基于PLC的伺服系统的运动控制系统设计
基于PLC与HMI的伺服电机运动控制系统设计与实现

基于PLC与HMI的伺服电机运动控制系统设计与实现摘要:随着计算机技术、可编程控制器及触摸屏科技的进步,现在机械制造行业几种控制系统越来越多的被应用到处理复杂事务中使其变得处理简易,在生活中,几种控制系统的应用提高了生产效率,使我们生活变得简单化,提高了机械产品的安全性和可操作性。
本文提出了选用S7-200SMARTCPUST30PLC为主控制器,发送脉冲指令作为伺服驱动器的输入信号,通过伺服驱动器实现对伺服电机前/后点动及连续运转、相对/绝对位置的精确控制以及自动查找参考点等操作,由SMART1000IEV3触摸屏搭建监控画面的思路。
关键词:伺服电机;PLC;运动控制;HMI1、系统总体方案设计1.1PLC和HMI简介1.1.1可编程里辑控制器简介可编辑逻辑控制器简称PLC,能够适应工作环境较为恶劣的条件,适用范围较广。
另外,PLC的维护较为方便,使用可靠性比较高。
CPU的运行状态是决定系统流畅的重要保证,而PLC的工作状态就是通过软件控制CPU的运行情况,当然通过硬件开关进行强制控制也是一种有效的控制手段,比如在进行测试阶段或者对系统进行检修时,硬件控制是一种较为方便的方式。
1.1.2 HMI简介随着我国工业水平提高,在生产过程中生产工艺越来越复杂,生产设备也在不断更新换代,生产控制人员不仅仅要对生产的每个流程熟知,还要对设备运行状况了解,做到设备运转的透明化。
HMI便是实现人机互通的关键技术,它实现了工作人员与机器之间的可靠连接。
在工作人员与Wincc flexible之间,HMI是实现二者链接的重要接口。
在控制器与Wincc flexible之间也同样需要这样的接口。
1.2 总体方案设计整个系统分为硬件设计、PLC程序设计、HMI与PLC通讯、系统实验调试共4部分。
硬件方面,主控制器选用S7-200SMARTCPUST30PLC,发送脉冲指令作为台达伺服驱动器(ASDA-B2-0121-B)的输入信号;通过伺服驱动器实现控制伺服电机(ASDAB2)的旋转速度和驱动丝杆滑台的移动位置[1]。
基于三菱PLC的伺服电机控制系统设计

基于三菱PLC的伺服电机控制系统设计作者:胡志刚来源:《价值工程》2017年第05期摘要:设计了一种基于三菱PLC的伺服电机控制系统,详细介绍了该控制系统的电气原理图设计、触摸屏控制界面制作、伺服驱动器的参数设置、PLC的程序设计等。
实践表明,用PLC直接控制伺服电机具有系统结构简单、运行可靠、扩展性强,具有较好的实用价值。
Abstract: The design of a servo motor control system is based on MITSUBISHI PLC, and this paper introduces the electrical principle diagram design, the touch screen control interface making,servo driver parameters, PLC program design. The practice shows that the direct control of the servo motor with PLC has the advantages of simple structure, reliable operation, strong expansibility and good practical value.关键词:三菱PLC;伺服电机控制系统;触摸屏Key words: MITSUBISHI PLC;servo motor control system;touch screen中图分类号:TH138 文献标识码:A 文章编号:1006-4311(2017)05-0080-020 引言随着PLC技术、变频技术和伺服控制技术的迅猛普及和推广,以步进电机和伺服电机为执行元件的定位控制技术在工业生产中得到了越来越广泛的应用。
伺服电机不但能够实现精准的速度控制,而且能够实现精准的角度(位置)控制,具有较强的动态特点[1]。
基于三菱PLC控制的交流伺服电动机位置控制系统研究

基于三菱PLC控制的交流伺服电动机位置控制系统研究摘要:以某厂铝电解电容器生产过程中的一道关键工序——电容器套管自动烫印裁切为例,从系统参数分析计算入手,设计了基于三菱FX2N系列的PLC控制交流伺服电动机的位置控制系统,给出了定长及速度控制的算法和软件编程思路。
关键词:PLC 交流伺服电动机位置控制算法可编程控制器(PLC)是采用微机技术的通用工业自动化装置,是面向用户的专业控制计算机。
它可靠性高,抗干扰能力强,编程直观、简单,适应性好,功能完善,接口功能强,通讯联网能力也越来越强。
随着微处理器和微计算机技术的发展,PLC不再仅有逻辑判断功能,同时还具有数据处理、PID调节和数据通讯功能,已广泛应用于机械、电子、纺织等各行各业。
某电容器制造厂有一道关键工序——电容器套管自动烫印裁切,该工序要求电容器套管间隙性定长送进,完成自动烫印及裁切。
图1为电容器套管定长控制与裁切示意图。
该系统中交流伺服放大器驱动伺服电动机,通过减速器带动一对滚轮旋转,从而实现电容器套管带料的定长送进。
下面将从系统参数分析计算入手,设计了基于三菱FX2N系列的PLC控制交流伺服电动机运动系统,并给出了定长及速度控制的算法和软件编程思路。
1 系统硬件设计及系统参数计算1.1 硬件设计位置控制系统中交流伺服放大器选用三菱公司的MR-J2S-40A,其属于通用交流伺服系统MELSERVO-J2-SUPER系列,具有位置控制、速度控制和转矩控制3种模式,本系统采用位置控制。
交流伺服电动机选用三菱公司的HC-KFS-43,其编码器的分辨率Pt=131 072脉冲/r,具有很高的控制精度。
本系统中采用的PLC选用三菱公司的FX2N-48MR,脉冲输出模块采用FX2N-1PG。
对于FX2N系列PLC,本身不具备内置定位指令,但可以通过FROM/TO指令与扩展单元FX2N-1PG脉冲输出模块进行数据交换,向伺服放大器发送指定数量的脉冲串,从而完成对伺服电动机的简单定位控制,其最高波特率为100 K,1台FX2N系列的可编程控制器可以连续多达8个FX2N-1PG脉冲输出模块,从而最多可实现8轴的运动控制。
基于触摸屏、PLC及伺服驱动器的伺服系统

基于触摸屏、 PLC及伺服驱动器的伺服系统摘要:由于现代科技的进展,自动伺服装置控制器已经在现代工业生产中获得了越来越普遍的使用。
所以,进一步了解伺服装置控制器是十分关键的事。
在现代工业中,制造流程的机械化与自动化也是一个很引人注目的议题。
随着工业现代化的进展,生产自动化技术已成为了现代企业的关键支柱。
在目前,很多食品和基本日用品都是分开打包的。
为保证产品新鲜,需要产品自行打包,需要他们的编程工作在PLC,触摸屏和伺服发电机。
但是,在现代产品中有着不同的生产环境,如高温、辐射功率、有毒气体、有害气体的产生和设备的安全运行。
这些困难的生产环境不利于手动操作。
PLC控制系统和变频器的设计解决了许多复杂的控制系统和维护问题,同时大大减少了人力,大大提高了工作效率。
关键词:触摸屏,PLC,伺服驱动器,伺服系统,现状分析.一、引言伺服系统,是指控制被控对象位移及转动角度的自动控制器,它能够自动、持续、精确地反映输入命令的变化。
并随着微电子技术、功率和导体技术以及电机加工技术的进展,将高性能伺服系统应用于激光加工、机器人、数控车床、大规模集成电路生产、办公用自动化装置、雷达数据等高新技术领域。
二、触摸屏、PLC及伺服驱动器的现状2.1、伺服系统组成该系统主要由触摸屏、PLC、伺服电机和永磁同步伺服电机组成。
伺服电机是一个可移动的执行器。
为了满足用户的功能要求,伺服电机由三个周期控制:位置、速度和电流。
控制计划,系统设计方案采用交流变频技术和伺服驱动,以PLC为控制核心,通过计算线圈电压,实现对电压和伺服驱动器的自动控制。
执行器执行多个电机的同步加速和减速。
速度闭环由PLC、伺服驱动器和光电编码器组成。
编码器将电机的实际速度返回给伺服驱动器,以补偿传输差异,在速度回路的前通道中设置与线圈直径相关的系数,以补偿惯性矩的变化,并且当线圈直径变化时,速度回路始终具有良好的动态特性。
配置触摸屏的人机界面,实现对整机动作、工艺流程和工艺数据的数字化管理和控制。
基于三菱PLC的伺服电机控制系统设计

• 80•价值工程基于三菱PLC的伺服电机控制系统设计Design of Servo Motor Control System Based on MITSUBISHI PLC胡志刚H U Z hi-gang(天津职业技术师范大学自动化与电气工程学院,天津300222;江苏工程职业技术学院,南通226007)(Automation Department,Tianjin University of Technology and Education,Tianjin300222, China;Jiangsu College of Engineering and Technology,Nantong226007,China)摘要:设计了一种基于三菱PLC的伺服电机控制系统,详细介绍了该控制系统的电气原理图设计、触摸屏控制界面制作、伺服驱 动器的参数设置、PLC的程序设计等。
实践表明,用PLC直接控制伺服电机具有系统结构简单、运行可靠、扩展性强,具有较好的实用价值。
Abstract:The design of a servo m otor control system is based on M ITSUBISHI PLC,and this paper introduces the electrical principle diagram design,the touch screen control interface making,ser^^o driver parameters,PLC program design.The practice shows that the direct control of the ser^^o m otor with PLC has the advantages of simple structure,reliable operation,strong expansibility and good practical value.关键词:三菱PLC;伺服电机控制系统;触摸屏Key words:M ITSUBISHI PLC;servo m otor control system;touch screen中图分类号:TH138 文献标识码:A文章编号:1006-4311(2017)05-0080-02〇引言随着PLC技术、变频技术和伺服控制技术的迅猛普 及和推广,以步进电机和伺服电机为执行元件的定位控制 技术在工业生产中得到了越来越广泛的应用。
基于PLC的伺服电机运动控制系统设计

脉冲 , C W为反 向脉 冲。
3 ) 电子齿轮 参数 P n 0 0 8 : 1 0 0 0 0 , 伺服驱动 器发 出 1 0 0 0 0 个 脉
3 ) 轴参数设置 D 2 0 0 0 4 / D 2 0 0 3 2 : 0 0 6 0 , 轴 和 y 轴, 当急停信
H 囊
伺服 l l r 轴伺 I l l , 轴执
驱 动l l服 电 机 f l行 机构
图 1 运动系统组成示意 图
P n 0 0 6 : 0 , 正方 向为指令 脉 冲计数 方 向 。
作者简介 : 林杰文 ( 1 9 9 2 一) , 男, 本科生 通讯作者 : 吴亦锋 ( 1 9 5 8 一) , 男, 教授 , 研究方 向: 机 电系统控制技术 。
1 运 动 控 制 系统 的 组 成
本 文 伺 服 电 机 控 制 系 统 以 OMR O N公 司 的
用于对 轴和 y 轴复位用 ; S B 7 为急停按钮 ; S B 2 、 S B 5 分别是 轴和 y 轴的运行 开关 , 用于控制 x 轴 与y 轴 的运行与停止 ; 继 电器 K A1 、 K A 2 分别用于
冲电机旋转 1 圈, 此时机构位移 1 0 m m 。 注: 此时不论 P n 0 0 9 与P n 0 1 0 为何值都无效。
4 ) 平 滑滤 波器 参数
号或限位开关信号输入 时, 保 留定义的原点信号; 急停信号输入时 , 只停止输入脉冲信号 ; 原点接近 输人信号为常开触点 ; 两个极 限位置的极 限输入
2 运 动 控 制 系统 电路 图
运动控制系统 电路图如图 2 所示 , Q 1 为电源 开关 , 6 个光电传感器分别安装于 轴与 】 , 轴两导 轨的前进到位位置 、 原点接近输入位置和后退到 位位置。两极限位置的光 电传感器为坐标轴的机 械极限位置 , 当机构运动 到该 位置时 , 传感器断
基于PLC的伺服电机运动控制系统设计

基于 PLC 的伺服电机运动控制系统设计摘要:近年来,我国各个行业及领域广泛应用了PLC,对企业实现生产自动化奠定了重要的基础。
特别是PLC伺服电机运行控制系统的设计及实施,使电机运动质量与效率得到了进一步提升。
本文结合PLC伺服电机运行控制系统设计标准,以S7-1200为例,利用对程序与硬件的设计,保证了运动控制的精准性。
关键词:PLC;伺服电机;运行控制前言:伺服电机具有多重优点,如扛过载能力强、运行稳定、高速性能好以及精准度高等,已广泛应用在企业生产中。
但由于伺服电机大多使用的是NC数控系统,不仅运行成本高,且控制系统极为复杂,无法有效对接以PLC为主的控制器生产线,使得经济效益不是十分可观。
故而,在生产自动化水平的进一步提升下,为了最大程度保障产品精度性,就必须重视基础设计,通过对伺服电机运行控制准确性的提升,全面改善系统的生产效率与性能,从而实现经济效益最大化,降低企业的生产成本。
1基于PLC伺服电机控制系统设计分析PLC控制系统是一种专门用于工业生产的数字运算操作电子装置,其应用了一类可编程存储器,可满足内部存储、执行逻辑运算、顺序控制、定时、技术以及算数操作等要求,可以说是工业控制的核心。
就我国工业生产现状来看,大部分依然是采用的步进电机运动系统,其应用的步进电机步距角最小为0.36°(与电机转动一圈需要1000个脉冲相当),精度比较低,并且经常会出现失步问题,难以满足高精度生产工艺。
相比来讲伺服电机无论是在精度、速度、抗过载性能、响应速度、运行稳定性以及运行温度等方面均具有更大优势。
基于PLC进行伺服电机控制系统的设计,可以在原来的步进电机运动系统基础上,做进一步的优化,使得系统能够更好的适应高精度生产要求。
其中需要就目前所应用NC数控系统进行优化,解决其与PLC主控制器生产线无法有效对接的难题,满足高效生产的核心要求。
2伺服电机控制系统分析2.1运行控制模型如图1所示,伺服电机运行控制模型可用于构建伺服电机运动控制系统。
《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,PLC(可编程逻辑控制器)已成为工业控制领域中最重要的技术之一。
工业机械手作为自动化生产线上重要的执行机构,其运动控制系统的设计直接关系到生产效率和产品质量。
本文将详细介绍基于PLC的工业机械手运动控制系统设计,包括系统架构、硬件配置、软件设计以及实际应用等方面。
二、系统架构设计基于PLC的工业机械手运动控制系统采用分层式结构设计,主要包括上位机监控系统、PLC控制器和机械手执行机构三个部分。
其中,上位机监控系统负责人机交互、数据监控和系统管理等功能;PLC控制器负责接收上位机指令,控制机械手的运动;机械手执行机构包括电机、传感器、气动元件等,负责完成具体的动作。
三、硬件配置1. PLC控制器:选用高性能、高可靠性的PLC控制器,具备强大的运算能力和丰富的I/O接口,以满足机械手运动控制的需求。
2. 电机:根据机械手的具体需求,选用合适的电机类型和规格,如伺服电机、步进电机等。
3. 传感器:包括位置传感器、速度传感器、力传感器等,用于检测机械手的运动状态和外部环境信息。
4. 气动元件:包括气缸、电磁阀等,用于实现机械手的抓取和释放等功能。
四、软件设计1. 编程语言:采用PLC的编程语言,如梯形图、指令表等,进行程序编写和调试。
2. 控制算法:根据机械手的运动需求,设计合适的控制算法,如PID控制、轨迹规划等,以实现精确的运动控制。
3. 上位机监控系统:开发上位机监控软件,实现人机交互、数据监控和系统管理等功能。
监控软件应具备友好的界面、实时的数据显示和报警功能。
4. 通信协议:建立PLC控制器与上位机监控系统之间的通信协议,实现数据的实时传输和交互。
五、实际应用基于PLC的工业机械手运动控制系统在实际应用中表现出良好的性能和稳定性。
通过上位机监控系统,操作人员可以方便地监控机械手的运动状态和生产数据。
PLC控制器根据上位机的指令,精确地控制机械手的运动,实现高精度的抓取、搬运、装配等任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本文采用运动控制系统,完成三菱电机杯竞赛的关于伺服电机如何实现系统的运动控制系统。
运动控制模型包括:安装台面、XY伺服轴、旋转工作盘三大部分。
运动控制 (Motion Control)通常是指在复杂条件下,将预定的控制方案、规划指令转变成期望的机械运动,实现机械运动精确的位置控制、速度控制加速度控制、转矩或力的控制。
该系统由两工位运动控制系统组成:2套伺服放大器及伺服电机、QD75系统模块、变频器、三菱可编程序控制器、触摸屏等组成。
通过个人计算机与PLC通讯输入运行程序,设定运行参数后,QD75P2系统模块控制伺服放大器的输出,之后伺服放大器给伺服电机输出信号,伺服电机反馈信号到伺服放大器,从而驱动跟踪圆盘上的磁珠转动;负载圆盘是通过变频器控制的三相异步电动机控制运行速度。
工作盘是由交流变频控制,工作盘上可用双面胶固定多个磁钢(Ø);图中上端为XY十字工作台(伺服电机控制),考虑到机械强度的问题,Y轴有两个平行轴固定,其中左侧的为主动驱动轴,右侧为从动轴;X轴平面装有霍尔传感器;上方为旋转工作台,工作盘由交流电机(电机的速度由变频器控制)带着转动工作时,在工作盘放入磁钢,当工作盘转动时,X轴上部安装的传感器须一直能够对应到磁钢(XY轴随动,传感器保持检测到磁钢而不脱开)。
构建“PLC+伺服放大器+伺服电机+触摸屏”的运动控制系统。
电气运动控制是由电力拖动发展而来的,电力拖动或电气传动是对以电动机为对象的控制系统的通称。
从电力拖动开始,经历四十多年的发展过程,现代运动控制已成为一个以控制理论为基础,涵盖电机技术、电力电子技术(电力电子器件、电力电子线路)、微电子技术、传感器检测技术、信息处理技术、自动控制技术、微计算机技术和计算机仿真和辅助制造(CAM)技术等许多学科 ,且多种不同学科交叉应用的控制技术。
运动控制系统多种多样,但从基本结构上看,一个典型的现代运动控制系统的硬件主要由上位计算机、运动控制器、功率驱动装置、电动机、执行机构和传感器反馈检测装置等部分组成。
其中的运动控制器是指以中央逻辑控制单元为核心,以传感器为信号敏感元件,以电机或动力装置和执行单元为控制对象的一种控制装置它的主要任务是根据运动控制的的逻辑、数学运算,为电机或其它动力和执行装置提供正确的控制信号。
关键词:伺服电机;系统;控制目录第一章绪论 (1)1.1伺服系统的研究背景及意义1.2 私服系统的发展1.3 伺服系统的国内外研究现状1.4课题研究目的第二章系统总体设计方案 (5)2.1 系统总体设计2.2 各功能模块概述2.2.1.三菱可编程控制器PLC2.2.2.三菱触摸屏GOT2.2.3.三菱QD75系统模块2.2.4.三菱变频器FR-E7002.2.5.三菱伺服放大器+伺服电机2.2.6.三菱DA转换模块第三章系统的设计 (8)3.1.系统硬件构建3.2.系统软件设计3.2.1工作流程图3.2.2主要软元件配置3.2.3程序分析与设计3.3.变频器的配置参数3.4.伺服系统的配置参数3.5.触摸屏的编制第四章系统调试 (23)第五章总结 (24)附录 (25)参考文献 (27)第一章绪论1.1 伺服系统的研究意义伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标或给定值任意变化的自动控制系统,是控制理论、电力电子技术、电机技术、微电子技术、检测技术等学科相互发展融合的产物,是自动化学科及工业生产领域重要的分支。
在机械制造行业、冶金工业,交通运输以及军事上都得到了广泛的应用。
伺服系统强调对控制命令的快速跟踪和响应,所以伺服控制系统可以认为是随动控制系统,既可以是转速的随动控制,也可以是位置的随动控制。
在广义的角度上看,电动机的调速系统也可以认为是伺服控制的一种,只不过在调速系统中,强调的被调量是电动机的转速,更加有效的实现功率变换。
而伺服系统则强调忠实跟踪给定信号,即按控制器发出的控制命令而动作,并产生足够的力或力矩,使被驱动的机械获得期望的运动速度和位姿。
伺服系统的发展经历了由液压伺服到电气伺服的过程。
在电气伺服系统中,按驱动装置的执行元件电动机类型来分,通常分为直流伺服系统和交流伺服系统两大类。
六十年代以后,特别是七十年代以来,随着电力电子学、微电子学、传感技术、永磁技术和控制理论的惊人发展,尤其是先进控制策略的成功应用,交流伺服系统的研究和应用取得了举世瞩目的发展,己具备良好的技术性能,其动、静态特性已完全可与直流伺服系统相媲美,交流伺服系统取代直流伺服系统己成定局。
其中交流永磁同步电机 (PMSM)又以其结构简单、气隙磁密高、功率密度大、转动惯量小的优点,成为研究的热点。
和直流电机相比,交流永磁同步电机没有直流电机的换向器和电刷等缺点,和其他类型交流电动机相比,它由于没有励磁电流,因而功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好。
现已广泛用于数控机床、工业机器人、超大规模集成电路制造、柔性制造系统、载人宇宙飞船、电动工具以及家用电器等高科技领域。
另一方面,高速数字信号处理芯片(DSP) 的快速发展也对伺服系统的发展起到了推动作用。
DSP强大的数据处理能力和高运行速度使得先进的控制技术如矢量控制、直接转矩控制等得以实现。
并且DSP芯片内部集成了A/D转换、数字输入/输出、串口通信、电机控制PWM信号输出等接口,使得伺服系统硬件设计更加灵活、简易。
鉴于以上情况,本文对基于DSP的永磁同步伺服电机的速度伺服系统进行了研究。
对交流伺服系统的深入研究,对于我国制造业,国防工业,空间技术的发展,缩小与世界先进国家的差距,能源节约都有着重要的意义。
1.2 伺服系统的发展电机控制系统按照驱动电机的类型主要分为直流传动系统和交流传动系统。
在70年代直流伺服电机己经实用化了,在各类机电一体化产品中,大量使用着各种结构的直流伺服电动机。
传统直流电动机采用的是机械式换向且存在电刷,使其在应用过程中面临着以下一些难以克服的缺点: (1)维护工作量大、维护成本高; (2) 使用寿命短、可靠性低; (3) 结构复杂、体积大、转动惯量大、响应速度慢; (4) 易对其它设备产生干扰、现场环境适应能力差;从而极大地限制了其在高精度、高性能要求的伺服驱动场合的应用。
而交流传动系统的执行机构一般采用感应电机和同步电机。
感应电动机,特别是鼠笼型异步电动机一直是传统驱动系统的执行元件,其结构简单、价格便宜、效率较高,但存在着散热和参数容易波动等问题。
感应式异步伺服电动机制造容易、价格低,不需要特殊维护。
但控制上采用矢量变换控制,因而系统比较复杂。
转子电阻随温度变化而影响磁场定向的准确性。
同时,低速运行时发热比较严重,而低速运行又往往是机床进给机构经常所处的运行状态。
这种类型的交流伺服系统容易进行弱磁控制,实现高速运行,这是一个显著的特点。
在交流伺服系统的发展初期,感应式异步电动机交流伺服系统曾一度得到发展和应用,但由于存在上述一些问题,这种系统在机床的进给机构驱动中并未得到普遍的应用。
与感应电机相比,由于永磁同步电机具有结构简单、体积小、效率高、功率因数高、转矩电流比高、转动惯量低、易于散热及维护保养等优点特别是随着永磁材料价格的下降、材料磁性能的提高,以及新型永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服系统中以永磁同步电机作为执行机构是越来越多,其应用领域逐步推广,尤其在航空、航大、数控机床、加工中心、机器人等场合已获得广泛的应用。
1.3 伺服系统的国内外发展现状以前对永磁同步电机的研究由于条件的限制主要停留在固定频率下对电机运行状态的控制研究,主要针对是电机速度稳定以后的一些特性的研究以及在起动过程中的变化性能研究。
同步电机起动时是通过对三相绕组供电产生磁场从而先提供了转矩来对转子实现加速,并且逐渐将转子速度与输入的电压频率同步,从而实现了电机的同步旋转。
1980年以后随着逆变器的发展壮大,国外的一些科研工作者把目光投向利用逆变器对永磁同步电机的控制。
逆变器供电的永磁同步电机与直接起动的永磁同步电机的结构基本相同,但在大多数情况下无阻尼绕组。
在逆变器供电情况下,永磁同步电机的原有特性将会受到影响,其稳态特性和暂态特性与恒定频率下的永磁同步电机相比有不同的特点。
随着对永磁同步电机调速系统性能要求的不断提高,需要设计出高效率、高力矩惯量比、高能量密度的永磁同步电机,G.R.Slemon等人针对调速系统快速动态性能和高效率的要求,提出了现代永磁同步电机的设计方法。
80年代以来,国外很多大公司,如美国的AE公司、德国的西门子公司、科尔摩根公司,日本的富士通、松下、安川等对交流伺服控制器作了深入的研究,并推出一系列的产品,和国内相比领先一步并占据多年的交流伺服驱动市场。
为了打破这种局面,而后在我国的各个大学及研究所加强对这方面的研发和投入,以华中科技大学为首的高校、以北京机床研究所、中科院沈阳自动化研究所为主的国家高科技研究所等也逐步开始研究伺服驱动控制器,而且小有成果,适时地推出我们自主研发的交流伺服系统,这样才彻底打破了坚冰,结束了外国公司一统天下的局面。
但是在国内毕竟伺服驱动仍然是一个难题,也只有少数有能力单位才能开发以正弦波为反电动势的永磁伺服系统而且只能做成小功率级的,不能满足大型工业控制的要求,很多高科技企业由于多种原因的制约,其生产地东西是以无刷直流伺服系统为主,定位在低端用户上,可靠性较差,并不能完全满足要求。
在技术壁垒的妨碍下,我国当时在高性能、大功率、高精度的正弦波PMSM电机伺服系统研发方面显得很苍白,无法和日本,德国,美国的大公司相竞争,从而导致国内大型性能高的永磁伺服市场被这些公司占据。
这样看来,尽管取得了一些成绩,但是我国伺服控制器的研发及设计还在起步阶段,和外国先进技术厂商和集团企业里还有很大的差距,尤其是在控制算法上海需要更多人的努力,一些先进技矢量控制方法还落后很多,以至于控制效率不高。
在这里,就需要国内从事这方面开发的技术骨干能够加倍努力,奋勇前进,为集体为国家在交流伺服驱动的领域里打下中国人的印记,最终在世界伺服控制的领域占据一席之地。
1.4课题研究目的加强当代大学生创新意识、合作精神、实践能力培养,是当前高等教育教学改革的重要内容之一。
以竞赛为载体,推动大学生的课外科技活动,将对深入开展高等学校教学改革,促进学生基础知识教育与综合能力培养、理论与实践的有机结合等方面起到积极地推动作用。
为此,三菱电机自动化(中国)有限公司与中国各高校合作共同发起,每年开展一次面向高校在校学生(包括本科生、研究生和高职生)的科技竞赛活动——“三菱电机自动化杯”大学生自动化大赛,为优秀人才脱颖而出创造条件。