【精品】材料真实应力应变与工程应力应变

合集下载

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线

真应力应变曲线和工程应力应变曲线一、引言在材料力学中,真应力应变曲线和工程应力应变曲线是两个常用的曲线,用于描述材料在受力时的变形情况。

本文将详细探讨这两种曲线的定义、区别以及应用。

二、真应力应变曲线真应力应变曲线又称为物理应力应变曲线,是指在材料受到外力作用时,通过测量材料内部各点的变形情况得到的应力应变曲线。

2.1 定义真应力是指材料在受力过程中所受到的内部分子间相互作用力,真应变是指材料在受力过程中由于分子间相互作用引起的变形程度。

真应力和真应变可以表示为以下公式:真应力 = 真应力/受力面积真应变 = - ln(1 + 真应变)2.2 特点真应力应变曲线通常具有以下特点: - 在小的应力范围内,真应力与工程应力之间的差别较小; - 随着应力的增大,真应力与工程应力的差别逐渐增大; - 真应力应变曲线通常呈现出非线性的特点; - 在材料破裂前,真应变曲线可能发生多次折线。

三、工程应力应变曲线工程应力应变曲线是指在工程实际应用中常用的应力应变曲线,它是通过测量外部载荷和材料变形量得到的应力应变曲线。

3.1 定义工程应力是指外力作用下的应力,工程应变是指外力作用下的变形程度。

工程应力和工程应变可以表示为以下公式:工程应力 = 外力/原始截面积工程应变 = 变形量/原始长度3.2 特点工程应力应变曲线通常具有以下特点: - 在小的应力范围内,工程应力与真应力之间的差别较小; - 随着应力的增大,工程应力与真应力的差别逐渐增大; - 工程应力应变曲线通常呈现出线性的特点; - 在材料破裂前,工程应变曲线可能发生多次折线。

四、真应力应变曲线与工程应力应变曲线的区别与应用真应力应变曲线与工程应力应变曲线之间存在着一些区别,主要体现在以下几个方面。

4.1 测量原理真应力应变曲线是通过测量材料内部各点的变形情况得到的,而工程应力应变曲线是通过测量外部载荷和材料变形量得到的。

因此,两者的测量原理不同。

4.2 曲线形状真应力应变曲线通常呈现出非线性的特点,可能发生多次折线;而工程应力应变曲线通常呈现出线性的特点,不会发生折线现象。

有限元分析工程应力应变与真实应力应变

有限元分析工程应力应变与真实应力应变
有限元分析工程应力应变与真实应力应变
材料信息表
工程应力应变曲线
材料 编号
材料 密度
弹性 模量
泊松 比
屈服 应力
抗拉 强度
颈缩 点应 变
断裂应变
不同 应变 率
屈服 抗拉 应力 强度
颈缩点 断裂应变 应变
单轴拉伸试验
材料 熔化 温度
材料比 热容
材料信息表
材料基本信息:
密度,模量,泊松比
材料应力应变关系:
voce
1
p tr
Johnson-Cook swift voce
Swift-voce
1
p tr
Altair RADIOSS 模型介绍
采用单独的材料卡片文件。
不同材料仅需覆盖材料卡片文
件LAW36.txt即可,模型其他
部分无需修改。
Starter 文件
*0000.rad
Altair RADIOSS模型
壳体单元模型
定义 单元属性 材料 边界条件 载荷 。。。
Engine 文件 *0000.rad
定义 计算时间 时间步长控制 动画输出控制 。。。
Compose
1.读取真实应力-真实塑性应变曲线
pl tr
tr
必须从0开始
……
2.输入相应数据
3.自动生成LAW36卡片文件
Байду номын сангаас
Compose
4.使用Compose生成LAW36卡片在模型中验证
Compose生成文件 实验文件 RADIOSS模型文件
运行模型
应力应变关系 应变率影响 温度影响
材料破坏应变
LAW36 应力应变曲线输入
材料基本信息: 密度,模量,泊松比

应变和应力关系

应变和应力关系
生物医学工程:利用应变和应力原理,开发出更符合人体生理需求的医疗 器械和生物材料,提高医疗效果和人体健康水平。
新能源技术:利用应变和应力原理,优化风力发电机叶片设计,提高风能 利用率和发电效率。
机器人技术:通过研究应变和应力与机器人关节运动的关系,提高机器人 的灵活性和稳定性,拓展机器人的应用领域。
应变和应力对未来科技发展的影响
增强材料性能:通过深入研究应变和应力,可以开发出性能更强的新型材 料,为未来的科技发展提供物质基础。
智能制造:利用应变和应力的知识,可以优化制造过程中的材料性能,提 高生产效率和产品质量,推动智能制造的发展。
生物医学应用:在生物医学领域,应变和应力的研究有助于更好地理解和 控制人体生理机制,为未来的生物医学应用提供支持。
压痕法:利用压痕仪在物体表面压出一定形状的压痕,通过测量压痕的尺寸来计算应力
应变和应力的相互影响
应变和应力之间的关系:应变是应力作用下的物体形状变化,应力是抵抗变形的力。
应变和应力的测量方法:通过应变计和应力计进行测量,应变计测量物体变形,应力计测量物 体受到的力。
应变和应力的相互影响:应变和应力之间存在相互影响,例如在材料屈服点附近,应变和应力 之间会发生突变。
应力的概念
分类:正应力、剪应力、弯 曲应力等
定义:物体受到外力作用时, 内部产生的反作用力
单位:帕斯卡(Pa) 作用效果:使物体产生形变
应变和应力的关系
应变是物体形状 的改变,应力是 物体内部抵抗变
形的力
应变和应力之间 存在线性关系, 即应变正比于应

应变和应力之间 的关系可以用胡 克定律表示,即 应力=弹性模量
应变和应力关系
汇报人:XX
应变和应力的定义 应变和应力的测量方法 应变和应力的应用领域 应变和应力的研究进展 应变和应力的未来展望

工程力学中的应变与应力分析方法总结和应用研究

工程力学中的应变与应力分析方法总结和应用研究

工程力学中的应变与应力分析方法总结和应用研究工程力学是一门研究物体在受力作用下的运动和变形规律的学科,应变与应力分析是工程力学中的重要内容。

本文将总结和探讨工程力学中的应变与应力分析方法,并探讨其在实际工程中的应用。

一、应变分析方法应变是物体在受力作用下发生的变形程度的度量。

应变分析方法主要有拉伸应变、剪切应变和体积应变等。

1. 拉伸应变:拉伸应变是指物体在受拉力作用下发生的变形程度。

拉伸应变的计算公式为ε = ΔL / L0,其中ΔL为物体在受拉力作用下的变形长度,L0为物体的初始长度。

拉伸应变的大小与物体的材料性质有关。

2. 剪切应变:剪切应变是指物体在受剪切力作用下发生的变形程度。

剪切应变的计算公式为γ = Δx / h,其中Δx为物体在受剪切力作用下的变形长度,h为物体的高度。

剪切应变的大小与物体的切变模量有关。

3. 体积应变:体积应变是指物体在受力作用下发生的体积变化程度。

体积应变的计算公式为εv = ΔV / V0,其中ΔV为物体在受力作用下的体积变化量,V0为物体的初始体积。

体积应变的大小与物体的体积模量有关。

二、应力分析方法应力是物体内部受力情况的描述,应力分析方法主要有拉应力、剪应力和体应力等。

1. 拉应力:拉应力是指物体在受拉力作用下单位面积上的受力情况。

拉应力的计算公式为σ = F / A,其中F为物体受到的拉力,A为物体的受力面积。

拉应力的大小与物体的弹性模量有关。

2. 剪应力:剪应力是指物体在受剪切力作用下单位面积上的受力情况。

剪应力的计算公式为τ = F / A,其中F为物体受到的剪切力,A为物体的受力面积。

剪应力的大小与物体的剪切模量有关。

3. 体应力:体应力是指物体内部各点上的应力情况。

体应力的计算公式为σ =F / A,其中F为物体受到的力,A为物体的横截面积。

体应力的大小与物体的杨氏模量有关。

三、应变与应力分析方法的应用研究应变与应力分析方法在实际工程中有着广泛的应用。

工程力学中的应力和应变的计算方法

工程力学中的应力和应变的计算方法

工程力学中的应力和应变的计算方法在工程力学这一领域中,应力和应变是两个极其重要的概念。

它们对于理解材料在受力情况下的行为以及结构的稳定性和安全性起着关键作用。

接下来,让我们深入探讨一下应力和应变的计算方法。

应力,简单来说,就是单位面积上所承受的内力。

想象一下,我们有一根杆子,在它的横截面上受到一个力的作用。

这个力除以横截面的面积,得到的值就是应力。

应力的单位通常是帕斯卡(Pa)。

在计算应力时,我们需要先明确受力的类型。

如果是拉伸或压缩力,应力的计算公式为:应力=力/横截面面积。

例如,有一根横截面面积为 001 平方米的杆子,受到 1000 牛顿的拉力,那么应力= 1000/ 001 = 100000 帕斯卡。

如果是剪切力,应力的计算就稍微复杂一些。

对于矩形截面,剪切应力=剪力/(横截面面积 ×剪切面的距离)。

假设一个矩形截面的宽度为 b,高度为 h,受到的剪力为 V,那么剪切面上的平均剪切应力= 3V / 2bh 。

应变则是描述物体在受力时发生的变形程度。

它是相对变形量,没有单位。

应变分为线应变和角应变。

线应变是指物体在某一方向上长度的变化量与原始长度的比值。

如果一根杆子原来的长度是 L,受力后长度变成了 L',那么线应变=(L' L)/ L 。

角应变,也称为切应变,用于描述物体的角度变化。

例如,一个正方形在受力后变成了菱形,其角度的变化量就是角应变。

在实际工程中,应力和应变的关系通常通过材料的本构方程来描述。

对于线弹性材料,应力和应变之间存在线性关系,遵循胡克定律。

胡克定律在拉伸或压缩情况下可以表示为:应力=弹性模量 ×应变。

这里的弹性模量是材料的一个固有属性,反映了材料抵抗变形的能力。

不同的材料具有不同的弹性模量。

例如,钢材的弹性模量通常较大,这意味着它在受力时相对不容易发生变形;而橡胶的弹性模量较小,受力时容易产生较大的变形。

除了简单的拉伸和压缩情况,对于复杂的受力状态,如弯曲、扭转等,应力和应变的计算就需要运用更复杂的理论和方法。

工程应变应变曲线和真实应变曲线

工程应变应变曲线和真实应变曲线

工程应变应变曲线和真实应变曲线1. 简介在工程领域中,应变是指物理对象在受力作用下的形变程度,是衡量物体弹性性质的重要参数。

在工程实践中,为了了解材料的力学性能和确定合适的设计参数,工程应变应变曲线和真实应变曲线是常用的研究方法。

2. 工程应变应变曲线2.1 原理工程应变应变曲线是通过实验测量得到的应变值和应力值之间的关系图。

在实验中,通过施加不同的载荷,测量材料在各个应变程度下的应力,最终得到应变应变曲线。

2.2 曲线形状工程应变应变曲线通常呈现出三个阶段的特征:弹性阶段、屈服阶段和塑性阶段。

2.2.1 弹性阶段在这个阶段,应变和应力之间的关系呈线性。

当材料受到力的作用时,会发生临界应力,超过临界应力后,材料会有一个弹性形变。

2.2.2 屈服阶段在这个阶段,材料会发生塑性变形。

应力达到一定值后,材料会出现屈服点,应力不再随应变的增加而线性增加,出现明显的非线性行为。

2.2.3 塑性阶段在塑性阶段,应变与应力之间的关系呈非线性。

材料在受到应力作用下会发生永久性的形变,成为塑性变形。

2.3 应用工程应变应变曲线可以用于材料的强度分析、设计参数确定以及工程结构的可靠性评估等。

通过对材料的应变应变曲线进行分析,可以更好地了解材料的力学性能,为工程设计提供依据。

3. 真实应变曲线3.1 原理真实应变曲线是指材料受力过程中,考虑了材料体积的变化所导致的形变程度。

在实际应用中,考虑了材料的体积变化可以更准确地描述材料的力学性能。

3.2 曲线形状真实应变曲线相对于工程应变应变曲线来说更为平缓,因为真实应变考虑了材料的体积变化。

当材料受到力的作用时,其体积会发生变化,因此真实应变会比工程应变更大。

3.3 应用真实应变曲线的应用主要集中在需要更为准确的应变值的场合,如高强度材料的应变测量和材料的损伤分析等。

通过测量真实应变曲线,可以更为精确地评估材料的性能和可靠性。

4. 工程应变与真实应变的比较工程应变和真实应变都是研究材料变形程度的重要参数,它们的区别在于是否考虑了材料的体积变化。

应力和应变

应力和应变

应力和应变1. 简介在力学和材料科学中,应力和应变是两个重要的概念。

应力是指材料内部受到的力的作用,而应变是指材料在受到力作用后发生的形变。

应力和应变是描述材料力学性能的基本参数,对于材料的设计和工程应用具有重要意义。

2. 应力应力是材料内部受到的力的作用,通常用符号σ表示,其单位是帕斯卡(Pa),也可以使用兆帕(MPa)或千兆帕(GPa)。

应力可以分为三类:正应力、剪应力和法向应力。

2.1 正应力正应力是指作用在材料内部的垂直于截面的力,可以通过力除以截面积来计算。

正应力可以进一步分为拉应力和压应力,分别表示拉伸和压缩材料时的应力。

拉应力表示材料受到拉伸作用时的应力,通常以正数表示。

拉应力会使材料发生形变,具有延展性和弹性,可以恢复原状。

压应力表示材料受到压缩作用时的应力,通常以负数表示。

压应力会使材料发生形变,具有收缩性和塑性,并且不易恢复原状。

2.2 剪应力剪应力是指作用在材料内部的平行于截面但方向不同的力,可以通过力除以截面积来计算。

剪应力会使材料发生扭转和剪切形变。

剪应力会产生剪切变形,对应的是材料的剪切模量,可以用于描述材料的硬度和可塑性。

2.3 法向应力法向应力是指作用在材料内部的垂直于截面方向的力,可以通过力除以截面积来计算。

法向应力会使材料发生压缩或拉伸形变。

法向应力的大小和方向取决于施加力的方向和大小,可用于描述材料的稳定性和破坏性。

3. 应变应变是材料在受到力作用后发生的形变,通常用符号ε表示。

应变可以分为线性应变和非线性应变两类。

3.1 线性应变线性应变是指材料在受到小应力作用时,形变与力之间的关系是线性的。

线性应变可以通过材料的弹性模量来描述,弹性模量是材料在小应力作用下恢复原状能力的度量。

3.2 非线性应变非线性应变是指材料在受到大应力作用时,形变与力之间的关系是非线性的。

非线性应变通常发生在超过材料弹性极限时,即材料开始变形并难以恢复原状的阶段。

非线性应变可以引起材料的塑性变形和破坏,对于材料的设计和使用具有重要影响。

应力与应变

应力与应变

应力与应变概念解释在物理学和材料科学领域中,应力(stress)和应变(strain)是两个重要的概念。

应力描述的是物体内部的力状态,而应变描述的是物体对于应力的响应。

理解应力和应变的关系对于材料强度和工程设计具有重要意义。

应力是指物体内部的力,可以描述为单位面积上施加的力。

它通常用符号σ(sigma)表示,单位为帕斯卡(Pa)。

应力可以分为正应力(tensile stress)和剪应力(shear stress)两种类型。

正应力指作用在物体上的拉伸或压缩力。

拉伸应力是指物体被拉伸的力,压缩应力是指物体被压缩的力。

正应力的大小等于作用力除以物体横截面的面积。

剪应力指作用在物体上的剪切力,是指物体内部各点上的两个互相垂直的力之间的比例。

剪应力的大小等于剪切力除以物体横截面的面积。

应变是指物体对于应力的响应,是单位长度的长度变化。

应变可以描述为物体在单位长度上的变形程度。

应变可以分为线性应变(linear strain)和剪应变(shear strain)两种类型。

线性应变指物体的长度变化与原始长度的比例。

它是一个无量纲的物理量,通常用符号ε(epsilon)表示。

线性应变可以是拉伸应变,也可以是压缩应变。

拉伸应变是指物体在拉伸力作用下产生的应变,压缩应变是指物体在压缩力作用下产生的应变。

剪应变指物体产生的平面变形,在受到平行力作用的情况下,物体的形状会发生变化。

剪应变可以通过一个无量纲数值来表示物体的错位程度。

应力-应变关系应力和应变之间存在一种关系,称为应力-应变关系。

它描述了物体在受到应力作用时的应变程度。

应力-应变关系可以是线性的,也可以是非线性的。

在线性应力-应变关系中,应力和应变之间存在简单的比例关系。

例如,在拉伸应力作用下,当应力增加时,应变也会以同样的比例增加。

这种关系可以由胡克定律(Hooke's law)来描述。

胡克定律是一种线性弹性模型,描述了应力和应变之间的关系。

根据胡克定律,应力与应变之间的比例常数被称为弹性模量(elastic modulus)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Translate from engineering value to true value
真实应力应变和工程应力应变
这里面的Stress 和 Strain 就是指的工程应力和工程应变,满足这个关系:
真实应力应变和工程应力应变
但实际上,从前一张图上就可以看出,拉伸变形是有颈缩的,因此单纯的比例 关系意义是不大的,因而由此绘出的图也可能给人带来一些容易产生误解的信 息,比如让人误认为过了M点金属材料本身的性能会下降。但其实我们可以看 到,在断口处A(这个面积才代表真正的受应力面)是非常小的,因而材料的 真实强度时上升了的(是指单位体积或者单位面积上的,不是结构上的)。 因而真实应力被定义了出来:
这个是真实应力,其中Ai是代表性区域(cross-sectional area,是这么翻的 吧?)前面的例子中是颈缩区截面积。 然后就可以根据某些数学方法推出真实应变:
但这两个式子在使用上还是不那么直接,因而我们引入体积不变条件Aili=A 0l0 然后可以得Байду номын сангаас::
真实应力应变和工程应力应变
但似乎只有在颈缩刚刚开始的阶段这两个式子才成立。 下面这张图是真实应力应变和工程应力引力应变的对照图:
其中的Corrected是指的考虑了颈缩区域复杂应力状态后作的修正。
真实应力应变和工程应力应变
E E E E E P P E E
Remove elastic strain
ε T ln(1 ε E ) σ T σ E (1 ε E )
相关文档
最新文档