2018年深圳中考几何综合题专题复习

合集下载

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案反比例函数系数k的几何意义综合题专训1、(2019盘锦.中考真卷) 如图,四边形ABCD是矩形,点A在第四象限y1=﹣的图象上,点B在第一象限y2=的图象上,AB交x轴于点E,点C与点D在y轴上,AD=,S矩形OCBE= S矩形ODAE.(1)求点B的坐标.(2)若点P在x轴上,S△BPE=3,求直线BP的解析式.2、(2019镇江.中考真卷) 如图,点和点是反比例函数图象上的两点,一次函数的图象经过点,与轴交于点,与轴交于点,过点作轴,垂足为,连接 .已知与的面积满足 .(1)=,=;(2)已知点在线段上,当时,求点的坐标.3、(2018常州.中考真卷) 如图,已知点A在反比例函数y= (x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.4、(2017兴化.中考模拟) 已知点A(1,2)、点 B在双曲线y= (x>0)上,过B作BC⊥x轴于点C,如图,P是y轴上一点,(1)求k的值及△PBC的面积;(2)设点M(x1,y1)、N(x2,y2)(x2>x1>0)是双曲线y= (x>0)上的任意两点,s= ,t= ,试判断s与t 的大小关系,并说明理由.5、(2018深圳.中考模拟) 如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.6、(2018河南.中考模拟) 如图,点P是反比例函数y= (k>0)图象在第一象限上的一个动点,过P作x轴的垂线,垂足为M,若△POM的面积为2.(1)求反比例函数的解析式;(2)若点B坐标为(0,﹣2),点A为直线y=x与反比例函数y= (k>0)图象在第一象限上的交点,连接AB,过A作AC⊥y 轴于点C,若△ABC与△POM相似,求点P的坐标.7、(2017黄冈.中考模拟) 如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y= (k>0,x>0)的图象上点P(m,n)是函数图象上任意一点,过点P分别作x轴y轴的垂线,垂足分别为E,F.并设矩形OEPF和正方形OABC不重合的部分的面积为S.(1)求k的值;(2)当S= 时,求P点的坐标;(3)写出S关于m的关系式.8、(2017黄冈.中考模拟) 反比例函数y= 在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y= 的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y= 的图象上,求t的值.9、(2020辽宁.中考模拟) 如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A.(1)求和的值.(2)过点B作BC∥x轴,与双曲线交于点C.求△OAC的面积.10、(2017湖北.中考真卷) 如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y= (k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y= 于另一点,求△OBC的面积.11、(2018株洲.中考真卷) 如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD的面积为2.(1)求的值及 =4时的值;(2)记表示为不超过的最大整数,例如:,,设 ,若,求值12、(2017常德.中考真卷) 如图,已知反比例函数y= 的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y= 的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.13、(2018深圳.中考模拟) 如图,直线y=3x与双曲线y= (k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.14、(2018广州.中考真卷) 设P(x,0)是x轴上的一个动点,它与原点的距离为。

深圳中考数学冲刺之几何篇

深圳中考数学冲刺之几何篇

几何-三角形复习1如图,在等腰梯形ABCD 中,AB//CD ,AD=BC ,延长AB 到E ,使BE=DC ,连结CE ,若CE AF ⊥于点F ,且AF 平分,52,=∠AE CD DAE 求CAF ∠sin 的值。

2在梯形ABCD 中,AD//BC ,AB=DC=AD=6,︒=∠60ABC ,点E ,F 分别在线段AD ,DC 上,(点E 与点A ,D 不重合)且,120︒=∠BEF 设y DF x AE ==,。

(1)求x y 与的函数表达式;(2)当x 为何值时,y 有最大值,最大值是多少?BECB3 已知:如图,在平面直角坐标系中,ABC △是直角三角形,90ACB ∠=,点A C ,的坐标分别为(30)A -,,(10)C ,,3tan 4BAC ∠=. (1)求过点A B ,的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得ADB △与ABC △相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P Q ,分别是AB 和AD 上的动点,连接PQ ,设AP D Q m ==,问是否存在这样的m 使得APQ △与ADB △相似,如存在,请求出m 的值;如不存在,请说明理由.4 已知:如图,在△ABC 中,D 为A 月边上一点,∠A =36°,AC =BC ,AC 2=AB ·AD . (1)试说明:△ADC 和△BDC 都是等腰三角形, (2)若AB =1,求AC 的长, (3)试构造一个等腰梯形,要求该梯形连同它的两条对角线所形成的8个三角形中有尽可能多的等腰三角形.第24题图5在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).(图1)(图2)请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM'为∠=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、=,当MB C'y kxF分别为AB、CD中点)?为什么?6如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;(2)当t为何值时,直线PQ与⊙C相切?并写出此时点P和点Q的坐标;(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.7如图,已知A、B是线段MN上的两点,4=MN,1=MA,1>MB.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、Nx.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?。

2018广东省中考专题——几何变换

2018广东省中考专题——几何变换

几何变换问题初中几何三大变换——平移、折叠、旋转,关键是要抓住两个特性:1、变:边、角的位置发生了改变。

2、不变:前后的对应边、对应角的大小是相等的。

一、教材中的折叠问题:1、把长方形ABCD 沿对角线AC 折叠,得到如图所示的图形。

已知∠BAO=300,求∠AOC 和∠BAC 的大小。

分析:①利用外角∠AOC =∠BAO+∠B=300+900=1200。

②由折叠可知,∠B′CA=∠BCA。

③矩形对边平行得到角动∠DAC=∠B′CA。

④∠DAC==∠BCA =300,得到∠BAC=600。

2、如图(1),ABCD 是一张正方形纸片,E,F 分别为AB,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在EF 上(如图(2)),折痕交AE 于点G,那么∠ADG 等于多少度?你能证明你的结论吗?分析:①由折叠可知,AD=BC=CD,∠ADG=21∠ADA’。

②由F 为CD 中点可知,FD=21CD。

→③FD=21AD,得到∠FAD=300。

④根据EF//A’D,得到∠ADA’=∠FAD =300,从而得到∠ADG =21∠ADA’=150。

3、在如图所示的三角形纸片ABC 中,∠C=900,∠B=300,按如下步骤可以把这个直角三角形纸片分成三个全等的小直角三角形(图中虚线表示折痕)。

①先将点B 对折到点A,②将对折后图形再沿AD 对折。

(1)由步骤①可以得到哪些等量关系?(2)请证明△ACD≌△AED。

(3)按照这种方法能否将任意一个直角三角形分成三个全等的小三角形?分析:(1)DB=DA,BE=AE,∠B=∠DAB,∠BDE=∠ADE,∠BED=∠AED。

(2)由折叠可知,∠CAD=∠DAB=∠B=300,∠C=∠AED=900。

加上AD =AD(公共边),由AAS 得到△ACD≌△AED。

(3)按照这种方法不能将任意一个直角三角形分成三个全等的小三角形。

4、如图所示,把一张矩形纸片沿对角线折叠,重合部分是什么图形?试说明理由。

广东省深圳市2018年中考数学试卷及答案解析(Word版)

广东省深圳市2018年中考数学试卷及答案解析(Word版)

广东省深圳市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 6的相反数是( )A. B. C. D. 6【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:∵6的相反数为-6,故答案为:A.【分析】相反数:数值相同,符号相反的两个数,由此即可得出答案.2. ( 2分) 260000000用科学计数法表示为( )A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:∵260 000 000=2.6×108.故答案为:B.【分析】科学计数法:将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,由此即可得出答案.3. ( 2分) 图中立体图形的主视图是( )A.B.C.D.【答案】B【考点】简单几何体的三视图【解析】【解答】解:∵从物体正面看,最底层是三个小正方形,第二层从右往左有两个小正方形,故答案为:B.【分析】视图:从物体正面观察所得到的图形,由此即可得出答案.4. ( 2分) 观察下列图形,是中心对称图形的是( )A. B. C. D.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A.等边三角形为轴对称图形,有三条对称轴,但不是中心对称图形,A不符合题意;B.五角星为轴对称图形,有五条对称轴,但不是中心对称图形,B不符合题意;C.爱心为轴对称图形,有一条对称轴,但不是中心对称图形,C不符合题意;D.平行四边形为中心对称图形,对角线的交点为对称中心,D符合题意;故答案为:D.【分析】中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,由此即可得出答案。

5. ( 2分) 下列数据:,则这组数据的众数和极差是( )A.B.C.D.【答案】A【考点】极差、标准差,众数【解析】【解答】解:∵85出现了三次,∴众数为:85,又∵最大数为:85,最小数为:75,∴极差为:85-75=10.故答案为:A.【分析】众数:一组数据中出现次数最多数;极差:一组数据中最大数与最小数的差;由此即可得出答案.6. ( 2分) 下列运算正确的是( )A. B. C. D.【答案】B【考点】同底数幂的乘法,同底数幂的除法,同类二次根式,同类项【解析】【解答】解:A.∵a .a =a ,故错误,A不符合题意;B.∵3a-a=2a,故正确,B符合题意;C.∵a8÷a4=a4,故错误,C不符合题意;D. 与不是同类二次根式,故不能合并,D不符合题意;故答案为:B.【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错;B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项;C.根据同底数幂相除,底数不变,指数相减即可判断对错;D.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式,由此即可判断对错.7. ( 2分) 把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B. C. D.【答案】D【考点】一次函数图象与几何变换【解析】【解答】解:∵函数y=x向上平移3个单位,∴y=x+3,∴当x=2时,y=5,即(2,5)在平移后的直线上,故答案为:D.【分析】根据平移的性质得平移后的函数解析式,再将点的横坐标代入得出y值,一一判断即可得出答案.8. ( 2分) 如图,直线被所截,且,则下列结论中正确的是( )A. B. C. D.【答案】B【考点】平行线的性质【解析】【解答】解:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.9. ( 2分) 某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A.B.C.D.【答案】A【考点】二元一次方程组的其他应用【解析】【解答】解:依题可得:故答案为:A.【分析】根据一共70个房间得x+y=70;大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满得8x+6y=480,从而得一个二元一次方程组.10. ( 2分) 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A.3B.C.D.【答案】D【考点】切线的性质,锐角三角函数的定义,切线长定理【解析】【解答】解:设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),∵∠DAC=60°,∴∠BAC=120°.又∵AB、AC为圆O的切线,∴AC=AB,∠BAO=∠CAO=60°,在Rt△AOB中,∵AB=3,∴tan∠BAO= ,∴OB=AB×tan∠60°=3 ,∴光盘的直径为6 .故答案为:D.【分析】设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),根据邻补角定义得∠BAC=120°,又由切线长定理AC=AB,∠BAO=∠CAO=60°;在Rt△AOB中,根据正切定义得tan∠BAO= ,代入数值即可得半径OB长,由直径是半径的2倍即可得出答案.11. ( 2分) 二次函数的图像如图所示,下列结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:A.∵抛物线开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∵对称轴- 在y轴右侧,∴b>0,∴abc<0,故错误,A不符合题意;B. ∵对称轴- =1,即b=-2a,∴2a+b=0,故错误,B不符合题意;C. ∵当x=-1时,y<0,即a-b+c<0,又∵b=-2a,∴3a+c<0,故正确,C符合题意;D.∵ax2+bx+c-3=0,∴ax2+bx+c=3,即y=3,∴x=1,∴此方程只有一个根,故错误,D不符合题意;故答案为:C.【分析】A.根据抛物线开口向下得a<0;与y轴的正半轴相交得c>0;对称轴在y轴右侧得b>0,从而可知A错误;B.由图像可知对称轴为2,即b=-2a,从而得出B错误;C.由图像可知当x=-1时,a-b+c<0,将b=-2a代入即可知C正确;D.由图像可知当y=3时,x=1,故此方程只有一个根,从而得出D错误.12. ( 2分) 如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )①;②;③若,则平分;④若,则A. ①③B. ②③C. ②④D. ③④【答案】B【考点】反比例函数系数k的几何意义,三角形的面积,角的平分线判定【解析】【解答】解:设P(a,b),则A(,b),B(a, ),①∴AP= -a,BP= -b,∵a≠b,∴AP≠BP,OA≠OB,∴△AOP和△BOP不一定全等,故①错误;②∵S△AOP= ·AP·y A= ·(-a)·b=6- ab,S△BOP= ·BP·x B= ·(-b)·a=6- ab,∴S△AOP=S△BOP.故②正确;③作PD⊥OB,PE⊥OA,∵OA=OB,S△AOP=S△BOP.∴PD=PE,∴OP平分∠AOB,故③正确;④∵S△BOP=6- ab=4,∴ab=4,∴S△ABP= ·BP·AP= ·(-b)·(-a),=-12+ + ab,=-12+18+2,=8.故④错误;故答案为:B.【分析】设P(a,b),则A(,b),B(a, ),①根据两点间距离公式得AP= -a,BP= -b,因为不知道a和b是否相等,所以不能判断AP与BP,OA 与OB,是否相等,所以△AOP和△BOP不一定全等,故①错误;②根据三角形的面积公式可得S△AOP=S△BOP=6- ab,故②正确;③作PD⊥OB,PE⊥OA,根据S△AOP=S△BOP.底相等,从而得高相等,即PD=PE,再由角分线的判定定理可得OP平分∠AOB,故③正确;④根据S△BOP=6- ab=4,求得ab=4,再由三角形面积公式得S△ABP= ·BP·AP,代入计算即可得④错误;二、填空题13. ( 1分) 分解因式:________.【答案】【考点】因式分解﹣运用公式法【解析】【解答】a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).【分析】观察此多项式的特点,没有公因式,符合平方差公式的特点,即可求解。

2018年深圳市中考数学压轴题分析

2018年深圳市中考数学压轴题分析

2018年深圳市中考数学压轴题分析本题不难,但是非常典型,综合全等三角形、相似、三角函数、等腰三角形的性质,圆的性质等知识点,考察的方法知识点非常的重要,所用到的解题方法也是非常的典型,特别适合作为例题进行训练.【题目】(2018·深圳)如图,△ABC内接于⊙O,BC=2,AB=AC,点D 为(AC)̂上的动点,且cos∠ABC=√10/10.(1)求AB的长度;(2)在点D的运动过程中,弦AD的延长线交BC延长线于点E,问AD·AE的值是否变化?若不变,请求出AD·AE的值;若变化,请说明理由;(3)在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.【答案】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=1/2BC=1,∵cosB=BM/AB=√10/10,在Rt△AMB中,BM=1,∴AB=BM/cosB=√10;说明:本题的关键在于三线合一.(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC/AD=AE/AC,∴AD·AE=AC²=10;说明:亦可证明△EAB∽△BAD,得AD·AE=AB²=10.(3)【方法一】截长补短在BD上取一点N,使得BN=CD,在△ABN和△ACD中AB=AC,∠3=∠1,BN=CD,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【方法二】如图,延长过点A作AF⊥CD,垂足为点F.或说延长CD至点F使得,DF=DH,当然也可以说使得CF=BH.【方法三】如图,延长BD至点F使得HF=BH.【方法四】过点B作BF⊥CD,垂足为F.【总结】题2的结论是线段成绩为定值,想到的就是三角形相似.由于A、D、E三点是共线的,所以我们只需再找一个点即可,点B和点C恰好都可以,比较巧.题3的结论是线段的和差关系,因为优先考虑的就是截长补短,做辅助线的方法多样,同一个图形可能会有不同的说法,所以这道题目非常的典型,难度不大,但是比较巧.越巧越适合作为例题.抽象出来的图形其实是两个共边的等腰三角形ABC和ABD,组成一个等腰梯形.。

广东省深圳市2018-2019年中考数学试题分类解析【专题10】四边形(含答案)

广东省深圳市2018-2019年中考数学试题分类解析【专题10】四边形(含答案)

一、选择题1.(深圳2003年5分)一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个梯形的上底和下底为直径作圆,则这两个圆的位置关系是【】A、相离B、相交C、外切D、内切2.(深圳2006年3分)如图,在ABCD中,AB: AD = 3:2,∠ADB=60°,那么cosA的值等于【】3.(深圳2008年3分)下列A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形4.(深圳2019年招生3分)如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于【】B . 13C .23D .12二、填空题1.(深圳2004年3分)在矩形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作OE⊥BC,垂足为E , 连结DE 交AC 于点P ,过P 作PF⊥BC,垂足为F ,则CBCF的值是 ▲ .2.(深圳2006年3分)如图所示,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O .若不增加任何字母与辅助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是 ▲ .3.(深圳2009年3分)如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为▲ .4.(深圳2019年学业3分)如图,在ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=▲ .5. (2018广东深圳3分)如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=62,则另一直角边BC的长为▲ .三、解答题1.(深圳2002年8分)已知:如图,在口ABCD中,E 、F 是对角线AC 上的两点,且AF=CE 。

求证:DE=BF2.(深圳2002年10分)如图(1),等腰梯形ABCD 中,AD//BC ,AB=DC ,以HF 为直径的⊙O 与AB 、BC 、CD 、DA 相切,切点分别是E 、F 、G 、H ,其中H 为AD 的中点,F 为BC 的中点,连结HG 、GF 。

2018年深圳中考几何综合题专题复习.wps

2018年深圳中考几何综合题专题复习.wps

例 2.如图,矩形 ABCD 的对角线 AC、BD 相交于点 O,E、F 分别是 OA、OB 的中点. (1)求证:△ADE≌△BCF; (2)若 AD = 4cm,AB = 8cm,求 CF 的长.
AE
B F
D
O
(例 2 题)
C
练习二 1.已知:如图,直线 PA 交⊙O 于 A、E 两点,PA 的垂线 DC 切⊙O 于点 C,过 A 点作⊙O 的直 径 AB。
长线分别交于点 F、E,且 BF AD ,EM 切⊙O 于 M。
⑴△ADC∽△EBA; ⑵AC2=21 BC·CE; ⑶如果 AB=2,EM=3,求 cot∠CAD 的值。
能力提高 1、如图矩形 ABCD 中,过 A,B 两点的⊙O 切 CD 于 E,交 BC 于 F,AH⊥BE 于 H,连结 EF。 (1) 求证:∠CEF=∠BAH (2) 若 BC=2CE=6,求 BF 的长。
∴ AB BC ,∴ BC2=AB BD CB BD
3.( 1)连结 OC。 ∵PC 切⊙O 于点 C,∴OC⊥PC。 ∵BE⊥PE,∴OC∥BE。∴∠POC=∠PBE。 又∵∠PBE=∠FGD,∴∠POC=∠FGD。 ∵∠POC=2∠PBC,∴∠FGD=2∠PBC。
(1) 连结 BG ∵AB 是的直径,∴∠AGB=90°。 又∵OC⊥PC,∴∠PCO=90°, ∴∠AGB=∠PCO。 ∵FP=FA, ∴∠FPA=∠PAF=∠BAG。
(1)求证: AEF ∽ FED ; (2) 若 AD 6, DE 3, 求 EF 的长; (3) 若 DF ∥ BE , 试判断 ABE 的形状,并说明理由.
A
D
C
• OB E
• O1 F
5.如图,已知四边形 ABCD 内接于⊙O,A 是 BDC 的中点,AE⊥AC 于 A,与⊙O 及 CB 的延
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年深圳中考几何综合题专题复习几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。

一、几何论证型综合题例1如图,已知:⊙O1与⊙O2是等圆,它们相交于A、B两点,⊙O2在⊙O1上,AC是⊙O2的直径,直线CB交⊙O1于D,E为AB延长线上一点,连接DE。

(1)请你连结AD,证明:AD是⊙O1的直径;(2)若∠E=60°,求证:DE是⊙O1的切线。

练习一1。

如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BC的延长线于点P,交AD的延长线于点E,若AD=5,AB=6,BC=9。

⑴求DC的长;⑵求证:四边形ABCE是平行四边形。

EB 图5-1-2 2.已知:如图,AB 是⊙O 的直径, 点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC 。

求证:(1)BC 平分∠PBD ;(2)BD AB BC ⋅=23.PC 切⊙O 于点C ,过圆心的割线PAB 交⊙O 于A 、B 两点,BE ⊥PE ,垂足为E ,BE 交⊙O 于点D ,F 是PC 上一点,且PF =AF ,FA 的延长线交⊙O 于点G 。

求证:(1)∠FGD =2∠PBC ;(2)PC POAG AB=.4.已知:如图,△ABC 内接于⊙O ,直径CD ⊥AB ,垂足为E 。

弦BF 交CD 于点M ,交AC 于点N ,且BF=AC ,连结AD 、AM , 求证:(1)△ACM ≌△BCM ; (2)AD ·BE=DE ·BC ;(3)BM 2=MN·MF 。

5.已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F . 求证:(1)AD =BD ;(2)DF 是⊙O 的切线.二、几何计算型综合题解这类几何综合题,应该注意以下几点:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,或通过添加辅助线补全或构造基本图形;(2)灵活运用数学思想与方法.例2.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 分别是OA 、OB 的中点. (1)求证:△ADE ≌△BCF ;(2)若AD = 4cm ,AB = 8cm ,求CF 的长.B (例2题)BCDOF练习二1.已知:如图,直线PA 交⊙O 于A 、E 两点,PA 的垂线DC 切⊙O 于点C ,过A 点作⊙O 的直径AB 。

(1)求证:AC 平分 DAB ;(2)若DC =4,DA =2,求⊙O 的直径。

2.已知:如图,以Rt △ABC 的斜边AB 为直 径作⊙O ,D 是⊙O 上的点,且有AC=CD 。

过点C 作⊙O 的切线,与BD 的延长线交于点E ,连结CD 。

(1)试判断BE 与CE 是否互相垂直?请说明理由; (2)若tan ∠DCE=12,求⊙O 的半径长。

3.如图,AB 是⊙O 的直径,BC 是⊙O 的切线,D 是⊙O 上的一点,且AD ∥CO 。

(1)求证:ΔADB ∽ΔOBC ;(2)若AB=2,,求AD 的长。

(结果保留根号)A4.如图,AD 是ABC ∆的角平分线, 延长AD 交ABC ∆的外接圆O 于点E ,过C D E 、、三点的圆1O 交AC 的延长线于点F ,连结EF DF 、.(1)求证:AEF ∆∽FED ∆;(2) 若6,3AD DE ==, 求EF 的长;(3) 若DF ∥BE , 试判断ABE ∆的形状,并说明理由.5.如图,已知四边形ABCD 内接于⊙O ,A 是 BDC 的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且 BF AD =,EM 切⊙O 于M 。

⑴△ADC ∽△EBA ;⑵AC 2=12 BC·CE ;⑶如果AB =2,EM =3,求cot ∠CAD 的值。

能力提高1、如图矩形ABCD 中,过A ,B 两点的⊙O 切CD 于E ,交BC 于F ,AH ⊥BE 于H ,连结EF 。

(1) 求证:∠CEF =∠BAH(2) 若BC =2CE =6,求BF 的长。

2.如图l ,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)求证:OE=OF ;(2)如图2,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE=OF ”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图1C B3.如图11,在△ABC 中,∠ABC =90,AB =6,BC =8。

以AB 为直径的⊙O 交AC 于D ,E 是BC 的中点,连接ED 并延长交BA 的延长线于点F 。

(1)求证:DE 是⊙O 的切线; (2)求DB 的长;(3)求S △FAD ∶S △FDB 的值5.已知:□ABCD 的对角线交点为O ,点E 、F 分别在边AB 、CD 上,分别沿DE 、BF 折叠四边形ABCD, A 、C 两点恰好都落在O 点处,且四边形DEBF 为菱形(如图).⑴求证:四边形ABCD 是矩形;⑵在四边形ABCD 中,求BC AB的值.6.如图,AB 是⊙O 的直径,点C 在BA 的延长线上,CA=AO ,点D 在⊙O 上, ∠ABD=30°.⑴求证:CD 是⊙O 的切线;⑵若点P 在直线AB 上,⊙P 与⊙O 外切于点B ,与直线CD 相切于点E ,设⊙O 与⊙P 的半径分别为r 与R ,求Rr的值.7、知直线L 与◎○相切于点A ,直径AB=6,点P 在L 上移动,连接OP 交⊙○于点C ,连接BC 并延长BC 交直线L 于点D.(1)若AP=4,求线段PC 的长;(4分)(2)若ΔPAO 与ΔBAD 相似,求∠APO 的度数和四边形OADC 的面积.(答案要求保留根号)A B DC · · EO PBE8、如图7,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为 BF的中点,BF交AD于点E,且BE EF=32,AD=6.(1) 求证:AE=BE;(2) 求DE的长;(3) 求BD的长 .9、如图1:⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在⋂CB上取一点D,分别作直线CD、ED交直线AB于点F、M。

(1)求∠COA和∠FDM的度数;(2)求证:△FDM∽△COM;(3)如图2:若将垂足G改取为半径OB上任意一点,点D改取在⋂EB上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否仍有△FDM∽△COM?证明你的结论。

11、如图,ABC ∆是等边三角形,⊙O 过点B,C ,且与CA BA ,的延长线分别交于点D,E .弦DF ∥AC ,EF 的延长线交BC 的延长线于点G .(1)求证:BEF ∆是等边三角形; (2)若4=BA ,2=CG ,求BF 的长.12、)已知:如图,BD 是⊙O 的直径,过圆上一点A 作⊙O 的切线交DB 的延长线于P ,过B 点作BC ∥PA 交⊙O 于C ,连结AB 、AC 。

(1) 求证:AB=AC ;(2) 若PA=10,PB=5,求⊙O 的半径和AC 的长。

13、如图,AB 是△ABC 的外接圆⊙O 的直径,D 是⊙O 上的一点,DE ⊥AB 于点E ,且DE 的延长线分别交AC 、⊙O 、BC 的延长线于F 、M 、G. (1)求证:AE ·BE =EF ·EG ;(2)连结BD ,若BD ⊥BC ,且EF =MF =2,求AE 和MG 的长.(图5-11)P D练习一1.⑴解:∵AD ∥BC∴ AB DC= ∴DC=AB=6⑵证明:∵AD ∥BC ,∴∠EDC=∠BCD又∵PC 与⊙O 相切, ∴∠ECD=∠DBC∴△CDE ∽△BCD∴DCDEBC DC = ∴DE 49622===BC DC ∴AE=AD+DE=5+4=9∴AE BC∴四边形ABCE 是平行四边形。

2. 证明:(1)连结OC 。

∵PD 切⊙O 于点C , 又∵BD ⊥PD , ∴OC ∥BD 。

∴∠1=∠3。

又∵OC =OB , ∴∠2=∠3。

∴∠1=∠2,即BC 平分∠PBD 。

(2)连结AC 。

∵AB 是⊙O 的直径,∴∠ACB =90°。

又∵BD ⊥PD ,∴∠ACB =∠CDB =90° 又∵∠1=∠2,∴△ABC ∽△CBD∴AB BC CB BD=,∴2BC AB BD = 3.( 1)连结OC 。

∵PC 切⊙O 于点C ,∴OC ⊥PC 。

∵BE ⊥PE ,∴OC ∥BE 。

∴∠POC =∠PBE 。

又∵∠PBE =∠FGD ,∴∠POC =∠FGD 。

∵∠POC =2∠PBC ,∴∠FGD =2∠PBC 。

(1) 连结BG∵AB 是的直径,∴∠AGB =90°。

又∵OC ⊥PC ,∴∠PCO =90°, ∴∠AGB =∠PCO 。

∵FP =FA ,∴∠FPA =∠PAF =∠BAG 。

B 5-1-3图∴△PCO ∽△AGB 。

∴PC POAG AB4.5. (1)证法一:连结CD ,∵BC 为⊙O 的直径,∴CD ⊥AB ∵AC =BC,∴AD =BD .证法二:连结CD , ∵BC 为⊙O 的直径 ∴∠ADC =∠BDC =90° ∵AC =BC ,CD =CD∴△ACD ≌△BCD,∴AD =BD (2)证法一:连结OD , ∵AD =BD ,OB =OC∴OD ∥AC∵DE ⊥AC ∴DF ⊥OD ∴DF 是⊙O 的切线. 证法二:连结OD , ∵OB=OD,∴∠BDO =∠B ∵∠B =∠A,∴∠BDO=∠A∵∠A+∠ADE =90°,∴∠BDO +∠ADE =90° ∴∠ODF=90°,∴DF 是⊙O 的切线.练习二1.(1)证法一:连结BC∵AB为⊙O的直径∴∠ACB=90º又∵DC切⊙O于C点∴∠DCA=∠B∵DC⊥PE∴Rt△ADC∽Rt△ACB∴∠DAC=∠CAB(2)解法一:在Rt△ADC中,AD=2,DC=4 ∴AC=AD2+DC2=2 5由(1)得Rt△ADC∽Rt△ACB∴ABAC =ACAD即AB=AC2AD=202=10∴⊙O的直径为10(1)证法二:连结OC∵OA=OC ∵∠ACO=∠CAO又∵CD切⊙O于C点∴OC⊥DC∵CD⊥PA∴OC∥PA∴∠ACO=∠DAC∴∠DAC=∠CAO(2)解法二:过点O作OM⊥AE于点M,连结OC∵DC切⊙O于C点∴OC⊥DC又∵DC⊥PA∴四边形OCDM为矩形∴OM=DC=4又DC2=DA·DE∴DE=8,∴AE=6,∴AM=3在Rt△AMO中,OA=OM2+AM2=5即⊙O的直径为10。

相关文档
最新文档