材料真实应力应变与工程应力应变

合集下载

2.真应力与真应变

2.真应力与真应变

工程应力应变&真应力应变☐工程应力-工程应变曲线记录的是实际载荷/原始截面积;☐真应力-真应变曲线记录的是实际载荷/实际截面积。

高延性材料的拉伸应力-应变曲线真应力和真应变的定义S-试件变形后的瞬时横截面积;S0-试件原始横截面积;L-试件变形后的瞬时标距长度;L0-试件原始标距;z-试样断裂前任一时刻横截面积缩减量的百分比;σ-真应力(ture stress);R-工程应力;zR S S S F S F −===σ100ε-真应变(ture strain);e-工程应变;⎪⎭⎫ ⎝⎛−=+===ε⎰z e L L L L LL11ln )1ln(ln d 00真应力:真应变:高延性材料的拉伸应力-应变曲线真应力应变曲线与工程应力应变曲线有不同的变化趋势工程应力应变&真应力应变颈缩弹性变形阶段在弹-塑性变形阶段,只有真应力-真应变曲线才能更好地描述材料的力学形为几种典型金属的真应力-真应变曲线真应力正应变曲线的数学表达幂函数的经验关系式(Hollomom 方程)σ -真应力(ture stress);ε -真应变(ture strain) ;n -应变硬化指数(strain hardening exponent) ;C -强度系数或硬化指数;即ε = 1时的应力值颈缩条件g 点, 最大力F m 处, dF=0, 并开始颈缩。

由于F = σS , 微分后得dF = Sd σ + σdS = 0 (1)假设变形中体积不变, 即SL=常数dS/S = -dL/L = -d ε(2)联合式(1)和(2),可得d σ= σd S /S = σd ε或d σ/d ε= σ材料的应变硬化当材料的应变硬化在数值上等于真应力时,同时就出现了最大力Fm 。

有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)σ和dσ/dε随ε的变化关系颈缩条件d σ/d ε= nCεn -1(1)又d σ/d ε = σCεn = nCεn -1(2)由此可得, n = ε(3)将微分,得σ=εC n 满足颈缩或到达最大工程应力的条件n = ε 或者d σ/d ε= σ真应力σd σ/d εd σ/d ε<σd σ/d ε>σd σ/d ε= σd σ/d εn = ε有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)谢谢观赏!Thanks!。

塑性力学的基本概念和应用

塑性力学的基本概念和应用

塑性力学的基本概念和应用塑性力学是力学学科中的一个重要领域,研究物体在超过其弹性限度之后发生的塑性变形和力学行为。

它在工程领域中有着广泛的应用,可以用于设计和分析各种结构和材料。

本文将介绍塑性力学的基本概念和应用。

一、塑性力学的基本概念塑性力学研究材料在受力过程中的变形行为,重点关注材料的塑性变形和它们与应力应变关系之间的联系。

以下是塑性力学中的几个基本概念:1. 弹性和塑性:在外力作用下,材料会产生变形。

当外力移除后,材料能够完全恢复到其初始形状,这种变形称为弹性变形。

而当外力作用超过了材料的弹性限度时,材料会发生不可逆的塑性变形,导致永久性的形变。

2. 屈服点和屈服应力:材料在受力过程中,当应力达到一定数值时会开始产生塑性变形,此时的应力称为屈服应力。

屈服点是应力-应变曲线上的一个特定点,表示材料开始发生塑性变形的阈值。

3. 工程应力应变和真实应力应变:工程应力指材料在不考虑变形前尺寸的情况下受到的力与单位面积的比值,工程应变指材料在变形前尺寸和力的情况下的应变与原始尺寸比值。

真实应力和真实应变则考虑了材料在受力过程中的变形,分别是力和应变与变形的比值。

二、塑性力学的应用塑性力学在工程领域中有着广泛的应用,以下是其中几个典型的应用。

1. 金属成形加工:塑性力学在金属成形加工中扮演着重要的角色。

通过了解材料的塑性特性和应力应变关系,可以优化金属成形加工的工艺参数,提高材料的形变能力,减小残余应力,提高产品质量。

2. 板结构设计:在板结构的设计中,塑性力学可以用于评估结构的稳定性和承载能力。

通过分析材料的屈服点和塑性变形情况,可以确定合适的结构尺寸和加强措施,以满足结构的强度和刚度要求。

3. 地震工程:塑性力学在地震工程中的应用也很重要。

通过研究材料的塑性行为,可以评估结构在地震荷载下的响应和潜在破坏模式。

这有助于设计出抗震性能良好的建筑和结构,并提供灾害防护措施。

4. 仿真和模拟:在产品设计和工艺优化中,塑性力学可以被应用于数值模拟和仿真。

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线
真应力应变曲线和工程应力应变曲线是材料力学中常用的两种
应力应变关系曲线。

真应力应变曲线是指在材料受力的过程中,考虑到材料的几何形状和尺寸的变化所得到的应力应变曲线。

该曲线描述了材料在受力过程中的真实应力和真实应变的关系。

真应力是指材料受到的外力与材料初始横截面积之比,真应变是指材料的形变与材料初始长度之比。

由于考虑了材料的变形,真应力应变曲线能够提供更准确的材料性能评价。

工程应力应变曲线是指在材料受力的过程中,忽略了材料的几何形状和尺寸的变化所得到的应力应变曲线。

该曲线描述了材料在受力过程中的工程应力和工程应变的关系。

工程应力是指材料受到的外力与材料初始横截面积之比,工程应变是指材料的形变与材料初始长度之比。

由于忽略了材料的变形,工程应力应变曲线在工程设计和材料选择中更常用。

真应力应变曲线和工程应力应变曲线之间存在着一定的差异。

在强度屈服点之前,两者的曲线基本一致,但在屈服点之后,由于考虑了材料的几何形状和尺寸的变化,真应力应变曲线会出现更大的应力和应变。

这是因为材料在受力过程中会发生局部收缩和延长,导致应力增大。

相比之下,工程应力应变曲线在屈服点之后呈现出更平缓的曲线。

在工程实践中,真应力应变曲线和工程应力应变曲线都具有重要的作用。

真应力应变曲线可用于材料性能评价和材料强度分析,而工程应力应变曲线则常用于结构设计和材料选择。

不同的材料和应用领域可能会选择不同的应力应变曲线进行分析和设计,以满足具体的工程需求。

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线一、引言在材料力学中,真应力应变曲线和工程应力应变曲线是两个常用的曲线,用于描述材料在受力时的变形情况。

本文将详细探讨这两种曲线的定义、区别以及应用。

二、真应力应变曲线真应力应变曲线又称为物理应力应变曲线,是指在材料受到外力作用时,通过测量材料内部各点的变形情况得到的应力应变曲线。

2.1 定义真应力是指材料在受力过程中所受到的内部分子间相互作用力,真应变是指材料在受力过程中由于分子间相互作用引起的变形程度。

真应力和真应变可以表示为以下公式:真应力 = 真应力/受力面积真应变 = - ln(1 + 真应变)2.2 特点真应力应变曲线通常具有以下特点: - 在小的应力范围内,真应力与工程应力之间的差别较小; - 随着应力的增大,真应力与工程应力的差别逐渐增大; - 真应力应变曲线通常呈现出非线性的特点; - 在材料破裂前,真应变曲线可能发生多次折线。

三、工程应力应变曲线工程应力应变曲线是指在工程实际应用中常用的应力应变曲线,它是通过测量外部载荷和材料变形量得到的应力应变曲线。

3.1 定义工程应力是指外力作用下的应力,工程应变是指外力作用下的变形程度。

工程应力和工程应变可以表示为以下公式:工程应力 = 外力/原始截面积工程应变 = 变形量/原始长度3.2 特点工程应力应变曲线通常具有以下特点: - 在小的应力范围内,工程应力与真应力之间的差别较小; - 随着应力的增大,工程应力与真应力的差别逐渐增大; - 工程应力应变曲线通常呈现出线性的特点; - 在材料破裂前,工程应变曲线可能发生多次折线。

四、真应力应变曲线与工程应力应变曲线的区别与应用真应力应变曲线与工程应力应变曲线之间存在着一些区别,主要体现在以下几个方面。

4.1 测量原理真应力应变曲线是通过测量材料内部各点的变形情况得到的,而工程应力应变曲线是通过测量外部载荷和材料变形量得到的。

因此,两者的测量原理不同。

4.2 曲线形状真应力应变曲线通常呈现出非线性的特点,可能发生多次折线;而工程应力应变曲线通常呈现出线性的特点,不会发生折线现象。

实验方法:应力与应变曲线的测定

实验方法:应力与应变曲线的测定

真实应力-真实应变曲线的测定一、实验目的1、学会真实应力-真实应变曲线的实验测定和绘制2、加深对真实应力-真实应变曲线的物理意义的认识二、实验内容真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。

主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。

现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。

实测瞬间时载荷下试验的瞬间直径。

特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。

σ真=f(ε)=B·εn三、试样器材及设备1、60吨万能材料试验机2、拉力传感器3、位移传感器4、Y6D-2动态应变仪5、X-Y函数记录仪6、游标卡尺、千分卡尺7、中碳钢试样四、推荐的原始数据记录表格五、实验报告内容除了通常的要求(目的,过程……)外,还要求以下内容:1、硬化曲线的绘制(1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε)(2)由工程应力应变曲线换算出真实应力-真实应变曲线(3) 求出材料常数B 值和n 值,根据B 值作出真实应力-真实应变近似理论硬化曲线。

2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。

3、实验体会六、实验预习思考题1、 什么是硬化曲线?硬化曲线有何用途?2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。

3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差?附:真实应力-真实应变曲线的计算机数据处理一、 目的初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。

二、 内容一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。

如把方程的二边取对数:ln σ=lnB+nln ε,令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx成为一线性方程。

在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。

材料力学中的应力与应变关系

材料力学中的应力与应变关系

材料力学中的应力与应变关系引言:材料力学是研究材料在外力作用下的力学性能和变形规律的学科,应力与应变是材料力学中最基础的概念之一。

应力与应变关系的研究对于材料的设计、工程应用以及材料力学理论的发展具有重要意义。

本文将从宏观和微观两个角度出发,探讨材料力学中的应力与应变关系。

一、宏观角度下的应力与应变关系宏观角度下的应力与应变关系是指在宏观尺度上,材料在外力作用下的力学响应。

我们可以通过引入应力和应变的概念来描述材料的力学行为。

1. 弹性应力与应变关系弹性应力与应变关系是指材料在弹性阶段内,应力与应变之间的关系。

弹性材料在受力后能够恢复到原始形状,且应力与应变呈线性关系。

根据胡克定律,应力与应变之间的关系可以表示为:σ = Eε其中,σ表示应力,E表示弹性模量,ε表示应变。

弹性模量是材料的一种力学性能参数,反映了材料对外力的抵抗能力。

2. 塑性应力与应变关系塑性应力与应变关系是指材料在超过弹性极限后,发生塑性变形时的应力与应变关系。

塑性材料在受力后会发生永久性变形,应力与应变之间不再呈线性关系。

根据真应力与真应变的定义,塑性应力与应变关系可以表示为:σ' = Kε'其中,σ'表示真应力,K表示材料的强度系数,ε'表示真应变。

强度系数是衡量材料塑性变形能力的指标。

3. 强化应力与应变关系强化应力与应变关系是指材料在受到强化处理后,应力与应变之间的关系。

强化处理是通过改变材料的晶体结构或添加外部组分来提高材料的力学性能。

强化应力与应变关系的表达式与具体的强化方式有关,可以通过试验或模型计算得到。

二、微观角度下的应力与应变关系微观角度下的应力与应变关系是指材料在微观尺度上,原子或分子之间的相互作用导致的力学响应。

我们可以通过分子动力学模拟或统计力学方法来研究材料的微观力学行为。

1. 分子动力学模拟分子动力学模拟是一种通过求解牛顿运动方程来模拟材料微观力学行为的方法。

通过分子动力学模拟,我们可以得到材料的应力与应变关系,并研究材料的力学性能和变形机制。

工程应力和真实应力换算公式

工程应力和真实应力换算公式

工程应力和真实应力换算公式我们需要了解什么是工程应力和真实应力。

在材料力学中,应力是指单位面积上的力。

工程应力是指在工程领域中常用的应力计算方法,它是根据假设和简化条件得出的一种近似计算方法。

而真实应力则是根据材料的实际力学行为计算得出的应力。

工程应力和真实应力之间的换算关系可以通过以下公式表示:真实应力 = 工程应力× (1 + ε)工程应力 = 真实应力÷ (1 + ε)其中,ε表示应变,是指材料在受力时的形变程度。

应变可以通过形变和初始尺寸之比来表示。

在工程应力和真实应力之间进行换算时,需要考虑材料的应变。

因为在受力过程中,材料会产生形变,使得应力和应变之间的关系发生变化。

工程应力是基于假设条件计算得出的,不考虑材料的应变变化,因此与真实应力存在差异。

为了更准确地描述材料的力学行为,需要将工程应力转换为真实应力。

当材料的应变较小(小于0.1)时,可以忽略ε的影响,工程应力和真实应力之间的差异较小,可以近似认为两者相等。

但当应变较大时,就需要考虑应变对应力的影响,使用上述换算公式进行计算。

需要注意的是,工程应力和真实应力的单位要保持一致。

常用的单位有帕斯卡(Pa)和兆帕(MPa)。

在工程实践中,工程师常常需要根据材料的真实应力进行设计和计算。

因此,了解工程应力和真实应力之间的换算关系是非常重要的。

只有准确地计算材料的真实应力,才能更好地评估材料的强度和稳定性。

总结起来,工程应力和真实应力之间的换算关系可以通过简单的公式进行计算。

在进行计算时,需要考虑材料的应变对应力的影响。

工程师在进行设计和计算时,应根据材料的真实应力进行准确的分析和评估,以确保工程的安全性和可靠性。

工程力学中的应力和应变分析

工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。

应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。

本文将就工程力学中的应力和应变进行详细分析。

一、应力分析应力是指物体单位面积上的内部分子间相互作用力。

根据作用平面的不同,可以分为法向应力和剪切应力两种。

1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。

根据物体受力状态的不同,可以分为拉应力和压应力两种。

- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。

拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。

- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。

压应力的计算公式与拉应力类似。

2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。

剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。

二、应变分析应变是指物体由于外力的作用而产生的形变程度。

根据变形情况,可以分为线性弹性应变和非线性应变。

1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。

线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。

2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。

非线性应变的计算公式较为复杂,需要根据具体情况进行分析。

三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。

1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。

根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。

2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Remove elastic strain
真实应力应变和工程应力应变
这里面的Stress 和 Strain 就是指的工程应力和工程应变,满足这个关系:
真实应力应变和工程应力应变
但实际上,从前一张图上就可以看出,拉伸变形是有颈缩的,因此单纯的比例 关系意义是不大的,因而由此绘出的图也可能给人带来一些容易产生误解的信 息,比如让人误认为过了M点金属材料本身的性能会下降。但其实我们可以看 到,在断口处A(这个面积才代表真正的受应力面)是非常小的,因而材料的 真实强度时上升了的(是指单位体积或者单位面积上的,不是结构上的)。 因而真实应力被定义了出来:
这个是真实应力,其中Ai是代表性区域(cross-sectional area,是这么翻的 吧?)前面的例子中是颈缩区截面积。
然后就可以根据某些数学方法推出真实应变:
但这两个式子在使用上还是不那么直接,因而我们引入体积不变条件Aili=A 0l0 然后可以得到::
真实应力应变和工程应力应变
但似乎只有在颈缩刚刚开始的阶段这两个式子才成立。 下面这张图是真实应力应变和工程应力引力应变的对照图:
其中的Corrected是指的考虑了颈缩区域复杂应力状态后作的修正。
真实应力应变和工程应力E P

P




E



E
εT ln(1 εE ) σT σE (1 εE )
Translate from engineering value to true value
相关文档
最新文档