a a a a =-++-是指数函数,则有( )A .2a =B .3a =C .2a =或3a =D .2a >,且3a ≠6.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点1,12⎛⎫- ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭( )A .3-B .3C .13-D .137.水平放置的ABC V 的斜二测直观图如图所示,已知3,2A C B C ''''==,则ABC V 的面积是( )A .4B .5C .6D .78.命题“21,10x x ∀≥-≤”的否定是( ) A .21,10x x ∃<-> B .21,10x x ∃≥-> C .21,10x x ∀<-≤D .21,10x x ∀-<>9.函数π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象的一条对称轴是( )A .π6x =- B .π2x =C .2π3x =D .5π6x =10.已知复数z 满足()34i i z +=,则z =( )A .34i 55-B .34i 55+C .43i 55+D .43i 55-11.“今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于( )A .5310⨯立方尺B .5610⨯立方尺C .6610⨯立方尺D .6310⨯立方尺12.抛掷一枚质地均匀的骰子,记随机事件:E =“点数为奇数”,F =“点数为偶数”,G =“点数大于2”,H =“点数小于2”,R =“点数为3”.则下列结论不正确的是( )A .,E F 为对立事件B .,G H 为互斥不对立事件C .,E G 不是互斥事件D .,G R 是互斥事件13.ABC V 的内角,,A B C 的对边分别为,,,a b c ABC V 且π1,3b C ==,则边c =( )A .7B .3C D 14.已知,,αβγ是空间中三个不同的平面,,m n 是空间中两条不同的直线,则下列结论错误的是( )A .若,,m n αβα⊥⊥//β,则m //nB .若,αββγ⊥⊥,则α//γC .若,,m n m n αβ⊥⊥⊥,则αβ⊥D .若α//,ββ//γ,则α//γ15.若不等式2430ax x a -+-<对所有实数x 恒成立,则a 的取值范围为( )A .()(),14,-∞-⋃+∞B .(),1∞--C .(][),14,-∞-⋃+∞D .(],1-∞-16.已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为( )A .100,30B .100,21C .200,30D .200,717.已知向量a r 与b r 的夹角为π,2,16a b ==rr ,则向量a r 与b r 上的投影向量为( )A .b rBC .a rD r18.若函数()22log 3y x ax a =-+在(2,)+∞上是单调增函数,则实数a 的取值范围为A .(,4]-∞B .(,4)-∞C .(4,4]-D .[4,4]-二、填空题19.已知5sin cos 4αα-=,则sin 2α=. 20.已知单位向量a r 与单位向量b r的夹角为120︒,则3a b +=r r .21.某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为.22.某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买x 台设备的总成本为()21800200f x x x =++(单位:万元).若要使每台设备的平均成本最低,则应购买设备台.三、解答题23.已知()f x a b =⋅r r,其中向量())()sin2,cos2,R a x x b x ==∈r r ,(1)求()f x 的最小正周期;(2)在ABC V 中,角、、A B C 的对边分别为a b c 、、,若224A f ⎫⎛== ⎪⎝⎭,求角B 的值.24.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)证明:1AC BC ⊥; (2)证明:1//AC 平面1CDB . 25.已知函数()[]()211,1x b f x x x a+-=∈-+是奇函数,且()112f = (1)求,a b 的值;(2)判断函数()f x 在[]1,1-上的单调性,并加以证明;(3)若函数()f x 满足不等式()()12f t f t -<-,求实数t 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学业水平测试数学模拟卷
一、选择题(共10小题,在每小题给出的四个选项中,有且只有一项是正确的。


1. 下列运算中,正确的是( )
A .3a 2﹣a 2=2
B .(a 2)3=a 5
C .a 3•a 6=a 9
D .(2a 2)2=2a 4
2. 某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,
12,13,15,13,则他们年龄的众数为( )
A .12
B .13
C .14
D .15
3. 一个多边形的内角和是720°,这个多边形的边数是( )
A .4
B .5
C .6
D .7 4. 下列图形中既是中心对称图形,又是轴对称图形的是( )
A . 正三角形
B . 平行四边形
C . 等腰梯形
D . 正方形
5. 点(2,1)P -在平面直角坐标系中所在的象限是 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6. 如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )
7. 已知⎩⎨
⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为( ) A .±2
B . 2
C .2
D . 4 8. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )
A .﹣1
B .1
C .﹣5
D .5
9. 下列说法中,错误的是( )
A . 不等式x <2的正整数解中有一个
B .﹣2是不等式2x ﹣1<0的一个解
C . 不等式﹣3x >9的解集是x >﹣3
D .不等式x <10的整数解有无数个
10.如图是邻居张大爷去公园锻炼及原路返回时离家的距离y (千米)与时间t (分钟)之间的函数图象,根据图象信息,下列说法正确的是( )
A . 张大爷去时所用的时间少于回家的时间
B . 张大爷在公园锻炼了40分钟
A B C D
C . 张大爷去时走上坡路,回家时直下坡路
D . 张大爷去时速度比回家时的速度慢
二、填空题(共8小题)
11. 请写出一个二元一次方程组 ,使它的解是

12. 分解因式:2x 2+4x+2= .
13. 已知线段8AB cm =,在直线AB 上画线段BC ,使它等于3cm ,则线段AC =________. 14. 若不等式组3x x m >⎧⎨>⎩
的解集是3x >,则m 的取值范围是________. 15.(如图)在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=4,则点D 到斜边AB 的距离为 .
16. 已知实数x ,y 满足
,则以x ,y 的值为两边长的等腰三角形的周长
是________.
17. 若分式方程:有增根,则k= . 18. 如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .
三、解答题(共3题,解答应写出必要的文字说明或演算步骤。


19. 中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A :无所谓;B :反对;C :赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:
(1)此次抽样调査中.共调査了 名中学生家长;
(2)将图①补充完整;
(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?
20. 如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
21. 某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔技种植面积为24万亩.调查分析结果显示.从2009年开始,该市荔技种植面积y(万亩)随着时间x(年)逐年成直线上升,y与x之间的函数关系如图所示.
(1)求y与x之间的函数关系式(不必注明自变量x的取值范围);
(2)该市2012年荔技种植面积为多少万亩?。

相关文档
最新文档