丛枝菌根真菌名录及新科新属
丛枝菌根真菌在甘薯生产中的应用研究进展

江苏农业学报(JiangsuJ.ofAgr.Sci.)ꎬ2023ꎬ39(2):576 ̄581http://jsnyxb.jaas.ac.cn石㊀琨ꎬ袁㊀洁ꎬ叶佳敏ꎬ等.丛枝菌根真菌在甘薯生产中的应用研究进展[J].江苏农业学报ꎬ2023ꎬ39(2):576 ̄581.doi:10.3969/j.issn.1000 ̄4440.2023.02.032丛枝菌根真菌在甘薯生产中的应用研究进展石㊀琨1ꎬ2ꎬ㊀袁㊀洁2ꎬ㊀叶佳敏2ꎬ3ꎬ㊀汪吉东2ꎬ㊀朱国鹏1ꎬ㊀王㊀磊2ꎬ㊀张㊀辉2ꎬ㊀张永春2ꎬ3(1.海南大学园艺学院ꎬ海南海口570228ꎻ2.江苏省农业科学院农业资源与环境研究所/国家农业环境六合观测实验站ꎬ江苏南京210014ꎻ3.南京农业大学资源与环境科学学院ꎬ江苏南京210095)收稿日期:2022 ̄11 ̄15基金项目:国家甘薯产业技术体系项目(CARS ̄10)ꎻ江苏省农业科技自主创新基金项目[CX(21)1009]作者简介:石㊀琨(1997-)ꎬ女ꎬ河北廊坊人ꎬ硕士研究生ꎬ主要从事植物生长和养分吸收研究ꎮ(E ̄mail)915399405@qq.com通讯作者:汪吉东ꎬ(E ̄mail)jdwang66@163.comꎻ朱国鹏ꎬ(E ̄mail)guopengzhu@163.com㊀㊀摘要:㊀甘薯(IpomoeabatatasL.)是一种适应性强㊁高产㊁多用途的粮食作物ꎮ丛枝菌根真菌(AMF)是一种广泛分布的能与宿主建立互惠共生关系的真菌ꎮAMF能够定殖于甘薯根系ꎬ其菌丝的延伸不仅扩大了根系吸收养分的范围ꎬ还促进了根系分泌有机碳等物质ꎬ起到改善宿主根际环境㊁活化土壤养分的作用ꎮ接种AMF能促进甘薯对养分的吸收利用ꎬ调控块根的形成和膨大ꎮ本文围绕甘薯与AMF的共生效应ꎬ综述AMF与甘薯共生关系的建立㊁AMF与甘薯共生效应的影响因素㊁AMF促进甘薯生长发育的作用机制ꎮ最后ꎬ分析了目前甘薯与AMF共生效应研究中的局限ꎬ并针对存在问题进行探讨和展望ꎬ为甘薯等作物可持续高效生产提供理论基础和应用依据ꎮ关键词:㊀甘薯ꎻ丛枝菌根真菌ꎻ根际微生物ꎻ有机碳中图分类号:㊀S154.39㊀㊀㊀文献标识码:㊀A㊀㊀㊀文章编号:㊀1000 ̄4440(2023)02 ̄0576 ̄06AdvancesinapplicationofarbuscularmycorrhizalfungionsweetpotatoproductionSHIKun1ꎬ2ꎬ㊀YUANJie2ꎬ㊀YEJia ̄min2ꎬ3ꎬ㊀WANGJi ̄dong2ꎬ㊀ZHUGuo ̄peng1ꎬ㊀WANGLei2ꎬ㊀ZHANGHui2ꎬ㊀ZHANGYong ̄chun2ꎬ3(1.SchoolofHorticultureꎬHainanUniversityꎬHaikou570228ꎬChinaꎻ2.InstituteofAgriculturalResourcesandEnvironmentꎬJiangsuAcademyofAgricul ̄turalSciences/NationalAgriculturalExperimentalStationforAgriculturalEnvironmentꎬLuheꎬNanjing210014ꎬChinaꎻ3.CollegeofResourcesandEnvi ̄ronmentalSciencesꎬNanjingAgriculturalUniversityꎬNanjing210095ꎬChina)㊀㊀Abstract:㊀Sweetpotato(IpomoeabatatasL.)isanadaptableꎬhigh ̄yieldandmulti ̄purposefoodcrop.Arbuscularmycorrhizafungi(AMF)arewidelydistributedfungithatcanestablishasymbioticrelationshipwiththeirhosts.AMFcancolonizesweetpotatoroots.TheextensionofAMFmyceliumnotonlyexpandstherangeofnutrientabsorptionbyrootsꎬbutalsopromotesthesecretionoforganiccarbonandothersubstancesbyrootsꎬwhichplaysaroleinimprovingthehostrhizo ̄sphereenvironmentandactivatingsoilnutrients.AMFinoculationcanpromotetheabsorptionandutilizationofnutrientsinsweetpotatoꎬandregulatetheformationandexpansionofroottubers.Inthispaperꎬtheestablishmentofsymbioticrelation ̄shipbetweenAMFandsweetpotatoꎬtheinfluencingfactorsofsymbioticeffectbetweenAMFandsweetpotatoꎬandthemechanismofAMFpromotingthegrowthanddevelopmentofsweetpotatowerereviewed.FinallyꎬthelimitationsofthecurrentresearchonthesymbioticeffectofsweetpotatoandAMFwereanalyzedꎬandtheexistingproblemswerediscussedandprospected.Thisstudyprovidestheoreticalbasisandapplicationbasisforthesustainableandefficientproductionofsweetpotatoandothercrops.Keywords:㊀sweetpotatoꎻarbuscularmycorrhizal675fungiꎻrhizospheremicroorganismsꎻorganiccarbon㊀㊀菌根是土壤中的真菌与植物根系形成的共生体ꎮ通过真菌菌丝的扩展延伸ꎬ菌根能为植物获取更多的养分和水分ꎬ植物的光合物质又为真菌的生长提供物质和能量ꎮ丛枝菌根真菌(AMF)是分布最广㊁与农业生产关系最为密切的一种内生菌根真菌ꎬ能在植物根细胞内产生连续双叉分枝形成灌木状结构ꎬ同时根外菌丝通过延伸能为植物获取更多的资源ꎬ进而调控植物的生长发育[1]ꎮ甘薯(IpomoeabatatasL.)是继马铃薯㊁木薯之后的第三大薯类ꎬ在中国占据重要的地位ꎬ是粮食安全保障体系中重要的经济㊁饲料和粮食作物[2 ̄3]ꎮ目前ꎬAMF调控甘薯生长的研究得到了较好的开展ꎮ一般认为接种AMF能显著提高甘薯净光合速率㊁气孔导度和蒸腾速率等光合参数[4]ꎬ促进甘薯对磷和钾的吸收[5]ꎬ能调控甘薯地上部氮素向根部运输[6]ꎬ增加甘薯产量[7 ̄8]ꎮAMF能够有效促进甘薯生长发育[9]ꎬ相比块根膨大期和收获期ꎬAMF对甘薯块根形成期(栽后30d)产生的影响最为明显[10]ꎬ这一时期根系的生长发育决定着甘薯的产量ꎮ与此同时ꎬAMF还可以通过活化土壤养分㊁改善土壤的理化性质来调节植物生长[11]ꎮ本文围绕甘薯与AMF的共生效应ꎬ对AMF与甘薯共生关系的建立ꎬ影响AMF与甘薯共生效应的因素以及AMF促进甘薯生长发育的作用机制进行综述ꎮ最后就目前甘薯与AMF共生研究中存在的问题及未来发展方向进行探讨和展望ꎬ为促进菌根技术在甘薯生产中更广泛和科学的应用提供依据ꎮ1㊀AMF与甘薯共生关系的建立1.1㊀AMF与甘薯共生关系建立的标志AMF侵染植物根系会产生典型的共生结构ꎬ包括丛枝㊁泡囊㊁菌丝等[12 ̄14]ꎮ丛枝是AMF根内菌丝在根系皮层细胞内产生的灌木状结构ꎬ是AMF同宿主植物进行营养交换的主要场所ꎻ泡囊则是AMF根内菌丝末端膨大形成的泡状结构ꎬ具有贮存营养物质的作用[13 ̄14]ꎮAlhadidi等[15]㊁Yuan等[16]发现AMF侵染甘薯根系后能在根内细胞产生泡囊㊁丛枝㊁根内菌丝等结构ꎬ同时AMF定殖甘薯根系后ꎬ其根外菌丝能够在土壤中延伸ꎬ扩大根系吸收养分的范围[17]ꎮ1.2㊀与甘薯共生的AMF物种多样性迄今为止ꎬ中国已在烟草㊁小麦㊁玉米等作物的根际中分离得到了100多种AMF[18]ꎬ在甘薯根区土壤中也分离出了大量AMF菌种ꎮ1990年彭生斌等[19]从昆明㊁广州和武汉的甘薯农田中分离得到丽孢无梗囊霉(Acaulosporaelegans)和苏格兰斗管囊霉(Funneliformiscaledonium)等菌种ꎮ盖京苹等[20]从中国北方甘薯根区土壤分离得到的AMF优势菌种为摩西斗管囊霉(Funneliformismosseae)和幼套近明球囊霉(Claroideoglomusetunicatum)ꎮ根据最新的AMF分类体系及相关文献的细分类列表[18ꎬ21]ꎬ目前中国甘薯根区土壤中分离鉴定的AMF包含4属8种(表1)ꎮ其中幼套近明球囊霉(Cl.etunicatum)具有较高的选择竞争力ꎬ这是由于幼套近明球囊霉不仅显著影响甘薯生长发育ꎬ还能适应不同的土壤环境[22]ꎮ表1㊀中国甘薯根系土壤中分离得到的AMF及其分布区域Table1㊀Arbuscularmycorrhizalfungi(AMF)isolatedfromsweetpotatorootsoilinChinaanditsdistributionarea属㊀㊀㊀㊀㊀㊀㊀种㊀㊀㊀㊀㊀来源㊀㊀㊀㊀㊀㊀㊀㊀㊀近明球囊霉属(Claroideoglomus)幼套近明球囊霉(Cl.etunicatum)河北[20]近明球囊霉(Cl.claroideum)河北[20]斗管囊霉属(Funneliformis)摩西斗管囊霉(F.mosseae)河北[20]苏格兰斗管囊霉(F.caledonium)昆明㊁广州㊁武汉[19]根孢囊霉属(Rhizophagus)根内根孢囊霉(R.intraradices)河北[20]明根孢囊霉(R.clarus)河北[20]无梗囊霉属(Acaulospora)丽孢无梗囊霉(A.elegans)北京[23]㊁昆明㊁广州㊁武汉[19]细凹无梗囊霉(A.scrobiculata)北京[24]775石㊀琨等:丛枝菌根真菌在甘薯生产中的应用研究进展2㊀影响AMF与甘薯共生效应的因素2.1㊀AMF和甘薯之间的选择适应性不同种类的AMF菌株在相同品种甘薯根系的侵染率存在差异ꎮ刘文科等[25]发现幼套近明球囊霉(Cl.etunicatum)对甘薯根系的侵染率显著低于摩西斗管囊霉(F.mosseae)和根内根孢囊霉(Rhizophagusintraradices)等菌种ꎬ混合AMF菌剂(R.intraradices和F.mosseae)的甘薯根系侵染率显著高于单一AMF菌剂ꎬ且混合菌剂具有更好的促生效果ꎮ相同的AMF菌剂对不同品种甘薯根系的侵染率和促生效应也存在差异ꎮYooyongwech等[26]研究结果表明ꎬ同样的AMF菌剂虽然能够与不耐干旱型和耐干旱型的两个品种甘薯建立共生关系ꎬ但AMF对耐干旱型品种甘薯根系的侵染率要高于不耐干旱型甘薯品种ꎬ同样AMF对耐干旱型品种甘薯的促生效果要更好ꎮ因此ꎬAMF菌种和甘薯品种之间存在选择适应性ꎬ这种选择适应性在烟草和油橄榄等作物中亦有发现[27 ̄28]ꎮ这种选择适应性产生的原因可能是根系分泌物对真菌定殖产生的诱导作用ꎬ如根系分泌的有机酸可以调控根际有益微生物的聚集[29]ꎬ植物激素尤其是独脚金内酯(SL)可以调控AMF孢子的萌发和菌丝生长[30]ꎮ2.2㊀AMF的生态适应性中国的甘薯种植区划分为北方春薯区㊁北方夏薯区㊁长江流域夏薯区㊁南方夏秋薯区和南方秋冬薯区ꎬ5大甘薯种植区域的海拔㊁气候㊁地貌存在较大差异[31]ꎮ虽然表1显示近明球囊霉属㊁根孢囊霉属真菌仅在北方植薯区被发现ꎬ而斗管囊霉属和无梗囊霉属真菌则在不同气候区的甘薯田中均有发现ꎬ但由于调查范围的局限性ꎬ目前尚没有全国不同甘薯种植区确切的AMF适应性规律ꎮ土壤类型㊁温度㊁湿度㊁酸碱度㊁养分水平等是影响AMF与甘薯共生效应的重要因素ꎮMukhongo等[32]比较了季节变化对甘薯根系AMF定殖的影响ꎬ发现雨水少的春季AMF定殖率高于雨水多的秋季ꎬ表明土壤适度缺水可能会促进AMF在甘薯根系定殖ꎮ刘文科等[25]比较了摩西斗管囊霉(F.mosse ̄ae)对种植在北京褐土和湖北棕壤中甘薯根系的侵染效果ꎬ发现AMF对种植在北京褐土中的甘薯根系侵染率(31 7%)高于种植在湖北棕壤中的甘薯根系侵染率(20 2%)ꎮArle等[33]的研究结果表明ꎬ中性土壤中微生物活动最活跃ꎬ而过酸和过碱的土壤环境会限制AMF孢子的萌发和菌丝的扩展ꎮ王幼珊等[34]发现土壤中速效磷含量在10mg/kg左右时最有利于摩西斗管囊霉的繁殖和侵染植物根系ꎮ含磷量高的土壤环境会抑制宿主植物根际微生物的活动ꎬ同时也阻碍了根系与AMF的物质交换[35 ̄37]ꎮAMF具有生态适应性的原因可能是由于气候条件和土壤环境影响AMF的活性ꎮ3㊀AMF促进甘薯生长发育的作用机制3.1㊀AMF影响甘薯对养分的吸收和分配AMF与宿主植物建立共生关系多以养分为基础ꎬ菌根共生体及其引起的根际微生物活动有助于活化根际养分ꎬ进而促进植物对土壤养分的吸收利用ꎬ提高植物对贫瘠营养环境的适应性[38]ꎮAMF菌丝产生的球囊霉素相关蛋白质(Glomalin ̄relatedSoilProteinꎬGRSP)是土壤中有机碳的重要来源ꎬ接种AMF能提高土壤有机碳含量[39 ̄41]ꎻ同时ꎬGRSP作为一种直接的胶结剂ꎬ能够促进土壤团聚体的形成[42 ̄43]ꎬ改善土壤结构ꎮ此外ꎬGRSP还能够螯合土壤中的氮㊁磷㊁钾以及中量㊁微量元素ꎬ起到活化土壤养分的作用[44]ꎮAMF侵染根系时还可以通过菌丝向土壤中释放有机酸㊁氨基酸㊁糖类等根系分泌物ꎬ这些根系分泌物作为有益微生物的化学引诱剂ꎬ能刺激土壤微生物的活动[45 ̄50]ꎬ调控解磷菌㊁解钾菌㊁产脲酶菌等微生物在根际定殖[51]ꎬ增强磷酸酶㊁过氧化氢酶㊁脲酶㊁蛋白酶的活性[52 ̄53]ꎬ进而驱动土壤养分活化[32ꎬ54 ̄55]ꎮAMF在促进土壤养分活化的同时ꎬ还能通过菌丝生长获取更多的资源ꎬ进而促进植物的生长ꎮ周晓月等[5]㊁李欢等[8]的研究结果表明接种AMF能够优化甘薯根系形态ꎬ显著增加根体积㊁根表面积㊁平均根直径等ꎬ促进甘薯根系对土壤养分的吸收ꎮ此外ꎬ接种AMF还能调控甘薯对养分的分配ꎮ张树海等[6]研究发现接种AMF能促进甘薯生长前期氮素向叶片分配ꎬ限制膨大期氮素向叶片分配㊁促进氮素向块根分配ꎬ这是由于接种AMF提高了块根中谷氨酸脱氢酶㊁谷氨酰胺合成酶和谷氨酸合成酶的活性ꎬ加速土壤中无机氮向有机氮的转化ꎬ进而促进氮素向地下部的转运ꎮ接种AMF还能促进了甘薯块根形成期磷和钾向块根的转运[5]ꎮ总之ꎬ接种AMF能影响甘薯的养分吸收与分配ꎮ875江苏农业学报㊀2023年第39卷第2期3.2㊀AMF影响甘薯光合生产和源库关系光合产物合成及其向块根运输是甘薯块根形成和持续膨大的基础ꎮ接种AMF能促进土壤养分的活化及植物根系对养分的吸收ꎬ进而增强甘薯光合能力㊁促进光合产物的形成及向块根的运输分配[56 ̄57]ꎮ徐西红等[4]研究结果表明接种AMF能显著提高甘薯叶片净光合速率㊁气孔导度和蒸腾速率等光合参数ꎬ增强甘薯叶片蔗糖合成酶㊁蔗糖磷酸合成酶活性ꎬ从而促进光合产物的积累和淀粉的合成ꎮ接种AMF还能促进潜在块根分化㊁增强干物质向块根的分配和转运[5]ꎬ进而实现增产[58 ̄60]ꎮ因此ꎬAMF不但能扩库(促进块根分化)ꎬ还能增源(增强光合能力)ꎬ从而实现甘薯源库关系的平衡ꎮ综上所述ꎬ甘薯与AMF建立的共生关系主要通过三个方面调控甘薯对养分的吸收利用ꎬ进而影响块根形成和膨大ꎮ①AMF侵染甘薯根系后ꎬ其菌丝的延伸扩大了根系吸收养分的范围ꎮ②AMF产生的GRSP可以螯合土壤养分ꎬ改善根际环境ꎻAMF诱导甘薯根系分泌的有机酸有助于促使根际有益微生物聚集ꎬ提高土壤中多种酶的活性ꎬ活化土壤养分ꎬ促进甘薯对养分的吸收ꎮ③AMF通过增强甘薯的光合能力和潜在块根分化ꎬ调控源库关系ꎮ三方面共同影响甘薯对养分的吸收利用ꎬ调控甘薯块根形成和膨大ꎬ影响产量(图1)ꎮ图1㊀AMF对甘薯生长发育调节机制示意图Fig.1㊀RegulationmechanismofAMFonthegrowthanddevelopmentofsweetpotato4㊀问题及展望减肥增效㊁绿色生产是实现农业生态环境保护和粮食安全的保障ꎮ农田土壤中富含AMFꎬ合理运用AMF可以改善土壤特性ꎬ促进作物养分吸收ꎬ有助于实现减肥增效㊁绿色生产ꎮ因此ꎬ菌根技术为甘薯产业发展提供了新的发展机遇ꎮ然而ꎬ菌根在甘薯上的应用研究还存在明显的局限性:①AMF在种植甘薯土壤中的分离鉴定研究不够完善ꎮ甘薯在中国被广泛种植ꎬ然而在种植甘薯土壤中分离出的真菌仅4属8种ꎬ实验室接种应用多以摩西斗管囊霉和幼套近明球囊霉为主[15 ̄16ꎬ25]ꎮ由于ꎬAMF和甘薯之间存在选择适应性ꎬ因此开展更广泛的AMF菌种分离鉴定及其对不同品种甘薯的生长影响分析势在必行ꎮ②目前大多研究侧重AMF对甘薯的促生效应ꎬ但亦有研究发现施用AMF会对植物生长产生负效应ꎬ如高磷条件下AMF会阻碍甘薯块根的生长发育而导致减产[4]ꎬ因此ꎬ对不同气候和土壤环境下AMF应用的合理性㊁适宜菌种的选择等还需要进一步的系统研究ꎮ③接种AMF会影响氮㊁磷㊁钾等营养元素的分配过程ꎬ调控甘薯对养分的吸收和利用ꎬ但目前这方面的研究大多侧重在生理方面ꎬ而对AMF介导的甘薯根975石㊀琨等:丛枝菌根真菌在甘薯生产中的应用研究进展系吸收利用养分的分子机制缺乏深入研究ꎮLiu等[61]通过亚细胞定位分析和RT ̄PCR技术发现低钾胁迫下番茄菌根共生诱导的钾转运体基因SIHAK10在被菌丝侵染形成丛枝的细胞中特异表达ꎬ然而类似的分子生物学技术在甘薯菌根中还没有得到应用ꎮ未来研究还可以利用微生物组和代谢组技术深入探究AMF侵染甘薯根系后差异代谢物作为信号分子在根际有益微生物募集中扮演的角色ꎬ丰富甘薯菌根的共生效应研究ꎮ参考文献:[1]㊀黄艳飞ꎬ吴庆丽ꎬ万㊀群ꎬ等.丛枝菌根真菌的研究进展[J].现代农业ꎬ2019(12):9 ̄12.[2]㊀陆建珍ꎬ汪㊀翔ꎬ秦建军ꎬ等.我国甘薯种植业时空布局分析及产业发展建议[J].天津农业科学ꎬ2020ꎬ26(3):53 ̄62. [3]㊀弋凤蕊ꎬ刘瑞涵ꎬ李仁崑.中国甘薯产业竞争力区域比较研究[J].农业展望ꎬ2021ꎬ17(7):61 ̄66.[4]㊀徐西红ꎬ李腾腾ꎬ李㊀欢.接种AM真菌对甘薯光合作用及碳磷代谢酶活性的影响[J].水土保持学报ꎬ2016ꎬ30(2):255 ̄259. [5]㊀周晓月ꎬ袁㊀洁ꎬ石㊀琨ꎬ等.AMF对甘薯生物量㊁根系形态及钾素吸收的影响[J].江苏农业学报ꎬ2022ꎬ38(4):939 ̄948. [6]㊀张树海ꎬ李㊀欢ꎬ刘㊀庆ꎬ等.接种根内球囊霉提高氮素向甘薯块根转移和再分配的机理[J].植物营养与肥料学报ꎬ2019ꎬ25(9):1542 ̄1549.[7]㊀盖京苹ꎬ冯㊀固ꎬ李晓林.接种丛枝菌根真菌对甘薯生长的影响研究[J].中国生态农业学报ꎬ2004ꎬ12(1):111 ̄113. [8]㊀李㊀欢ꎬ杜志勇ꎬ刘㊀庆ꎬ等.蚯蚓菌根互作对土壤酶活㊁甘薯根系生长及养分吸收的影响[J].植物营养与肥料学报ꎬ2016ꎬ22(1):209 ̄215.[9]ÓKEEFEDMꎬSYLVIADM.ChronologyandmechanismsofPup ̄takebymycorrhizalsweetpotatoplants[J].NewPhytologistꎬ1992ꎬ122(4):651 ̄659.[10]ÓKEEFEDMꎬSYLVIADM.Seasonaldynamicsoftheassocia ̄tionbetweensweetpotatoandvesicular ̄arbuscularmycorrhizalfun ̄gi[J].Mycorrhizaꎬ1993ꎬ3(3):115 ̄122.[11]HARLEYJL.Thesignificanceofmycorrhiza[J].MycologicalRe ̄searchꎬ1989ꎬ92(2):129 ̄139.[12]李艳红ꎬ李艳凤.丛枝菌根与土壤碳截获的研究进展[J].安徽农业科学ꎬ2019ꎬ47(12):6 ̄9.[13]WIPFDꎬKRAJINSKIFꎬTUINENDꎬetal.Tradingonthearbus ̄cularmycorrhizamarket:fromarbusculestocommonmycorrhizalnetworks[J].NewPhytologistꎬ2019ꎬ223(3):1127 ̄1142. [14]储㊀薇ꎬ郭信来ꎬ张㊀晨ꎬ等.丛枝菌根真菌 ̄植物 ̄根际微生物互作研究进展与展望[J].中国生态农业学报(中英文)ꎬ2022ꎬ30(11):1709 ̄1721.[15]ALHADIDINꎬPAPZꎬLADÁNYIMꎬetal.Mycorrhizalinocula ̄tioneffectonsweetpotato(Ipomoeabatatas(L.)Lam)seedlings[J].Agronomyꎬ2021ꎬ11(10):2019.[16]YUANJꎬSHIKꎬZHOUXYꎬetal.Interactiveimpactofpotassi ̄umandarbuscularmycorrhizalfungiontherootmorphologyandnutrientuptakeofsweetpotato(IpomoeabatatasL.)[J].Fron ̄tiersinMicrobiologyꎬ2023ꎬ13:1075957.[17]MARSCHNERHꎬDELLB.Nutrientuptakeinmycorrhizalsymbi ̄osis[J].PlantandSoilꎬ1994ꎬ159(1):89 ̄102.[18]王幼珊ꎬ刘润进.球囊菌门丛枝菌根真菌最新分类系统菌种名录[J].菌物学报ꎬ2017ꎬ36(7):820 ̄850.[19]彭生斌ꎬ沈崇尧ꎬ裘维蕃.中国的内囊霉科菌根真菌[J].真菌学报ꎬ1990ꎬ9(3):170 ̄175.[20]盖京苹ꎬ冯㊀固ꎬ李晓林.我国北方农田土壤中AM真菌的多样性[J].生物多样性ꎬ2004ꎬ12(4):435 ̄440.[21]BORISBꎬRENKERCꎬKAHMENAꎬetal.Speciescompositionofarbuscularmycorrhizalfungiintwomountainmeadowswithdif ̄feringmanagementtypesandlevelsofplantbiodiversity[J].Biolo ̄gyandFertilityofSoilsꎬ2006ꎬ42(4):286 ̄298.[22]FARMERMJꎬLIXꎬFENGGꎬetal.Molecularmonitoringoffield ̄inoculatedAMFtoevaluatepersistenceinsweetpotatocropsinChina[J].AppliedSoilEcologyꎬ2006ꎬ35(3):599 ̄609. [23]张美庆ꎬ王幼珊.我国北部的七种VA菌根真菌[J].真菌学报ꎬ1991ꎬ10(1):13 ̄21.[24]张美庆ꎬ王幼珊ꎬ黄㊀磊.我国北部的八种VA菌根真菌[J].真菌学报ꎬ1992ꎬ11(4):258 ̄267.[25]刘文科ꎬ冯㊀固ꎬ李晓林.AM真菌接种对甘薯产量和品质的影响[J].中国生态农业学报ꎬ2006ꎬ14(4):106 ̄108. [26]YOOYONGWECHSꎬSAMPHUMPHUANGTꎬTISARUMRꎬetal.Arbuscularmycorrhizalfungi(AMF)improvedwaterdeficittoleranceintwodifferentsweetpotatogenotypesinvolvesosmoticadjustmentsviasolublesugarandfreeproline[J].ScientiaHorti ̄culturaeꎬ2016ꎬ198(1):107 ̄117.[27]曹本福ꎬ姜海霞ꎬ陆引罡ꎬ等.烟草与丛枝菌根真菌的共生效应研究进展[J].中国土壤与肥料ꎬ2021(1):327 ̄338. [28]孔维宝ꎬ陈㊀冬ꎬ杨树玲ꎬ等.油橄榄与丛枝菌根真菌的共生效应研究进展[J].应用与环境生物学报ꎬ2019ꎬ25(3):750 ̄758.[29]DINGYꎬJINYꎬHEKꎬetal.Lownitrogenfertilizationalterrhi ̄zospheremicroorganismcommunityandimprovesweetpotatoyieldinanitrogen ̄deficientrockysoil[J].FrontiersinMicrobiologyꎬ2020ꎬ11(1):678.[30]COSMEMꎬRAMIREDDYEꎬFRANKENPꎬetal.Shoot ̄androot ̄bornecytokinininfluencesarbuscularmycorrhizalsymbiosis[J].Mycorrhizaꎬ2016ꎬ26(7):709 ̄720.[31]刘㊀倩.施钾对甘薯产量品质及营养元素吸收的影响[D].泰安:山东农业大学ꎬ2014.[32]MUKHONGORWꎬTUMUHAIRWEJBꎬPETEREꎬetal.Com ̄binedapplicationofbiofertilizersandinorganicnutrientsimprovessweetpotatoyields[J].FrontiersinPlantScienceꎬ2017ꎬ8(1):219.[33]ARLEIꎬSÖDERSTRÖMBꎬOLSSONPA.Growthandinterac ̄tionsofarbuscularmycorrhizalfungiinsoilsfromlimestoneand085江苏农业学报㊀2023年第39卷第2期acidrockhabitats[J].SoilBiologyandBiochemistryꎬ2003ꎬ35(12):1557 ̄1564.[34]王幼珊ꎬ刘相梅ꎬ张美庆ꎬ等.盆栽基质及营养液对AM真菌接种剂繁殖的影响[J].华北农学报ꎬ2001ꎬ16(4):81 ̄86. [35]高雪冬.菌根化育苗对田间不施磷玉米生长和养分吸收的影响[J].现代农业科技ꎬ2021(5):18 ̄19.[36]涂德辉ꎬ张㊀芳ꎬ毛明明ꎬ等.丛枝菌根真菌对桑树根系氮积累及水通道蛋白表达的影响[J].植物生理学报ꎬ2022ꎬ58(8):1607 ̄1616.[37]王雪霏ꎬ曹㊀哲ꎬ杨㊀钥ꎬ等.北方黑土地花生根际丛枝菌根菌(AMF)分离鉴定及应用[J].高师理科学刊ꎬ2022ꎬ42(8):71 ̄76.[38]NOËRꎬKIERSET.Mycorrhizalmarketsꎬfirmsꎬandcoops[J].TrendsinEcology&Evolutionꎬ2018ꎬ33(10):777 ̄789. [39]郭良栋ꎬ田春杰.菌根真菌的碳氮循环功能研究进展[J].微生物学通报ꎬ2013ꎬ40(1):158 ̄171.[40]TRESEDERKKꎬTURNERKM.Glomalininecosystems[J].SoilScienceSocietyofAmericaJournalꎬ2007ꎬ71(4):1257 ̄1266.[41]RILLIGMC.Arbuscularmycorrhizaeꎬglomalinꎬandsoilaggrega ̄tion[J].CanadianJournalofSoilScienceꎬ2004ꎬ84(44):355 ̄363.[42]PARIHARMꎬRAKSHITAꎬMEENAVSꎬetal.ThepotentialofarbuscularmycorrhizalfungiinCcycling:areview[J].ArchivesofMicrobiologyꎬ2020ꎬ202(7):1581 ̄1596.[43]SIXJꎬBOSSUYTHꎬDEGRYZESꎬetal.Ahistoryofresearchonthelinkbetween(micro)aggregatesꎬsoilbiotaꎬandsoilorganicmatterdynamics[J].Soil&TillageResearchꎬ2004ꎬ79(1):7 ̄31. [44]ROSIERCLꎬHOYEATꎬRILLIGMC.Glomalin ̄relatedsoilprotein:assessmentofcurrentdetectionandquantificationtools[J].SoilBiologyandBiochemistryꎬ2006ꎬ38(8):2205 ̄2211. [45]HERMANDJꎬFIRESTONEMKꎬNUCCIOEꎬetal.Interactionsbetweenanarbuscularmycorrhizalfungusandasoilmicrobialcommunitymediatinglitterdecomposition[J].FEMSMicrobiologyEcologyꎬ2012ꎬ80(1):236 ̄247.[46]PATERSONEꎬSIMAꎬDAVIDSONJꎬetal.Arbuscularmycor ̄rhizalhyphaepromoteprimingofnativesoilorganicmatterminer ̄alisation[J].PlantandSoilꎬ2016ꎬ408(1/2):243 ̄254. [47]TALBOTJMꎬALLISONSDꎬTRESEDERKK.Decomposersindisguise:mycorrhizalfungiasregulatorsofsoilCdynamicsineco ̄systemsunderglobalchange[J].FunctionalEcologyꎬ2008ꎬ22(6):955 ̄963.[48]KUZYAKOVY.SourcesofCO2effluxfromsoilandreviewofpar ̄titioningmethods[J].SoilBiology&Biochemistryꎬ2006ꎬ38(3):425 ̄448.[49]FENGHꎬZHANGNꎬDUWꎬetal.Identificationofchemotaxiscompoundsinrootexudatesandtheirsensingchemoreceptorsinplantgrowth ̄promotingrhizobacteriaBacillusamyloliquefaciensSQR9[J].MolecularPlant ̄MicrobeInteractionsꎬ2018ꎬ31(10):995 ̄1005.[50]ZHANGNꎬYANGDꎬWANGDꎬetal.Wholetranscriptomica ̄nalysisoftheplant ̄beneficialrhizobacteriumBacillusamyloliquefa ̄ciensSQR9duringenhancedbiofilmformationregulatedbymaizerootexudates[J].BMCGenomicsꎬ2015ꎬ16(1):685. [51]CHAPARROJMꎬBADRIDVꎬBAKKERMGꎬetal.Correc ̄tion:rootexudationofphytochemicalsinarabidopsisfollowsspe ̄cificpatternsthataredevelopmentallyprogrammedandcorrelatewithsoilmicrobialfunctions[J].PLoSOneꎬ2013ꎬ8(2):e55731.[52]CARAVACAFꎬFIGUEROADꎬBAREAJMꎬetal.Effectofmy ̄corrhizalinoculationonthenutrientcontentꎬgasexchangeandni ̄tratereductaseactivityofRetamasphaerocarpaandOleaeuropaeaSBSP.Sylvestrisunderdroughtstress[J].JournalofPlantNutri ̄tionꎬ2004ꎬ27(1):57 ̄74.[53]BAGOBꎬZIPFELWꎬWILLIAMSRMꎬetal.Translocationandutilizationoffungalstoragelipidinthearbuscularmycorrhizalsym ̄biosis[J].PlantPhysiologyꎬ2002ꎬ128(1):108 ̄124. [54]GAOXꎬHOFFLANDEꎬSTOMPHTꎬetal.Improvingzincbio ̄availabilityintransitionfromfloodedtoaerobicrice.Areview[J].AgronomyforSustainableDevelopmentꎬ2012ꎬ32(2):465 ̄478. [55]竹嘉妮ꎬ黄㊀弘ꎬ杜㊀勇ꎬ等.丛枝菌根真菌影响宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效应[J].生态学杂志ꎬ2022ꎬ41(5):912 ̄918.[56]GONGMꎬTANGMꎬCHENHꎬetal.EffectsoftwoGlomusspe ̄ciesonthegrowthandphysiologicalperformanceofSophoradavidiiseedlingsunderwaterstress[J].NewForestsꎬ2013ꎬ44(3):399 ̄408.[57]PORCELRꎬREDONDO ̄GÓMEZSꎬMATEOS ̄NARANJOEꎬetal.ArbuscularmycorrhizalsymbiosisamelioratestheoptimumquantumyieldofphotosystemIIandreducesnon ̄photochemicalquenchinginriceplantssubjectedtosaltstress[J].JournalofPlantPhysiologyꎬ2015ꎬ185(1):75 ̄83.[58]宁运旺ꎬ马洪波ꎬ张㊀辉ꎬ等.氮㊁磷㊁钾对甘薯生长前期根系形态和植株内源激素含量的影响[J].江苏农业学报ꎬ2013ꎬ29(6):1326 ̄1332.[59]梁清干ꎬ陈艳丽ꎬ刘永华ꎬ等.磷素对甘薯生长前期源库关系建立和平衡的影响[J].热带作物学报ꎬ2021ꎬ42(10):2915 ̄2923.[60]宁运旺ꎬ马洪波ꎬ张㊀辉ꎬ等.甘薯源库关系建立㊁发展和平衡对氮肥用量的响应[J].作物学报ꎬ2015ꎬ41(3):432 ̄439. [61]LIUJJꎬLIUJLꎬLIUJHꎬetal.ThepotassiumtransporterSl ̄HAK10isinvolvedinmycorrhizalpotassiumuptake[J].PlantPhysiologyꎬ2019ꎬ180(1):465 ̄479.(责任编辑:石春林)185石㊀琨等:丛枝菌根真菌在甘薯生产中的应用研究进展。
黄土丘陵沟壑区丛枝菌根真菌多样性及其分布

a e as h o n n p ce n t e r go . Diti to f te oh r 1 s e i sv re t dfee t sa e . Th r r r lo t e d mi a ts e is i h e in sr buin o h t e 6 p ce a d a i r n tg s i f ee we e sg i c n i e e c s i h a e a e ifc in fe u n is o o tpa t ewe n t e frta d s c n t g s o u n in f a tdf r n e n te v r g ne t r q e ce f h s lns b t e h s n e o d sa e n s n y i f o i so e . Ho v i t e p r d n i h d o in fc n dfee c a n t e iv sa e . By o tat te e lp s we e , h s o e e st y a n sg i a t i r n e mo g h f e tg s i f c nr s , h r wa n s o sg i c n i e e c n t ei fcin fe u n isa n h v tg so h d lp s n h p r e st tt efu t in f a td f r n ei h ne t r q e ce mo gt ef e sa e n s a y so e ,a d t es oe d n i a h o rh i f o i y a d ff tg s wa ih r ta h ta h rta d s c n sa e . Rih e s a d d v ri ft e f n u p ce r n i h sa e s h g e h n ta tt e f s n e o d tg s t i c n s n ie st o h u g s s e is we e y hg ra h o rh a d ff tg s n o ra h rta d t id sa e e ad e so lp s e t On s n y so e ihe tt efu t n t sa e ,a d lwe tte f s n hr tg sr g r ls fso e a p c . i h i u n lp s, e e n s fAM u g tt es c n v n e s o f n ia h e o d,tid a d t efu h sa e r ih rta h ta h f tg .Ho v rte ewa h r n h o r t g swee hg e nt a tt ef t sa e t h i h we e h r s n in f a tdfe e c n t e e e n s n s a y so e .Th s e ut r mp r n o u h rsu yn h eain h p o sg i c n i r n e i h v n e so h d lp s i f e e rs l ae i o a tfrf r e td i g te rlto s i s s t t
9_种丛枝菌根真菌对柑橘砧木枳和资阳香橙生长发育的影响

KOH,90℃水浴 0.5 h,清水冲洗 3 次;加入碱性
H2O2 脱色 2 h,清水冲洗 3 次;加 5% 冰乙酸,酸 化 2 h;加 5% 墨水醋染液,66℃水浴染色 1 h,用
清 水 漂 洗 3 ~ 5 次, 用 清 水 浸 泡 12 h 以 上 脱 色
备用。 根 系 检 测 参 考 Trouvelot 等[13] 的 方 法, 使 用
柑 橘(Citrus reticulata Blanco) 是 芸 香 科, 柑 橘 属 植 物。 其 味 美 色 鲜, 营 养 丰 富, 既 可 鲜 食, 又可加工成果汁。柑橘是世界第一大水果,面积 和产量均居全球第一。2017 年,全球柑橘栽培面 积 953 万 hm2, 产 量 1.84 亿 t。 全 世 界 有 138 个 国 家生产柑橘[1],是仅次于小麦、玉米的第三大国 际贸易农产品。而目前我国种植的柑橘大多都是 嫁接苗,嫁接苗是由接穗品种(下称接穗)与砧 木品种(下称砧木)嫁接组合而成的共同体。砧 木是柑橘嫁接的基础,对接穗的树体营养、生长 活 力、 果 实 产 量、 品 质 和 抗 逆 性 具 有 显 著 的 影 响[2-5]。 柑 橘 产 业 中 几 乎 所 有 的 柑 橘 栽 培 品 种 都 是嫁接在砧木上进行生产的,因此,选择合适的
本 试 验 包 括 柑 橘 砧 木 品 种 和 接 种 两 个 因 素。 其中柑橘砧木品种为香橙和枳壳两种;接种处理 包 括 接 种 丛 枝 菌 根 真 菌 和 不 接 种 丛 枝 菌 根 真 菌。 试验共有 20 个处理,每个处理设置 24 个生物学 重复。
供试香橙和枳壳的种子经由 1‰高锰酸钾灭菌
收稿日期:2022-08-14;录用日期:2022-11-06 基金项目:广西科技基地和人才专项(桂科 AD20159001);广西 农业科学院基本科研业务专项(桂农科 2021YT097);厦门大学合 作项目(2017-21)。 作者简介:康贻豪(1996-),硕士研究生,研究方向为柑橘土壤 微生物。E-mail:1500670461@qq.om。 通讯作者:张金莲,E-mail:zhangjinlian1@;陈廷速,E-mail: 2831404955@。
菌根及丛枝菌根概述

菌根及丛枝菌根概述刘 茵 (河南省商丘师范学院生命科学系 476000)摘 要 本文简述了菌根的概念、类型以及丛枝菌根在植物生长和逆境中的生理作用,并对应用丛枝菌根修复污染土壤技术的发展趋势和研究重点进行了展望。
关键词 菌根 丛枝菌根 土壤污染 应用前景自然环境和人类活动造成的土壤质量下降是严重的农业资源和环境问题之一,保持土壤肥力,提高土壤环境质量,从而保障农业可持续发展日益成为人们的共识。
修复被污染的土壤,提高植物对污染物的耐性以及减轻污染物对植物的毒害,是农业科学工作者十分关注的课题。
在理想的基因工程植物成为现实之前,利用一些类群植物自身对污染物的耐性以及对土壤的修复功能是一种很理想的选择,而菌根植物就是其中具有十分光明的应用前景的类群。
1 菌根和丛枝菌根1885年,德国植物生理学和森林学家F rank首创 菌根(fungus-root即m ycorrhiza)这一术语。
菌根是指真菌与植物根系形成的互惠共生体。
能够侵染植物根系形成菌根的真菌叫做菌根真菌。
形成菌根的植物被称为菌根植物或寄主植物。
因而,菌根是菌根真菌和植物在长期生物进化过程中形成的伙伴关系。
全球83%的双子叶植物、79%的单子叶植物以及所有的裸子植物均是菌根植物。
1989年,H arley根据参与共生的真菌和植物种类及它们形成共生体系的特点,将菌根分为7种类型,即丛枝菌根、外生菌根、内外菌根、浆果鹃类菌根、水晶兰类菌根、欧石楠类菌根和兰科菌根。
其中丛枝菌根是一种内生菌根真菌,能在植物根细胞内产生 泡囊(vesi cules)和 丛枝(ar bus cles)两大典型结构,名为泡囊-丛枝菌根(vesi cular -ar buscular m ycorrhiza,VAM)。
由于部分真菌不在根内产生泡囊,但都形成丛枝,故简称丛枝菌根(ar buscularm ycorrhiza,A M)。
丛枝菌根可在90%的微管植物根中形成[1]。
丛枝菌根真菌结构

丛枝菌根真菌结构
丛枝菌根真菌是真菌界中唯一能够同植物建立共生关系的真菌类群,它们有着独特的结构。
丛枝菌根真菌的结构由三部分组成:孢子囊、丛枝和菌根。
孢子囊由孢子和孢子囊壁组成,孢子是真菌的繁殖体,而孢子囊壁是用来保护孢子的结构。
丛枝是菌根真菌的主体,它们由细胞壁、胞质、细胞间隙和细胞膜组成,丛枝的功能是吸收养分,而且可以帮助植物吸收水分。
菌根是真菌的一部分,它们由细胞壁、细胞质和细胞膜组成,其主要功能是吸收养分和水分,同时也可以帮助植物抵抗病原体的侵害。
丛枝菌根真菌的结构是由孢子囊、丛枝和菌根三部分组成,它们与植物建立共生关系,帮助植物吸收养分和水分,并且可以抵抗病原体的侵害。
一种丛枝菌根真菌及其应用

一种丛枝菌根真菌及其应用
本发明涉及一种丛枝菌根真菌及其应用。
该真菌属于丛枝菌门,形态特征为菌丝体纤细,呈白色或淡黄色,生长迅速,能够形成丰富的丛枝菌根,与多种植物形成良好的共生关系。
经过鉴定,该真菌为一种新的丛枝菌根真菌,命名为“ARF-1”。
该真菌具有以下特点:①对多种植物均具有良好的共生能力,可与大豆、玉米、小麦等农作物形成丛枝菌根;②在不同环境条件下均能生长良好,对土壤的适应性强;③可促进植物生长,提高植物的产量和品质,减少化肥的使用量,降低农业生产成本;④能够生产多种生物活性物质,具有潜在的药用和农药开发价值。
本发明还提供了一种利用“ARF-1”丛枝菌根真菌改良农田土壤的方法,包括以下步骤:①选择“ARF-1”真菌株进行培养和繁殖;
②将“ARF-1”真菌株接种在种子或幼苗根系上,与植物形成丛枝菌根;③将接种后的植物移栽到农田土壤中生长,利用“ARF-1”真菌根系对土壤进行改良。
该方法可有效提高土壤的肥力和水分利用率,改善土壤结构,减轻土壤盐碱化和酸化等问题,从而提高农田产量和质量。
本发明还提供了一种利用“ARF-1”丛枝菌根真菌制备生物肥料和生物农药的方法。
该方法通过培养“ARF-1”真菌,收集其产生的丛枝菌根和生物活性物质,制备成生物肥料和生物农药,具有天然、绿色和环保的特点,对农业生产具有广泛的应用前景。
综上所述,本发明提供了一种具有广泛应用价值的丛枝菌根真
菌及其应用,可用于改良农田土壤、提高农田产量和质量、制备生物肥料和生物农药等领域。
新疆的丛枝菌根真菌种类及其应用前景

菌根( y r i ) M c e  ̄ 是土壤中一类真菌与植物形成的互惠共生联合体, ona 广泛存在于 自然界 中。 尤其是 从枝菌根( e su r yc'z, ) A o cl m e h a u a m i 分布最为 广泛。其不仅能改善植物 的营养状况, 促进植物生长, 提 高植物的抗逆性和抗病性, 同时对于 自然界中植物之间碳的迁移…、 维持寄主植物的多样性和植物资源
e l aeb e f  ̄ l i usd+ tf v en p n lh i yds se c
K yw rs Xni g A bsua cr i ug ;ee n pc sapi t n e o d : i a ; r cl Myo h aF nignr adsei ;p l ao jn u r rz a e ci
富蕴、 青河等地冬季最低气温可达 一 2 而有“ 5" C。 火洲” 之称 的吐鲁番盆地夏季气温可达 4" 。 8 地表温度 C 达 7" 0 C以上 ; 吐鲁番盆地年均降雨量仅为 1 . 1T 土壤高度盐碱化,H值可达 98 而位于天山西部的 53T I I, p ., 巩乃斯林场却雨量充沛, 年均降雨量在 1 0 I 以上, 中国的江淮地区相 当。由于新疆特殊的地理 01 I 0 T T 与 位置和“ 三山夹两盆” 的特殊地貌, 形成 了新疆特有的干旱、 高温、 盐碱、 低温等丰富多样的 自然生态环 境。 适应于这些 自然生态环境 。 形成 了丰富多样的植物类群和与植物互惠共生的从枝菌根 ( ) 类群。 开展新疆土壤中 菌的调查研究。 对于 丰富我国 A 菌资源, M 筛选高效菌种, 开发菌根真菌资源的应
丛枝菌根真菌(amf)在土壤修复中的生态应用

丛枝菌根真菌(amf)在土壤修复中的生态应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!丛枝菌根真菌在土壤修复中的生态应用摘要丛枝菌根真菌(AMF)作为一种重要的土壤微生物,其在土壤修复中的生态应用备受关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
This is an electronic version of the publication:Schüßler A, Walker C (2010)The Glomeromycota. A species list with new families and new genera.Arthur Schüßler & Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University.Electronic version freely available online atThis electronic version is 100% identical to the printed publication. This includes the errors; therefore the electronic version contains one additional, initial page as a corrigendum, giving corrections of some errors and typos.Corrections, 2 FEB, 14 FEB, 19 JUL 2011. The corrections are highlighted in red.p 7. FOR Claroidoglomeraceae READ Claroid e oglomeraceaep 10. DELETEGlomus pulvinatum (Henn.) Trappe & Gerd. [as 'pulvinatus'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974)≡Endogone pulvinata Henn., Hedwigia 36: 212 (1897)p 11. AFTER Botanical Code for formal descriptions after 1 Jan 1935 INSERT)p 14. BELOW ≡ Endogone macrocarpa var. geospora T.H. Nicolson & Gerd., Mycologia 60(2): 318 (1968) INSERT ≡ Glomus macrocarpum var. geosporum (T.H. Nicolson & Gerd.) Gerd. & Trappe [as macrocarpus var. geosporus], Mycol. Mem. 5: 55 (1974)p16. ABOVE Sclerocystis coccogenum (Pat.) Höhn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 119: 399 [7 repr.] (1910) INSERTSclerocystis clavispora Trappe, Mycotaxon 6(2): 358 (1977)≡ Glomus clavisporum (Trappe) R.T. Almeida & N.C. Schenck, Mycologia 82(6): 710 (1990)p 19. FOR Rhizophagus irregulare READ Rhizophagus irregularisp 19. FOR Rhizophagus proliferus (Błaszk., Kovács & Balázs) READ Rhizophagus proliferus (Dalpé & Declerck)p 28. FOR Scutellospora arenicola Koske Koske & Halvorson READ Scutellospora arenicola Koske & Halvorsonp 29. FOR Scutellospora pernambucana Oehl, Oehl, D.K. Silva, READ Scutellospora pernambucana Oehl, D.K. Silva, p 30. FOR Genus name: Racocetra Oehl, F.A. Souza & Sieverd., Mycotaxon: 334 (2009) READ Genus name: Racocetra Oehl, F.A. Souza & Sieverd., Mycotaxon 106: 334 (2009)p 35. FOR Acaulospora mellea Spain & N.C. Schenck, in Schenck, Spain, Sieverding & Howeler, Mycologia 76(4): 689 READ Acaulospora mellea Spain & N.C. Schenck, in Schenck, Spain, Sieverding & Howeler, Mycologia 76(4): 690 p 39. FOR Entrophospora nevadensis J. Palenzuela, N. Ferrol & Oehl, Mycologia 102(3): 627 (2010) READ Entrophospora nevadensis Palenz., N. Ferrol, Azcón-Aguilar & Oehl, in Palenzuela, Barea, Ferrol, Azcón-Aguilar &Oehl, Mycologia 102(3): 627 (2010)p 41. FORGeneric type: Pacispora chimonobambusae (C.G. Wu & Y.S. Liu) Sieverd. & Oehl ex C. Walker, Vestberg & A.Schüßler, in Walker, Vestberg & Schüßler, Mycol. Res. 111(3): 255 (2007)≡Gerdemannia chimonobambusae (C.G. Wu & Y.S. Liu) C. Walker, Błaszk., A. Schüßler & Schwarzott, in Walker,Błaszkowski, Schwarzott & Schüßler, Mycol. Res. 108(6): 717 (2004)≡Glomus chimonobambusae C.G. Wu & Y.S. Liu, in Wu, Liu, Hwuang, Wang & Chao, Mycotaxon 53: 284 (1995)READGeneric type: Pacispora scintillans (S.L. Rose & Trappe) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schüßler, in Walker, Vestberg & Schüßler, Mycol. Res. 111(3): 255 (2007)≡Glomus scintillans S.L. Rose & Trappe, Mycotaxon 10(2): 417 (1980)≡Gerdemannia scintillans (S.L. Rose & Trappe) C. Walker, Błaszk., A. Schüßler & Schwarzott, i n Walker,Błaszkowski, Schwarzott & Schüßler, Mycol. Res. 108(6): 716 (2004)=Glomus dominikii Błaszk., Karstenia 27(2): 37 (1988) [1987]=Pacispora dominikii (Błaszk.) Sieverd. & Oehl, in Oehl & Sieverding, J. Appl. Bot., Angew. Bot. 78: 76 (2004)Pacispora chimonobambusae (C.G. Wu & Y.S. Liu) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schüßler, in Walker, Vestberg & Schüßler, Mycol. Res. 111(3): 255 (2007)≡Gerdemannia chimonobambusae (C.G. Wu & Y.S. Liu) C. Walker, Błaszk., A. Schüßler & Schwarzott, in Walker,Błaszkowski, Schwarzott & Schüßler, Mycol. Res. 108(6): 717 (2004)≡Glomus chimonobambusae C.G. Wu & Y.S. Liu, in Wu, Liu, Hwuang, Wang & Chao, Mycotaxon 53: 284 (1995)p 41. BELOW Pacispora robigina Sieverd. & Oehl, in Oehl & Sieverding, J. Appl. Bot. (Angew. Bot.) 78: 75 (2004) DELETE Pacispora scintillans (S.L. Rose & Trappe) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schüßler, inWalker, Vestberg & Schüßler, Mycol. Res. 111(3): 255 (2007)≡Gerdemannia scintillans (S.L. Rose & Trappe) C. Walker, Błaszk., A. Schüßler & Schwarzott, in Walker,Błaszkowski, Schwarzott & Schüßler, Mycol. Res. 108(6): 716 (2004)≡Glomus scintillans S.L. Rose & Trappe, Mycotaxon 10(2): 417 (1980)=Pacispora dominikii (Błaszk.) Sieverd. & Oehl, in O ehl & Sieverding, J. Appl. Bot., Angew. Bot. 78: 76 (2004)p 43. FOR≡Glomus aurantium Błaszk., Blanke, Renker & Buscot, Mycotaxon 90: 540 (2004) READ≡Glomus aurantium Błaszk., Blanke, R enker & Buscot, Mycotaxon 90: 450 (2004)p 43. FOR Genus name: Otospora Palenz., Ferrol & Oehl READ Genus name: Otospora Oehl, Palenz. & N. Ferrolp 43. FOR Generic type: Otospora bareae Palenz., Ferrol & Oehl [as 'bareai'] READ Generic type: Otospora bareae Palenz., N. Ferrol & Oehl [as 'bareai']p 50. FOR Ambispora granatensis J. Palenzuela, N. Ferrol READ Ambispora granatensis Palenz., N. Ferrolp 53. FOR (Morton & Redecker 2001; Kaonongbua 2010). READ(Morton & Redecker 2001; Kaonongbua et al. 2010). Comment on the gender of the epithets in Redeckera.In publishing the new genus Redeckera, in honour of Dirk Redecker, we treated the gender as neuter, thus giving the epithets as pulvinatum, megalocarpum, and fulvum. We had inadvertently missed the recommendation 20A.1(i) in the Botanical Code requesting that all such epithets should be made feminine, and we apologise for this. However, because the names have been formally published, the requirements of Article 62 apply, and the neuter gender must be retained.The GlomeromycotaA species list with new families andnew generaArthur Schüßler1 and Christopher Walker21 Dept. Biology, Biocenter of the Ludwig-Maximilian-University Munich, Grosshaderner Strasse 4, D-82152 Planegg-Martinsried, GERMANY2 Honorary Research Associate, Royal Botanic Garden, EdinburghandHonorary Research Fellow, University of Western AustraliaCONTENTSIntroduction (3)Glomerales (7)Glomeraceae (7)Glomus sensu stricto (7)Species of uncertain position in Glomus sensu lato (8)Funneliformis (13)Sclerocystis (16)Species of uncertain position in Sclerocystis (16)Rhizophagus (19)Claroideoglomeraceae (21)Claroideoglomus (21)Species of uncertain position in Claroideoglomus (22)Species of uncertain position in Glomerales (22)Diversisporales (24)Gigasporaceae (24)Gigaspora (26)Scutellospora (28)Species of uncertain position in Scutellospora (28)Racocetra (30)Species of uncertain position in Racocetra (31)Species of uncertain position in Gigaspora ceae (31)Acaulosporaceae (33)Acaulospora (35)Species of uncertain position in Acaulospora (36)Entrophosporaceae (39)Entrophospora (39)Species of uncertain position Entrophospora (39)Pacisporaceae (41)Pacispora (41)Diversisporaceae (43)Diversispora (43)Otospora (43)Redeckera (44)Paraglomerales (46)Paraglomeraceae (46)Paraglomus (46)Archaeosporales (48)Geosiphonaceae (48)Geosiphon (48)Ambisporaceae (50)Ambispora (50)Archaeosporaceae (53)Archaeospora (53)Literature cited (54)INTRODUCTIONFor many years, the molecular phylogeny of the Glomeromycota (Schüßler et al. 2001) has been published in parts, and frequently updated on the webpage . We also provide the Species 2000 & ITIS Catalogue of Life (Schüßler 2010) with those data. However, the International Code of Botanical Nomenclature (ICBN) does not allow solely electronic publication of taxonomic novelties, so formal changes could not be implemented on this widely used information source. Moreover, because it was not possible to establish the true phylogenetic placement of Glomus macrocarpum, which is the type species of Glomus, a deeply revised taxonomy for the Glomeromycota was impossible. Without knowing the phylogenetic position of this species, we lacked the evidence to classify our long proposed groupings at familial (Schwarzott et al. 2001) and generic levels (Schüßler et al. 2011). We have recently established Glomus macrocarpum in pot culture and sequenced the SSU rRNA gene to allow us to anchor the position of this fungus and thus establish its natural phylogenetic position in relation to others in this ‘genus’. We can now restructure the systematics of the order Glomerales (Glomeromycota) and also the three other orders in the Glomeromycota. In this work, we have listed all glomeromycotan species presently described. We have created new families and genera based on recent phylogenetic analyses, established in large parts by our own research, and we have categorised those species for which the molecular identity is still unknown as ‘species of uncertain position’ in the taxonomic hierarchy, and listed them under their original genus. Also, a number of epitypes are established, all of which are based on living cultures available for scientific research.The Glomeromycota consists of fungi that are generally considered to be obligately symbiotic. Although probably correct, this is an assumption based on analogy with the species for which the biology is known. Such species have been shown either (in one instance) to have a Nostoc (Cyanobacteria) species as a symbiont (Schüßler 2002), or (in all other known instances) to form an intimate symbiosis, generally known as an arbuscular mycorrhiza (AM), with embryophytes (land plants). As well as vascular land plants, hornworts (Schüßler 2000) and liverworts (Fonseca & Berbera 2008) also may form AM. Many glomeromycotan species are known to form AM, but many others have been described from field collected specimens for which the nutritional state of the fungus is unknown. Some species have been established in pot culture in the past, but are no longer available as living material, and consequently have not been subjected to molecular analysis. A few have had genetic markers DNA-sequenced before the demise of the cultures, or from adequately determined field material, and thus can be placed phylogenetically, but many remain to have their true phylogeny uncovered.Historically, most species in this phylum have been described and named from the morphology of their spores. These are produced in the main ectocarpically in the substratum, or in the roots of their host plants. Some produce spores in unstructured dense masses or in structured sporocarps at or near the surface of the soil, and it was these that were first observed and named. However, Morton et al. (1998) argued cogently that the spore is uncoupled from other parts of the organism, and if this is so, variation among spores will not necessarily reflect the true phylogeny. This has been proven since molecular methods have been available, and it has been shown that ‘cryptic’ speciation exists. In fact, it is evident that sometimes spore morphology may be almost indistinguishable among species in different families or even orders (Morton and Redecker 2001; Walker et al. 2007; Walker 2008; Gamper et al. 2009).For the most part, the phylogenetic base used here is the analysis of the small subunit (SSU) rRNA gene, but we consider also data from the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region (comprising the 5.8S rRNA gene and the ITS 1 and ITS2). For simplicity we refer to these as the SSU, LSU, and ITS region. Moreover, we take account of β-tubulin sequence data published in Msiska and Morton (2008) and Morton and Msiska (2010). The SSU subunit is too conserved for resolving species level in the Glomeromycota, but is an important marker for robust phylogenies down to (sub-) genus resolution. Sequences, considered sufficiently good to determine species level are in the region of 1500bp in length, covering part of the SSU and LSU and all of the ITS-region (Krüger et al. 2009; Stockinger et al. 2009) but are not yet available for most AM fungi. Generally speaking, family and generic resolution can be determined by using the SSU or parts of the LSU, and species level resolution can be obtained by additionally using further LSU and the ITS-region data (Stockinger et al. 2010).Many AM fungal species are placed in genera without conclusive evidence. Because this work is based on a natural classification from molecular phylogeny combined with convincing morphological evidence when available, we have excluded species for which we lack such evidence, but have retained them in their original genera, as ‘species of uncertain position’. As a consequence, the phylogeny we offer is imperfect, but gradually it may be possible to move such species to their correct taxa, when living material that can confidently be assigned a name is discovered and DNA sequences of sufficient quality can be analysed with consequential study of phylogeny. We have tended to be conservative in our approach, and thus organisms that may appear from morphology to fall into well defined groups have sometimes been placed among the species of uncertain position, pending the production of further evidence. We provide a phylogenetic tree showing the clades with their associated genus names (page 5), which was computed by using a maximum likelihood method based on near full length SSU rRNA gene sequences. The numbers at the branches show the bootstrap support for the respective topologies.Where possible, cultures of AM fungi cited are given an unique numerical identifier from a purpose designed database used by C. Walker. Such numbers may be notional if the culture is deduced from externally provided information in the literature or actual if the culture is known for certain to have existed. Notional numbers may include a series of subcultures if full details are unknown. The numbers have an Attempt number and an associated subculture number. An example is Attempt 1495-0, which is a first attempt to establish a culture with spores from a field-collected sporocarp as inoculum. Voucher specimens from the C. Walker collection in E are given a number preceded by W, e.g., W5288 was taken from Attempt 1495-0 on 04 Mar 2009. Herbarium abbreviations are from Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. /ih/We are grateful for the help of Paul Kirk, CABI, and for the compilers of Index Fungorum, whose work made constructing this list much easier. However, we should stress that any errors or omissions are entirely our responsibility.Order name: Glomerales J.B. Morton & Benny [as 'Glomales'], Mycotaxon 37: 473 (1990)GLOMERACEAEThis monogeneric family formerly included all the species in Glomus sensu lato, a form-genus that has become a resting place for all of the species with purely glomoid (Glomus-like) spores but unknown phylogenetic affiliations. We made suggestions for separation into several genera and two families about a decade ago, but while we were establishing phylogenetic evidence, we refrained from making formal taxonomic separations. We now have the evidence to separate the order into taxa representing a natural classification, based mainly but not exclusively on molecular phylogenetic analyses. The family is now separated into two, Glomeraceae based on Glomus macrocarpum, and Claroidoglomeraceae fam. nov. based on the former Glomus claroideum.Family name: Glomeraceae Piroz. & Dalpé [as 'Glomaceae'], Symbiosis 7: 19 (1989) emend C. Walker & A. Schüßler Spores glomoid, produced at or near the soil surface, in sporocarps, usually with partial or complete peridium or as spores singly or in clusters in the soil or substrate. With the sequence TGTYADGGCAYYRCACYGG in the ribosomal RNA geneGLOMUS SENSU STRICTOThis genus is based on the species Glomus macrocarpum Tul. & C. Tul. (1845), later lectotypified by Berch & Fortin (1983). For many years, this fungus has been known only from field collections or from unverified pot cultures that have not been available for taxonomic study. We have now established a pot culture and have consequently been able to obtain sequences from the type species for the genus Glomus. We also have molecular evidence from two other samples, one from a field collection, and the other from a pot culture, along with morphological comparison with the lectotype of the species. We define an epitype from our culture to allow future comparison. Some of the synonyms indicated by earlier authorities, should be considered as doubtful pending further studies.Genus name:Glomus Tul. & C. Tul., G. Bot. Ital. 1 (7-8): 63 (1845) emend C. Walker & A. Schüßler≡Parapseudoglomus S.P. Gautam & U.S. Patel, The Mycorrhizae, Diversity, Ecology and Applications (Delhi): 11 (2007)Spores glomoid, produced at or near the soil surface, in sporocarps, usually with partial or complete peridium or as spores singly or in clusters in the soil or substrate. With the sequences GGTACGYACTGGTATCATTGG and TCGGCTGTAAAAGGCYYTTG in the small subunit ribosomal RNA gene specific for the genus.Included species:Generic type:Glomus macrocarpum Tul. & C. Tul. [as 'macrocarpus'], G. Bot. Ital. 1(7-8): 63 (1845)≡Endogone macrocarpa (Tul. & C. Tul.) Tul. & C. Tul., Fungi Hypog.: 182 (1851)Specimens examined:W941 lectotype (see below)W5288 field collected from which Attempt 1495-0 established from which W5581 was taken for molecular analysis.Type materialLectotype. France, Forêt de Chinon, près Ussé, Oct. 1841, Tulasne, determined by Bucholtz, 17 Apr. 1911 to be Endogone macrocarpa Tul., No. 13, designated as lectotype by Berch & Fortin (1983), examined 21 Dec1983 by C. Walker (W941).Epitype. W5581; 4 Mar. 2009 lodged in the C. Walker collection at E, here designated. Derived from the pot culture (Attempt 1495-0); ex-epitype culture material is available on request.SPECIES OF UNCERTAIN POSITION IN GLOMUS SENSU LATOGlomus achrum Błaszk., D. Redecker, Koegel, Schützek, Oehl & Kovács, Botany 87(3): 262 (2009)According to published rDNA sequences, this species clusters basal to the phylogenetic Glomus Group Ab and probably belongs to a separate genus that cannot yet be robustly defined.Glomus aggregatum N.C. Schenck & G.S. Sm., Mycologia 74(1): 80 (1982)According to a published β-tubulin sequence analysis, G. aggregatum clusters with Claroideoglomus, but this seems unlikely and to be potentially eroneous, so we classify it as of uncertain position, for now.Glomus albidum C. Walker & L.H. Rhodes [as 'albidus'], Mycotaxon 12(2): 509 (1981)Glomus ambisporum G.S. Sm. & N.C. Schenck, Mycologia 77(4): 566 (1985)Glomus antarcticum Cabello, in Cabello, Gaspar & Pollero, Mycotaxon 51: 124 (1994)Glomus arborense McGee, Trans. Br. Mycol. Soc. 87(1): 123 (1986)Glomus arenarium Błaszk., Tadych & Madej, Acta Soc. Bot. Pol. 70(2): 97 (2001)Glomus atrouva McGee & Pattinson, in McGee & Trappe, Aust. Syst. Bot. 15(1): 115 (2002)Glomus aureum Oehl & Sieverd., in Oehl, Wiemken & Sieverding, J. Appl. Bot., Angew. Bot. 77: 111 (2003)Glomus australe (Berk.) S.M. Berch, in Berch & Fortin, Can. J. Bot. 61(10): 2611 (1983)≡Endogone australis Berk., in Hooker, Flora Tasman., Fungi 2: 282 (1859) [1860]Glomus avelingiae R.C. Sinclair, in Sinclair, Greuning & Eicker, Mycotaxon 74(2): 338 (2000)Glomus bagyarajii R.C. Sinclair, in Sinclair, Greuning & Eicker, Mycotaxon 74(2): 338 (2000)Glomus bistratum Błaszk., D. Redecker, Koegel, Symanczik, Oehl & Kovács, Botany 87(3): 267 (2009)According to published rDNA sequences, this species clusters basal to the phylogenetic Glomus Group Ab and probably belongs to a separate genus that cannot yet be robustly defined.Glomus boreale (Thaxt.) Trappe & Gerd. [as 'borealis'], in Gerdemann & Trappe, Mycol. Mem. 5: 58 (1974) ≡Endogone borealis Thaxt., Proc. Amer. Acad. Arts & Sci. 57: 318 (1922)Glomus botryoides F.M. Rothwell & Victor, Mycotaxon 20(1): 163 (1984)Glomus caesaris Sieverd. & Oehl, in Oehl, Wiemken & Sieverding, Mycotaxon 84: 381 (2002)Glomus canadense (Thaxt.) Trappe & Gerd. [as 'canadensis'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974) ≡Endogone canadensis Thaxt., Proc. Amer. Acad. Arts & Sci. 57: 317 (1922)Glomus candidum Furrazola, Kaonongbua & Bever, Mycotaxon 113: 103 (2010)Glomus canum McGee, in McGee & Trappe, Aust. Syst. Bot. 15(1): 116 (2002)Glomus cerebriforme McGee, Trans. Br. Mycol. Soc. 87(1): 123 (1986)According to published rDNA sequences, this species clusters in the phylogenetic Glomus Group Ab, but the culture used to generate the sequences may not correspond to the species and is in need of verification, so we here refer to it as of uncertain position.Glomus citricola D.Z. Tang & M. Zang [as 'citricolum'], Acta bot. Yunn. 6(3): 301 (1984)Glomus convolutum Gerd. & Trappe [as 'convolutus'], Mycol. Mem. 5: 42 (1974)Glomus corymbiforme Błaszk., Mycologia 87(5): 732 (1995)Glomus cuneatum McGee & A. Cooper, in McGee & Trappe, Aust. Syst. Bot. 15(1): 117 (2002)Glomus delhiense Mukerji, Bhattacharjee & J.P. Tewari, Trans. Br. Mycol. Soc. 81(3): 643 (1983)Glomus deserticola Trappe, Bloss & J.A. Menge, Mycotaxon 20(1): 123 (1984)The article in which the molecular evidence for this species is published (Chellappan et al. 2005) shows an illustration of a fungus, but it cannot be verified as G. deserticola. The ex-type culture of this species is available, and pending new molecular evidence, we retain this as a species of uncertain phylogenetic position.Glomus dimorphicum Boyetchko & J.P. Tewari, Can. J. Bot. 64(1): 90 (1986)Glomus dolichosporum M.Q. Zhang & You S. Wang, in Zhang, Wang & Xing, Mycosystema 16(4): 241 (1997)Glomus flavisporum (M. Lange & E.M. Lund) Trappe & Gerd. [as 'flavisporus'], Mycol. Mem. 5: 58 (1974)Glomus formosanum C.G. Wu & Z.C. Chen, Taiwania 31: 71 (1986)Glomus fragile (Berk. & Broome) Trappe & Gerd. [as 'fragilis'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974) ≡Paurocotylis fragilis Berk. & Broome, J. Linn. Soc., Bot. 14(2): 137 (1875)Glomus fuegianum (Speg.) Trappe & Gerd. [as 'fuegianus'], in Gerdemann & Trappe, Mycol. Mem. 5: 58 (1974) ≡Endogone fuegiana Speg., Anal. Soc. Cient. Argent. 24(3): 125 [no. 5, reprint page 6] (1887)Glomus gibbosum Błaszk., Mycologia 89(2): 339 (1997)Glomus globiferum Koske & C. Walker, Mycotaxon 26: 133 (1986)Glomus glomerulatum Sieverd., Mycotaxon 29: 74 (1987)Glomus halonatum S.L. Rose & Trappe [as 'halonatus'], Mycotaxon 10(2): 413 (1980)Glomus heterosporum G.S. Sm. & N.C. Schenck, Mycologia 77(4): 567 (1985)Glomus hoi S.M. Berch & Trappe, Mycologia 77(4): 654 (1985)Current DNA evidence for organisms that have been determined as G. hoi shows that two different cultures fall into two clades separated at the level at least of genus and possibly family. Consequently, we are retaining it in the species of uncertain position pending further clarification.Glomus hyderabadensis Swarupa, Kunwar, G.S. Prasad & Manohar., Mycotaxon 89(2): 247 (2004)Glomus indicum Blaszk., Wubet & Harikumar, Botany 88(2): 132-143 (2010)According to published rDNA sequences, this species clusters basal to the phylogenetic Glomus Group Ab and probably belongs to a separate genus that cannot yet be robustly defined.Glomus insculptum Błaszk., in Błaszkowski, Adamska & Czerniawska, Mycotaxon 89(2): 227 (2004)Glomus invermaium I.R. Hall [as 'invermaius'], Trans. Br. Mycol. Soc. 68(3): 345 (1977)Glomus kerguelense Dalpé & Strullu, in Dalpé, Plenchette, Frenot, Gloaguen & Strullu, Mycotaxon 84: 53 (2002)Glomus lacteum S.L. Rose & Trappe [as 'lacteus'], Mycotaxon 10(2): 415 (1980)Glomus magnicaule I.R. Hall [as 'magnicaulis'], Trans. Br. Mycol. Soc. 68(3): 345 (1977)Glomus melanosporum Gerd. & Trappe [as 'melanosporus'], Mycol. Mem. 5: 46 (1974)Glomus microaggregatum Koske, Gemma & P.D. Olexia, Mycotaxon 26: 125 (1986)Glomus microcarpum Tul. & C. Tul. [as 'microcarpus'], G. Bot. Ital. 1(7-8): 63 (1845)Glomus minutum Błaszk., Tadych & Madej, Mycotaxon 76: 189 (2000)Glomus monosporum Gerd. & Trappe [as 'monosporus'], Mycol. Mem. 5: 41 (1974)This has always been something of a problem. It was established in pot culture, but the culture was lost long before DNA sequencing methods were applied as markers for clades in the Glomeromycota. There have been several cultured organisms that have been given this name, but none seems properly to fit the species description of brown spores that have ornamentation of spines on the laminated wall component.Glomus mortonii Bentiv. & Hetrick, Mycotaxon 42: 10 (1991)Although this fungus has produced spores in soil traps in Finland, it has not yet been possible either to establish it in pure culture or to extract DNA. Consequently, it is unclear as to whether or not it belongs in any of the established clades.Glomus multicaule Gerd. & B.K. Bakshi [as 'multicaulis'], Trans. Br. Mycol. Soc. 66(2): 340 (1976)Glomus multiforum Tadych & Błaszk., in Blaszkowski & Tadych, Mycologia 89(5): 805 (1997)Glomus nanolumen Koske & Gemma, Mycologia 81(6): 935 (1990) [1989]Glomus pallidum I.R. Hall [as 'pallidus'], Trans. Br. Mycol. Soc. 68(3): 343 (1977)Glomus pansihalos S.M. Berch & Koske, Mycologia 78(5): 832 (1986)Glomus pellucidum McGee & Pattinson, in McGee & Trappe, Aust. Syst. Bot. 15(1): 120 (2002)Glomus perpusillum Błaszk. & Kovács, in Błaszkowski, Kovács & Balázs, Mycologia 101(2): 249 (2009)Glomus przelewicense Błaszk. [as 'przelewicensis'], Bulletin of the Polish Academy of Sciences, Biological Sciences 36(10-12): 272 (1988)Glomus pulvinatum (Henn.) Trappe & Gerd. [as 'pulvinatus'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974) ≡Endogone pulvinata Henn., Hedwigia 36: 212 (1897)Glomus pustulatum Koske, Friese, C. Walker & Dalpé, Mycotaxon 26: 143 (1986)Glomus radiatum (Thaxt.) Trappe & Gerd. [as 'radiatus'], in Gerdemann & Trappe, Mycol. Mem. 5: 46 (1974) ≡Endogone radiata Thaxt., Proc. Amer. Acad. Arts & Sci. 57: 316 (1922)Glomus reticulatum Bhattacharjee & Mukerji [as 'reticulatus'], Sydowia 33: 14 (1980)This has such a vague and inadequately illustrated species description that it is impossible to apply the name with any confidence to any organism. The type material seems not to exist, and it is thus a species name that exists but which cannot be usefully applied.Glomus segmentatum Trappe, Spooner & Ivory [as 'segmentatus'], in Trappe, Trans. Br. Mycol. Soc. 73(2): 362 (1979) This is a truly sporocarpic fungus. It is known only from field collections, but no sequence exists that can be used to establish its true phylogeny.Glomus spinosum H.T. Hu, Mycotaxon 83: 160 (2002)The species description is more or less uninterpretable, and no type material exists for any of Hu’s species.Glomus spinuliferum Sieverd. & Oehl, in Oehl, Wiemken & Sieverding, Mycotaxon 86: 158 (2003)。