矩形菱形正方形经典例题超赞
矩形菱形正方形习题含答案

1. 在一次数学活动课上,张明同学将矩形ABCD 沿直线CE 折叠,顶点B 恰好落在AD 边上F 点处,如图所示,已知8CD =cm ,5BE =cm ,则AD = cm .2.如图,在菱形ABCD 中,60B ∠=,点E F ,分别从点B D ,出发以同样的速度沿边BC DC ,向点C 运动.给出以下四个结论:①AE AF =②CEF CFE ∠=∠③当点E F ,分别为边BC DC ,的中点时,AEF △是等边三角形④当点E F ,分别为边BC DC ,的中点时,AEF △的面积最大.上述结论中正确的序号有 .(把你认为正确的序号都填上)3如图,四边形ABCD 为正方形,ADE △为等边三角形.AC 为正方形ABCD 的对角线,则EAC ∠= 度.4.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为 E F ,.若1AE =,3CF =,则AB 的长度为 .5如图,正方形ABCD 的边长为4,MN BC ∥分别交AB CD ,于点M N ,,在MN 上任取两点P Q ,,那么图中阴影部分的面积是 .1. 如图,在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( ) A .16a B .12a C .8a D .4a 2. 菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A .24 B .20C .10D .53. 如图,在四边形ABCD 中,AD BC ∥,90D ∠=,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是 .(写出一种情况即可)4. 如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为 .FD A EClD M N DD C FG5.如图,在正方形纸片ABCD 中,对角线AC BD ,交于点O ,折叠正方形纸片 A B C D ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB AC ,于点E G ,,连结GF .下列结论:①112.5AGD ∠=;② tan 2AED ∠=;③AGD OGD S S =△△;④四边形AEFG 是菱形;⑤2BE OG =.则其中正确结论的序号是 .6. 菱形ABCD 中,AE 垂直平分BC ,垂足为E ,4cm AB =.那么,菱形ABCD 的面积是 ,对角线BD 的长是 .7. 如图,菱形ABCD 中,∠BAD =60º ,M 是AB 的中点,P 是对角线AC 上的一个动点,若PM +PB 的最小值是3,则AB 长为 . 8. 将一正方形按如图方式分成n 个全等矩形,上、下各横排两个,中间竖排若干个,则n 的值为 A .12 B .10 C .8 D .69. 如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( )A .5cmB .8cmC .9cmD .10cm10. 如果菱形的周长是8cm ,高是1cm ,那么这个菱形两邻角的度数比为( ) A .1:2 B .1:4 C .1:5 D .1:611. 如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( )A.B.C.D.812.如图,在菱形ABCD 中,对角线AC BD ,分别等于8和6,将BD 沿CB 的方向平移,使D 与A 重合,B 与CB 延长线上的点E 重合,则四边形AECD 的面积等于( )A .36B .48C .72D .96BCD BF CEDABE6如图,点P 是正方形ABCD 的对角线BD 上一点,连结PA 、PC . (1)证明:PAB PCB ∠=∠;(2)在BC 上取一点E ,连结PE ,使得PE PC =,连结AE ,判断PAE △的形状,并说明理由.7如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP .求证:(1)∠E=∠F .(2)□ABCD 是菱形.8如图1,在ABC △中,点P 为BC 边中点,直线a 绕顶点A 旋转,若点B P 、在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接.PM PN 、 (1)延长MP 交CN 于点E (如图2),①求证:BPM CPE △≌△;②求证:PM PN =;(2)若直线a 绕点A 旋转到图3的位置时,点B P 、在直线a 的同侧,其它条件不变.此时PM PN =还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM PN =还成立吗?不必说明理由.D C B A P图1 图2 图39已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)10如图,在正方形ABCD 中,G 是BC 上的任意一点(G 与B C 、两点不重合),E F 、是AG 上的两点(E F 、与A G 、两点都不重合),若AF BF EF =+,12∠=∠,请判断线段DE 与BF 有怎样的位置关系,并证明你的结论.11如图,ABC △中,点O 是边AC 上一个动点,过O 作直线MN BC ∥,设MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F .(1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明,若不是,则说明理由; (3)当点O 运动到何处,且ABC △满足什么条件时,四边形AECF 是正方形?12如图①,四边形ABCD 是正方形, 点G 是BC 上任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F . (1) 求证:DE -BF = EF .(2) 当点G 为BC 边中点时, 试探究线段EF 与GF 之间的数量关系, 并说明理由.(3) 若点G 为CB 延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE 、BF 、EF 之间的数量关系(不需要证明).A DB E FO C2 A BC D E FG 1A F N DC B M E O(图)13如图,将矩形纸片ABCD 沿其对角线AC 折叠,使点B 落到点B '的位置,AB '与CD 交于点E . (1)试找出一个与AED △全等的三角形,并加以证明; (2)若83AB DE P ==,,为线段AC 上任意一点,PG AE ⊥于G ,PH EC ⊥于H .试求PG PH +的值,并说明理由.14已知:如图,菱形ABCD 中,E F ,分别是CB CD ,上的点,且BE DF =. (1)求证:AE AF =.(2)若60B ∠=,点E F ,分别为BC 和CD 的中点.求证:AEF △为等边三角形.15如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.ABDCEF A D E FB GC 图① C BG A D 图② A BC D PG HE B ′16如图-1,已知P 为正方形ABCD 的对角线AC 上一点(不与A 、C 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F .(1) 求证:BP =DP ;(2) 如图-2,若四边形PECF 绕点C 按逆时针方向旋转,在旋转过程中是否总有BP =DP ?若是,请给予证明;若不是,请用反例加以说明;(3) 试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在四边形PECF 绕点C 按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .17已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E , (1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.17(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴ ∠BAD =∠DAC .2分∵ AN 是△ABC 外角∠CAM 的平分线, ∴ MAE CAE ∠=∠.∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°.4分又 ∵ AD ⊥BC ,CE ⊥AN , ∴ ADC CEA ∠=∠=90°, ∴ 四边形ADCE 为矩形.5分(2)说明:①给出正确条件得1分,证明正确得3分.②答案只要正确均应给分.图-2图-1N例如,当AD =12BC 时,四边形ADCE 是正方形.6分 证明:∵ AB =AC ,AD ⊥BC 于D .∴ DC =12BC . 7分又 AD =12BC ,∴ DC =AD . 8分 由(1)四边形ADCE 为矩形,∴ 矩形ADCE 是正方形. 9分 16⑴ 解法一:在△ABP 与△ADP 中,利用全等可得BP =DP . 2分 解法二:利用正方形的轴对称性,可得BP =DP . 2分 ⑵ 不是总成立 . 3分当四边形PECF 绕点C 按逆时针方向旋转,点P 旋转到BC 边上时,DP >DC >BP ,此时BP =DP 不成立. 5分说明:未用举反例的方法说理的不得分. ⑶ 连接BE 、DF ,则BE 与DF 始终相等. 6分 在图8-1中,可证四边形PECF 为正方形, 7分 在△BEC 与△DFC 中,可证△BEC ≌△DFC . 从而有 BE =DF . 8分15(1)①BG DE BG DE =⊥, 2分 ②BG DE BG DE =⊥,仍然成立 1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形∴ BC CD =,CG CE =, 90BCD ECG ∠=∠=∴BCG DCE ∠=∠1分 ∴BCG DCE △≌△ (SAS )1分∴BG DE = C B G C D E∠=∠ 又∵BHC DHO ∠=∠ 90CBG BHC ∠+∠= ∴90CDE DHO ∠+∠= ∴90DOH ∠=∴BG DE ⊥14证明:(1)∵四边形ABCD 是菱形, ∴AB =AD ,B D ∠=∠, 又∵BE =D F∴ABE △≌ADF △ ∴AE =AF (2)连接AC∵AB =BC ,60B ∠=︒ ∴ABC ∆是等边三角形, E 是BC 的中点∴AE ⊥BC , ∴906030BAE ︒∠=︒-=︒,同理30DAF ∠=︒ ∵120BAD ∠=︒∴60EAF BAD BAE DAF ∠=∠-∠-∠=︒又∵AE =AF∴AEF △是等边三角形. 13 解:(1)AED CEB '△≌△证明:四边形ABCD 为矩形,90B C BC AD B B D ''∴==∠=∠=∠=,°, 又B EC DEA '∠=∠, ∴AED CEB '△≌△.(2)由已知得:EAC CAB ∠=∠且CAB ECA ∠=∠ EAC ECA ∴∠=∠ 835AE EC ∴==-=在ADE △中,4AD = 延长HP 交AB 于M 则PM AB ⊥ PG PM ∴=4PG PH PM PH HM AD ∴+=+===12(1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG ∴ DA =AB ,∠BAF + ∠DAE = ∠DAE + ∠ADE = 90° ∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE ∴ BF = AE , AF = DE ∴ DE -BF = AF -AE = EFA DE F BG C图①(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG ∴ △AFB ∽△BFG ∽△ABG ∴2===FGBFBF AF BF AB ∴ AF = 2BF , BF = 2 FG由(1)知,AE = BF ,∴ EF = BF = 2 FG (3) 如图 DE + BF = EF------------------------------------------------ 11解:(1)OE OF =.其证明如下:∵CE 是ACB ∠的平分线,12∴∠=∠.∵MN BC ∥,∴13∠=∠. ∴23∠=∠. ∴OE OC =. 同理可证OC OF =. ∴OE OF =. 3分(2)四边形BCFE 不可能是菱形,若BCFE 为菱形,则BF EC ⊥,而由(1)可知FC EC ⊥,在平面内过同一点F 不可能有两条直线同垂直于一条直线. 3分(3)当点O 运动到AC 中点时,OE OF =,OA OC =,则四边形AECF 为,要使AECF 为正方形,必须使EF AC ⊥.∵EF BC ∥,∴AC BC ⊥,∴ABC △是以ACB ∠为直角的直角三角形, ∴当点O 为AC 中点且ABC △是以ACB ∠为直角的直角三角形时, 四边形AECF 是正方形.------------------------------------------------10根据题目条件可判断.DE BF ∥证明如下:∵四边形ABCD 为正方形,∴ 290AB AD BAF ∠+∠==,°. ∵,AF AE EF =+又,AF BF EF =+ ∴AE BF =,∵12,∠=∠∴().ABF DAE SAS △≌△5分∴AFB DEA ∠=∠,BAF ADE ∠=∠.∴290ADE ∠+∠=°.∴90AED BFA ∠=∠=°. ∴.DE BF ∥9分------------------------------------------------ 9证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,AF D CB M EO (图) 1 2 54 3 6∴Rt Rt ABE ADF △≌△. ∴BE =DF .4分(2)四边形AEMF 是菱形.∵四边形ABCD 是正方形, ∴∠BCA = ∠DCA = 45°,BC = DC . ∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =. ∴OE OF =. ∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形.8分------------------------------------------------ 8(1)证明:①如图2.BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,90BMN CNM ∴∠=∠=°.BM CN ∴∥.MBP ECP ∴∠=∠.又P 为BC 边中点, .BP CP ∴=又BPM CPE ∠=∠, BPM CPE ∴△≌△ 3分②BPM CPE △≌△12PM PE PM ME ∴=∴=∴在Rt MNE △中,12PN ME =PM PN ∴=5分 (2)成立.如图3.6分证明:延长MP 与NC 的延长线相交于点E .BM ⊥直线a 于点M ,CN ⊥直线a 于点N , 90180BMN CNM BMN CNM ∴∠=∠=∴∠+∠=°.°.BM CN MBP ECP ∴∴∠=∠∥..7分又P 为BC 中点,BP CP ∴=. 又BPM CPE ∠=∠,BPM CPE ∴△≌△. 12PM PE PM ME ∴=∴=..则在Rt MNE △中,12PN ME =.∴PM PN =.10分 (3)四边形MBCN 是矩形. 11分 PM PN =成立. 12分AD BE FOCM-----------------------------------------------7证明:(1)在□ABCD 中,BC AD ∥∴1F ∠=∠∵BE BP =∴1E ∠=∠∴E F ∠=∠(2)∵BD EF ∥∴23E F ∠=∠∠=∠,∵E F ∠=∠∴23∠=∠∴AB AD =∴□ABCD 是菱形6(1)∵在正方形ABCD 中,BD 是对角线,∴AB CB ABD CBD =∠=∠,.又∵BP BP =,∴ABP CBP △≌△.∴PA PC PAB PCB =∠=∠,. ······································································ 3分(2)如图,PAE △是等腰直角三角形,理由如下: ············································ 4分 ∵PE PC =,∴PEC PCB ∠=∠.又∵PAB PCB ∠=∠,∴PAB PEC ∠=∠.∵E 是BC 上一点,180PEB PEC ∠+∠=,∴180PAB PEB ∠+∠=. ∵在四边形ABEP 中,36090PAB ABC PEB APE ABC ∠+∠+∠+∠=∠=,,∴90APE ∠=.∵PA PC PE PC ==,, D C E B A P A D F Q C P E B 1 2 3∴PA PE =.∴PAE △是等腰直角三角形. ··········································· 7分(其他方法酌情给分)1.102. ①②③3. 1054.5. 81. 2. B 3. 90A ∠=或AD BC =或AB CD ∥ 4. 3 5. ①④⑤ 6. 2 c m7. 8. C9. D 10. C 11. A 12. A。
矩形菱形正方形(共39题)(解析版)--2023年中考数学真题分项汇编

矩形菱形正方形(39题)一、单选题1(2023·湖南·统考中考真题)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A.20°B.60°C.70°D.80°【答案】C【分析】根据菱形的性质可得BD⊥AC,AB∥CD,则∠1=∠ACD,∠ACD+∠2=90°,进而即可求解.【详解】解:∵四边形ABCD是菱形∴BD⊥AC,AB∥CD,∴∠1=∠ACD,∠ACD+∠2=90°,∵∠1=20°,∴∠2=90°-20°=70°,故选:C.【点睛】本题考查了菱形的性质,熟练掌握是菱形的性质解题的关键.2(2023·湖南常德·统考中考真题)如图1,在正方形ABCD中,对角线AC、BD相交于点O,E,F分别为AO,DO上的一点,且EF∥AD,连接AF,DE.若∠FAC=15°,则∠AED的度数为()A.80°B.90°C.105°D.115°【答案】C【分析】首先根据正方形的性质得到∠OAD=∠ODA=45°,AO=DO,然后结合EF∥AD得到OE= OF,然后证明出△AOF≌△DOE SAS,最后利用三角形内角和定理求解即可.【详解】∵四边形ABCD是正方形∴∠OAD=∠ODA=45°,AO=DO∵EF∥AD∴∠OEF=∠OAD=45°,∠OFE=∠ODA=45°∴∠OEF=∠OFE∴OE=OF又∵∠AOF=∠DOE=90°,AO=DO∴△AOF ≌△DOE SAS∴∠ODE =∠FAC =15°∴∠ADE =∠ODA -∠ODE =30°∴∠AED =180°-∠OAD -∠ADE =105°故选:C .【点睛】此题考查了正方形的性质,全等三角形的性质和判定,等腰直角三角形三角形的性质等知识,解题的关键是熟练掌握以上知识点.3(2023·湖南常德·统考中考真题)下列命题正确的是()A.正方形的对角线相等且互相平分B.对角互补的四边形是平行四边形C.矩形的对角线互相垂直D.一组邻边相等的四边形是菱形【答案】A 【分析】根据正方形、平行四边形、矩形、菱形的各自性质和构成条件进行判断即可.【详解】A 、正方形的对角线相等且互相垂直平分,描述正确;B 、对角互补的四边形不一定是平行四边形,只是内接于圆,描述错误;C 、矩形的对角线不一定垂直,但相等,描述错误;D 、一组邻边相等的平行四边形才构成菱形,描述错误.故选:A .【点睛】本题考查平行四边形、矩形、菱形、正方形的性质和判定,解题的关键是熟悉掌握各类特殊四边形的判定和性质.4(2023·浙江·统考中考真题)如图,在菱形ABCD 中,AB =1,∠DAB =60°,则AC 的长为()A.12B.1C.32D.3【答案】D 【分析】连接BD 与AC 交于O .先证明△ABD 是等边三角形,由AC ⊥BD ,得到∠OAB =12∠BAD =30°,∠AOB =90°,即可得到OB =12AB =12,利用勾股定理求出AO 的长度,即可求得AC 的长度.【详解】解:连接BD 与AC 交于O .∵四边形ABCD是菱形,∴AB∥CD,AB=AD,AC⊥BD,AO=OC=12AC,∵∠DAB=60°,且AB=AD,∴△ABD是等边三角形,∵AC⊥BD,∴∠OAB=12∠BAD=30°,∠AOB=90°,∴OB=12AB=12,∴AO=AB2-OB2=12-12 2=123,∴AC=2AO=3,故选:D.【点睛】此题主要考查了菱形的性质、勾股定理、等边三角形的判定和性质、30°角所对直角边等于斜边的一半,关键是熟练掌握菱形的性质.5(2023·上海·统考中考真题)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD 为矩形的是()A.AB∥CDB.AD=BCC.∠A=∠BD.∠A=∠D【答案】C【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A:∵AB∥CD,AD∥BC,AB=CD∴ABCD为平行四边形而非矩形故A不符合题意B:∵AD=BC,AD∥BC,AB=CD∴ABCD为平行四边形而非矩形故B不符合题意C:∵AD∥BC∴∠A+∠B=180°∵∠A=∠B∴∠A=∠B=90°∵AB=CD∴ABCD为矩形故C符合题意D:∵AD∥BC∴∠A+∠B=180°∵∠A=∠D∴∠D+∠B=180°∴ABCD不是平行四边形也不是矩形故D不符合题意故选:C.【点睛】本题主要考查平行线的性质,平行四边形的判定和性质及矩形的判定等知识,熟练掌握以上知识并灵活运用是解题的关键.6(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE ,连结AE ,AD ,设△AED ,△ABE ,△ACD 的面积分别为S ,S 1,S 2,若要求出S -S 1-S 2的值,只需知道()A.△ABE 的面积B.△ACD 的面积C.△ABC 的面积D.矩形BCDE 的面积【答案】C【分析】过点A 作FG ∥BC ,交EB 的延长线于点F ,DC 的延长线于点G ,易得:FG =BC ,AF ⊥BE ,AG⊥CD ,利用矩形的性质和三角形的面积公式,可得S 1+S 2=12S 矩形BCDE ,再根据S =S △ABC +S 矩形BCDE -S 1-S 2=S △ABC +12S 矩形BCDE ,得到S -S 1-S 2=S △ABC ,即可得出结论.【详解】解:过点A 作FG ∥BC ,交EB 的延长线于点F ,DC 的延长线于点G ,∵矩形BCDE ,∴BC ⊥BE ,BC ⊥CD ,BE =CD ,∴FG ⊥BE ,FG ⊥CD ,∴四边形BFGC 为矩形,∴FG =BC ,AF ⊥BE ,AG ⊥CD ,∴S 1=12BE ⋅AF ,S 2=12CD ⋅AG ,∴S 1+S 2=12BE AF +AG =12BE ⋅BC =12S 矩形BCDE ,又S =S △ABC +S 矩形BCDE -S 1-S 2=S △ABC +12S 矩形BCDE ,∴S -S 1-S 2=S △ABC +12S 矩形BCDE -12S 矩形BCDE =S △ABC ,∴只需要知道△ABC 的面积即可求出S -S 1-S 2的值;故选C .【点睛】本题考查矩形的性质,求三角形的面积.解题的关键是得到S 1+S 2=12S 矩形BCDE 7(2023·湖南·统考中考真题)如图所示,在矩形ABCD 中,AB >AD ,AC 与BD 相交于点O ,下列说法正确的是()A.点O 为矩形ABCD 的对称中心B.点O 为线段AB 的对称中心C.直线BD 为矩形ABCD 的对称轴D.直线AC 为线段BD 的对称轴【答案】A【分析】由矩形ABCD是中心对称图形,对称中心是对角线的交点,线段AB的对称中心是线段AB的中点,矩形ABCD是轴对称图形,对称轴是过一组对边中点的直线,从而可得答案.【详解】解:矩形ABCD是中心对称图形,对称中心是对角线的交点,故A符合题意;线段AB的对称中心是线段AB的中点,故B不符合题意;矩形ABCD是轴对称图形,对称轴是过一组对边中点的直线,故C,D不符合题意;故选A【点睛】本题考查的是轴对称图形与中心对称图形的含义,矩形的性质,熟记矩形既是中心对称图形也是轴对称图形是解本题的关键.8(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD中,M为对角线BD上的一点,连接AM并延长交CD于点P.若PM=PC,则AM的长为()A.33-1B.333-2C.63-1D.633-2【答案】C【分析】先根据正方形的性质、三角形全等的判定证出△ADM≅△CDM,根据全等三角形的性质可得∠DAM=∠DCM,再根据等腰三角形的性质可得∠CMP=∠DCM,从而可得∠DAM=30°,然后利用勾股定理、含30度角的直角三角形的性质求解即可得.【详解】解:∵四边形ABCD是边长为6的正方形,∴AD=CD=6,∠ADC=90°,∠ADM=∠CDM=45°,在△ADM和△CDM中,DM=DM∠ADM=∠CDM=45°AD=CD,∴△ADM≅△CDM SAS,∴∠DAM=∠DCM,∵PM=PC,∴∠CMP=∠DCM,∴∠APD=∠CMP+∠DCM=2∠DCM=2∠DAM,又∵∠APD+∠DAM=180°-∠ADC=90°,∴∠DAM=30°,设PD=x,则AP=2PD=2x,PM=PC=CD-PD=6-x,∴AD=AP2-PD2=3x=6,解得x=23,∴PM=6-x=6-23,AP=2x=43,∴AM=AP-PM=43-6-23=63-1,故选:C.【点睛】本题考查了正方形的性质、勾股定理、含30度角的直角三角形的性质、等腰三角形的性质等知识点,熟练掌握正方形的性质是解题关键.9(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O ,E 为边BC 的中点,连结OE .若AC =6,BD =8,则OE =()A.2B.52C.3D.4【答案】B【分析】先由菱形的性质得AC ⊥BD ,OC =12AC =12×6=3,OB =12BD =12×8=4,再由勾股定理求出BC =5,然后由直角三角形斜边的中线等于斜边的一半求解.【详解】解:∵菱形ABCD ,∴AC ⊥BD ,OC =12AC =12×6=3,OB =12BD =128=4,∴由勾股定理,得BC =OB 2+OC 2=5,∵E 为边BC 的中点,∴OE =12BC =12×5=52故选:B .【点睛】本考查菱形的性质,勾股定理,直角三角形的性质,熟练掌握菱形的性质,直角三角形的性质是解题的关键.10(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若AB =2,BC =4,则四边形EFGH 的面积为()A.2B.4C.5D.6【答案】B【分析】由题意可得四边形EFGH 是菱形,FH =AB =2,GE =BC =4,由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF ⊥GH ,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵FH =AB =2,GE =BC =4,∴菱形EFGH的面积为12FH⋅GE=12×2×4=4.故选:B【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.11(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°.动点E在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE =OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.在整个过程中,四边形E1E2F1F2形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形【答案】A【分析】根据题意,分别证明四边形E1E2F1F2是菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD是矩形,∴AB∥CD,∠BAD=∠ABC=90°,∴∠BDC=∠ABD=60°,∠ADB=∠CBD=90°-60°=30°,∵OE=OF、OB=OD,∴DF=EB∵对称,∴DF=DF2,BF=BF1,BE=BE2,DE=DE1∴E1F2=E2F1∵对称,∴∠F2DC=∠CDF=60°,∠EDA=∠E1DA=30°∴∠E1DB=60°,同理∠F1BD=60°,∴DE1∥BF1∴E1F2∥E2F1∴四边形E1E2F1F2是平行四边形,如图所示,当E,F,O三点重合时,DO=BO,∴DE1=DF2=AE1=AE2即E1E2=E1F2∴四边形E1E2F1F2是菱形,如图所示,当E,F分别为OD,OB的中点时,设DB=4,则DF2=DF=1,DE1=DE=3,在Rt△ABD中,AB=2,AD=23,连接AE,AO,∵∠ABO=60°,BO=2=AB,∴△ABO是等边三角形,∵E为OB中点,∴AE⊥OB,BE=1,∴AE=22-12=3,根据对称性可得AE1=AE=3,∴AD2=12,DE21=9,AE21=3,∴AD2=AE21+DE21,∴△DE1A是直角三角形,且∠E1=90°,∴四边形E1E2F1F2是矩形,当F,E分别与D,B重合时,△BE1D,△BDF1都是等边三角形,则四边形E1E2F1F2是菱形∴在整个过程中,四边形E1E2F1F2形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A.【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.12(2023·重庆·统考中考真题)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.3C.1D.2【答案】D【分析】连接AF ,根据正方形ABCD 得到AB =BC =BE ,∠ABC =90°,根据角平分线的性质和等腰三角形的性质,求得∠BFE =45°,再证明△ABF ≌△EBF ,求得∠AFC =90°,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度.【详解】解:如图,连接AF ,∵四边形ABCD 是正方形,∴AB =BE =BC ,∠ABC =90°,AC =2AB =22,∴∠BEC =∠BCE ,∴∠EBC =180°-2∠BEC ,∴∠ABE =∠ABC -∠EBC =2∠BEC -90°,∵BF 平分∠ABE ,∴∠ABF =∠EBF =12∠ABE =∠BEC -45°,∴∠BFE =∠BEC -∠EBF =45°,在△BAF 与△BEF ,AB =EB∠ABF =∠EBF BF =BF,∴△BAF ≌△BEF SAS ,∴∠BFE =∠BFA =45°,∴∠AFC =∠BAF +∠BFE =90°,∵O 为对角线AC 的中点,∴OF =12AC =2,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得∠BFE =45°是解题的关键.二、解答题13(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中,过对角线BD 的中点O 作BD 的垂线EF ,分别交AD ,BC 于点E ,F .(1)证明:△BOF ≌△DOE ;(2)连接BE 、DF ,证明:四边形EBFD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)根据矩形的性质得出AD ∥BC ,则∠1=∠2,∠3=∠4,根据O 是BD 的中点,可得BO =DO ,即可证明△BOF ≌△DOE AAS ;(2)根据△BOF ≌△DOE 可得ED =BF ,进而可得四边形EBFD 是平行四边形,根据对角线互相垂直的四边形是菱形,即可得证.【详解】(1)证明:如图所示,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠1=∠2,∠3=∠4,∵O 是BD 的中点,∴BO =DO ,在△BOF 与△DOE 中∠1=∠2∠3=∠4BO =DO,∴△BOF ≌△DOE AAS ;(2)∵△BOF ≌△DOE∴ED =BF ,又∵ED ∥BF∴四边形EBFD 是平行四边形,∵EF ⊥BD∴四边形EBFD 是菱形.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,菱形的判定,熟练掌握特殊四边形的性质与判定是解题的关键.14(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若BC =3,DC =2,求四边形OCED 的面积.【答案】(1)见解析;(2)3【分析】(1)先根据矩形的性质求得OC =OD ,然后根据有一组邻边相等的平行四边形是菱形分析推理;(2)根据矩形的性质求得△OCD 的面积,然后结合菱形的性质求解.【详解】(1)解:∵ DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,又∵矩形ABCD 中,OC =OD ,∴平行四边形OCED 是菱形;(2)解:矩形ABCD 的面积为BC ⋅DC =3×2=6,∴△OCD 的面积为14×6=32,∴菱形OCED 的面积为2×32=3.【点睛】本题考查矩形的性质、菱形的判定,属于中考基础题,掌握矩形的性质和菱形的判定方法,正确推理论证是解题关键.15(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形,其对角线相交于点O ,OA =3,BD =8,AB =5.(1)△AOB 是直角三角形吗?请说明理由;(2)求证:四边形ABCD 是菱形.【答案】(1)△AOB 是直角三角形,理由见解析.(2)见解析【分析】(1)根据平行四边形对角线互相平分可得BO =12BD =4,再根据勾股定理的逆定理,即可得出结论;(2)根据对角线互相垂直的平行四边形是菱形,即可求证.【详解】(1)解:△AOB 是直角三角形,理由如下:∵四边形ABCD 是平行四边形,∴BO =12BD =4,∵OA 2+OB 2=32+42=52=AB 2,∴△AOB 是直角三角形.(2)证明:由(1)可得:△AOB 是直角三角形,∴∠AOB =90°,即AC ⊥BD ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.【点睛】本题主要考查了平行四边形的性质,勾股定理的逆定理,菱形的判定,解题的关键是掌握平行四边形对角线互相平分,对角线互相垂直的平行四边形是菱形.16(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O ,∠ABO =∠DCO =90°,OB =OC .点E 、F 分别是AO 、DO的中点.(1)求证:OE =OF ;(2)当∠A =30°时,求证:四边形BECF 是矩形.【答案】(1)见解析;(2)见解析【分析】(1)直接证明△AOB ≌△DOC ASA ,得出OA =OD ,根据E 、F 分别是AO 、DO 的中点,即可得证;(2)证明四边形BECF 是平行四边形,进而根据∠A =30°,推导出△BOE 是等边三角形,进而可得BC =EF ,即可证明四边形BECF 是矩形.【详解】(1)证明:在△AOB 与△DOC 中,∠ABO =∠DCO =90°OB =OC∠AOB =∠DOC∴△AOB ≌△DOC ASA ,∴OA =OD ,又∵E 、F 分别是AO 、DO 的中点,∴OE =OF ;(2)∵OB =OC ,OF =OE ,∴四边形BECF 是平行四边形,BC =2OB ,EF =2OE ,∵E 为AO 的中点,∠ABO =90°,∴EB =EO =EA ,∵∠A =30°,∴∠BOE =60°,∴△BOE 是等边三角形,∴OB =OE ,∴BC =EF ,∴四边形BECF 是矩形.【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,矩形判定,熟练掌握以上知识是解题的关键.17(2023·云南·统考中考真题)如图,平行四边形ABCD 中,AE 、CF 分别是∠BAD 、∠BCD 的平分线,且E 、F 分别在边BC 、AD 上,AE =AF .(1)求证:四边形AECF 是菱形;(2)若∠ABC =60°,△ABE 的面积等于43,求平行线AB 与DC 间的距离.【答案】(1)证明见解析;(2)43【分析】(1)先证AD ∥BC ,再证AE ∥FC ,从而四边形AECF 是平行四边形,又AE =AF ,于是四边形AECF 是菱形;(2)连接AC ,先求得∠BAE =∠DAE =∠ABC =60°,再证AC ⊥AB ,∠ACB =90°-∠ABC =30°=∠EAC ,于是有33=AB AC,得AB =33AC ,再证AE =BE =CE ,从而根据面积公式即可求得AC =43.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠BAD =∠BCD ,∴∠BEA =∠DAE ,∵AE 、CF 分别是∠BAD 、∠BCD 的平分线,∴∠BAE =∠DAE =12∠BAD ,∠BCF =12∠BCD ,∴∠DAE =∠BCF =∠BEA ,∴AE ∥FC ,∴四边形AECF 是平行四边形,∵AE =AF ,∴四边形AECF 是菱形;(2)解:连接AC ,∵AD ∥BC ,∠ABC =60°,∴∠BAD =180°-∠ABC =120°,∴∠BAE =∠DAE =∠ABC =60°,∵四边形AECF 是菱形,∴∠EAC =12∠DAE =30°,∴∠BAC =∠BAE +∠EAC =90°,∴AC ⊥AB ,∠ACB =90°-∠ABC =30°=∠EAC ,∴AE =CE ,tan30°=tan ∠ACB =AB AC 即33=AB AC,∴AB =33AC ,∵∠BAE =∠ABC ,∴AE =BE =CE ,∵△ABE 的面积等于43,∴S △ABC =12AC ⋅AB =12AC ⋅33AC =36AC 2=83,∴平行线AB 与DC 间的距离AC =43.【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.18(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中,AD ∥BC ,点O 为对角线BD 的中点,过点O 的直线l 分别与AD 、BC 所在的直线相交于点E 、F .(点E 不与点D 重合)(1)求证:△DOE ≌△BOF ;(2)当直线l ⊥BD 时,连接BE 、DF ,试判断四边形EBFD 的形状,并说明理由.【答案】(1)见解析;(2)四边形EBFD 为菱形;理由见解析【分析】(1)根据AAS 证明△DOE ≌△BOF 即可;(2)连接EB 、FD ,根据△DOE ≌△BOF ,得出ED =BF ,根据ED ∥BF ,证明四边形EBFD 为平行四边形,根据EF ⊥BD ,证明四边形EBFD 为菱形即可.【详解】(1)证明:∵点O 为对角线BD 的中点,∴BO =DO ,∵AD ∥BC ,∴∠ODE =∠OBF ,∠OED =∠OFB ,在△DOE 和△BOF 中,∠ODE =∠OBF∠OED =∠OFB BO =DO,∴△DOE ≌△BOF AAS ;(2)解:四边形EBFD 为菱形,理由如下:连接EB 、FD ,如图所示:根据解析(1)可知,△DOE ≌△BOF ,∴ED =BF ,∵ED ∥BF ,∴四边形EBFD 为平行四边形,∵l ⊥BD ,即EF ⊥BD ,∴四边形EBFD 为菱形.【点睛】本题主要考查了三角形全等的判定和性质,菱形的判定,平行线的性质,解题的关键是熟练掌握三角形全等的判定方法和菱形的判定方法.19(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连接EF(1)求证:AE =AF ;(2)若∠B =60°,求∠AEF 的度数.【答案】(1)证明见解析;(2)60°【分析】(1)根据菱形的性质的三角形全等即可证明AE =AF .(2)根据菱形的性质和已知条件可推出∠BAD 度数,再根据第一问的三角形全等和直角三角形的性质可求出∠BAE 和∠DAF 度数,从而求出∠EAF 度数,证明了等边三角形AEF ,即可求出∠AEF 的度数.【详解】(1)证明:∵菱形ABCD ,∴AB =AD ,∠B =∠D ,又∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°.在△AEB 和△AFD 中,∠AEB =∠AFD∠B =∠D AB =AD,∴△ABE ≌△ADF (AAS ).∴AE =AF .(2)解:∵菱形ABCD ,∴∠B +∠BAD =180°,∵∠B =60°,∴∠BAD =120°.又∵∠AEB =90°,∠B =60°,∴∠BAE =30°.由(1)知△ABE ≌△ADF ,∴∠BAE =∠DAF =30°.∴∠EAF =120°-30°-30°=60°.∵AE =AF ,∴△AEF 等边三角形.∴∠AEF =60°.【点睛】本题考查了三角形全等、菱形的性质、等边三角形的性质,解题的关键在于熟练掌握全等的方法和菱形的性质.20(2023·湖北鄂州·统考中考真题)如图,点E是矩形ABCD的边BC上的一点,且AE=AD.(1)尺规作图(请用2B铅笔):作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);(2)试判断四边形AEFD的形状,并说明理由.【答案】(1)见解析;(2)四边形AEFD是菱形,理由见解析【分析】(1)根据题意结合尺规作角平分线的方法作图即可;(2)根据矩形的性质和平行线的性质得出∠DAF=∠AFE,结合角平分线的定义可得∠EFA=∠EAF,则AE=EF,然后根据平行四边形和菱形的判定定理得出结论.【详解】(1)解:如图所示:(2)四边形AEFD是菱形;理由:∵矩形ABCD中,AD∥BC,∴∠DAF=∠AFE,∵AF平分∠DAE,∴∠DAF=∠EAF,∴∠EFA=∠EAF,∴AE=EF,∵AE=AD,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,又∵AE=AD,∴平行四边形AEFD是菱形.【点睛】本题主要考查了尺规作角平分线,矩形的性质,平行线的性质,等腰三角形的判定,平行四边形的判定以及菱形的判定等知识,熟练掌握相关判定定理和性质定理是解题的关键.21(2023·吉林长春·统考中考真题)将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放.点A,E,B,D依次在同一直线上,连结AF、CD.(1)求证:四边形AFDC是平行四边形;(2)己知BC=6cm,当四边形AFDC是菱形时.AD的长为cm.【答案】(1)见解析;(2)18【分析】(1)由题意可知△ACB≌△DFE易得AC=DF,∠CAB=∠FDE=30°即AC∥DF,依据一组对边平行且相等的四边形是平行四边形可证明;(2)如图,在Rt△ACB中,由30°角所对的直角边等于斜边的一半和直角三角形锐角互余易得AB=2BC= 12cm,∠ABC=60°;由菱形得对角线平分对角得∠CDA=∠FDA=30°,再由三角形外角和易证∠BCD=∠CDA即可得BC=BD=6cm,最后由AD=AB+BD求解即可.【详解】(1)证明:由题意可知△ACB≌△DFE,∴AC=DF,∠CAB=∠FDE=30°,∴AC∥DF,∴四边形AFDC地平行四边形;(2)如图,在Rt△ACB中,∠ACB=90°,∠CAB=30°,BC=6cm,∴AB=2BC=12cm,∠ABC=60°,四边形AFDC是菱形,∴AD平分∠CDF,∴∠CDA=∠FDA=30°,∵∠ABC=∠CDA+∠BCD,∴∠BCD=∠ABC-∠CDA=60°-30°=30°,∴∠BCD=∠CDA,∴BC=BD=6cm,∴AD=AB+BD=18cm,故答案为:18.【点睛】本题考查了全等三角形的性质,平行四边形的判定,菱形的性质,30°角所对的直角边等于斜边的一半和直角三角形锐角互余,三角形外角及等角对等边;解题的关键是熟练掌握相关知识综合求解.22(2023·湖南张家界·统考中考真题)如图,已知点A,D,C,B在同一条直线上,且AD=BC,AE= BF,CE=DF.(1)求证:AE∥BF;(2)若DF=FC时,求证:四边形DECF是菱形.【答案】(1)见解析;(2)见解析【分析】(1)根据题意得出AC=BD,再由全等三角形的判定和性质及平行线的判定证明即可;(2)方法一:利用全等三角形的判定和性质得出DE=CF,又EC=DF,再由菱形的判定证明即可;方法二:利用(1)中结论得出∠ECA=∠FDB,结合菱形的判定证明即可.【详解】(1)证明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD在△AEC和△BFD中,AC=BDAE=BFCE=DF,∴△AEC≌△BFD SSS∴∠A=∠B,∴AE∥BF(2)方法一:在△ADE和△BCF中,AE=BF∠A=∠BAD=BC,∴△ADE≌△BCF SAS∴DE=CF,又EC=DF,∴四边形DECF是平行四边形∵DF=FC,∴▱DECF是菱形;方法二:∵△AEC≌△BFD,∴∠ECA=∠FDB∴EC∥DF,又EC=DF,∴四边形DECF是平行四边形∵DF=FC,∴▱DECF是菱形.【点睛】题目主要考查全等三角形的判定和性质,菱形的判定和性质,理解题意,熟练掌握运用这些知识点是解题关键.23(2023·湖南郴州·统考中考真题)如图,四边形ABCD是平行四边形.(1)尺规作图;作对角线AC的垂直平分线MN(保留作图痕迹);(2)若直线MN分别交AD,BC于E,F两点,求证:四边形AFCE是菱形【答案】(1)见解析;(2)见解析【分析】(1)根据垂直平分线的作图方法进行作图即可;(2)设EF与AC交于点O,证明△AOE≌△COF ASA,得到OE=OF,得到四边形AFCE为平行四边形,根据EF⊥AC,即可得证.【详解】(1)解:如图所示,MN 即为所求;(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠CAE =∠ACF ,如图:设EF 与AC 交于点O ,∵EF 是AC 的垂直平分线,∴AO =OC ,EF ⊥AC ,∵∠AOE =∠COF ,∴△AOE ≌△COF ASA ,∴OE =OF ,∴四边形AFCE 为平行四边形,∵EF ⊥AC ,∴四边形AFCE 为菱形.【点睛】本题考查基本作图-作垂线,平行四边形的判定和性质,全等三角形的判定和性质,菱形的判定.熟练掌握菱形的判定定理,是解题的关键.24(2023·湖北十堰·统考中考真题)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP .(1)试判断四边形BPCO的形状,并说明理由;(2)请说明当▱ABCD的对角线满足什么条件时,四边形BPCO是正方形?【答案】(1)平行四边形,见解析;(2)AC=BD且AC⊥BD【分析】(1)根据平行四边形的性质,得到BP=12AC=OC,CP=12BD=OB,根据两组对边分别相等的四边形是平行四边形判定即可.(2)根据对角线相等、平分且垂直的四边形是正方形判定即可.【详解】(1)四边形BPCO是平行四边形.理由如下:∵▱ABCD的对角线AC,BD交于点O,∴AO=OC,BO=OD,∵以点B,C为圆心,12AC,12BD长为半径画弧,两弧交于点P,∴BP=12AC=OC,CP=12BD=OB∴四边形BPCO是平行四边形.(2)∵对角线相等、平分且垂直的四边形是正方形,∴AC=BD且AC⊥BD时,四边形BPCO是正方形.【点睛】本题考查了平行四边形的判定和性质,正方形的判定和性质,熟练掌握判定和性质是解题的关键.25(2023·四川内江·统考中考真题)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:AF=BD;(2)连接BF,若AB=AC,求证:四边形ADBF是矩形.【答案】(1)见解析;(2)见解析;【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明三角形全等,再由全等三角形的性质容易得出结论;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形判定即可.【详解】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△EDC中,∠AFE=∠DCE∠AEF=∠DECAE=DE,∴△EAF≌△EDC(AAS);∴AF=CD,∵CD=BD,∴AF=BD;(2)证明:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.26(2023·湖南岳阳·统考中考真题)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM=DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是(填序号);(2)添加条件后,请证明▱ABCD为矩形.【答案】(1)答案不唯一,①或②;(2)见解析【分析】(1)根据有一个角是直角的平行四边形是矩形进行选取;(2)通过证明△ABM≌△DCM可得∠A=∠D,然后结合平行线的性质求得∠A=90°,从而得出▱ABCD 为矩形.【详解】(1)解:①或②(2)添加条件①,▱ABCD为矩形,理由如下:在▱ABCD中AB=CD,AB∥CD,在△ABM和△DCM中AB=CD∠1=∠2 BM=CM ,∴△ABM≌△DCM ∴∠A=∠D,又∵AB∥CD,∴∠A+∠D=180°,∴∠A =∠D =90°,∴▱ABCD 为矩形;添加条件②,▱ABCD 为矩形,理由如下:在▱ABCD 中AB =CD ,AB ∥CD ,在△ABM 和△DCM 中AB =CDAM =DM BM =CM,∴△ABM ≌△DCM ∴∠A =∠D ,又∵AB ∥CD ,∴∠A +∠D =180°,∴∠A =∠D =90°,∴▱ABCD 为矩形【点睛】本题考查矩形的判定,全等三角形的判定和性质,掌握平行四边形的性质和矩形的判定方法(有一个角是直角的平行四边形是矩形)是解题关键.27(2023·四川乐山·统考中考真题)如图,在Rt △ABC 中,∠C =90°,点D 为AB 边上任意一点(不与点A 、B 重合),过点D 作DE ∥BC ,DF ∥AC ,分别交AC 、BC 于点E 、F ,连接EF.(1)求证:四边形ECFD 是矩形;(2)若CF =2,CE =4,求点C 到EF 的距离.【答案】(1)见解析;(2)455【分析】(1)利用平行线的性质证明∠CED =∠CFD =90°,再利用四边形内角和为360°,证明∠EDF =90°,即可由矩形判定定理得出结论;(2)先由勾股定理求出EF =CF 2+CE 2=25,再根据三角形面积公式求解即可.【详解】(1)证明:∵DE ∥BC ,DF ∥AC ,∴四边形ECFD 为平行四边形,∵∠C =90°,∴四边形ECFD 是矩形.(2)解:∵∠C =90°,CF =2,CE =4,∴EF =CF 2+CE 2=25设点C 到EF 的距离为h ,∵S △CEF =12CE ⋅CF =12EF ⋅h ∴2×4=25h∴h=455答:点C到EF的距离为45 5.【点睛】本题考查矩形的判定,平行线的性质,勾股定理.熟练掌握矩形的判定定理和利用面积法求线段长是解题的关键.28(2023·浙江台州·统考中考真题)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形.(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).【答案】(1)见解析;(2)见解析【分析】(1)先证明∠ADB=∠CBD,再证明180°-∠ADB+∠A=180°-∠CBD+∠C,即∠ABD=∠CDB,从而可得结论;(2)作对角线BD的垂直平分线交AD于F,交BC于E,从而可得菱形BEDF.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵∠A=∠C,∴180°-∠ADB+∠A=180°-∠CBD+∠C,即∠ABD=∠CDB.∴AB∥CD.∴四边形ABCD是平行四边形.(2)如图,四边形BEDF就是所求作的菱形.【点睛】本题考查的是平行四边形的判定与性质,作线段的垂直平分线,菱形的判定,熟练的利用菱形的判定进行作图是解本题的关键.三、填空题29(2023·黑龙江齐齐哈尔·统考中考真题)如图,在四边形ABCD中,AD=BC,AC⊥BD于点O.请添加一个条件:,使四边形ABCD成为菱形.【答案】AD∥BC(荅案不唯一)【分析】根据题意,先证明四边形ABCD是平行四边形,根据AC⊥BD,可得四边形ABCD成为菱形.【详解】解:添加条件AD∥BC∵AD=BC,AD∥BC∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件AB=CD∵AD=BC,AB=CD∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件OB=OD∵AC⊥BD,∴∠AOD=∠COB=90°∵AD=BC,OB=OD,∴Rt△AOD≌Rt△COB HL∴AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件∠ADB=∠CBD在△AOD与△COB中,∠ADB=∠CBD ∠AOD=∠COB AD=BC∴△AOD≌△COB∴AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.故答案为:AD∥BC(AB=CD或OB=OD或∠ADB=∠CBD等).【点睛】本题考查了平行四边形的判定,菱形的判定,熟练掌握菱形的判定定理是解题的关键.30(2023·辽宁大连·统考中考真题)如图,在菱形ABCD中,AC、BD为菱形的对角线,∠DBC=60°, BD=10,点F为BC中点,则EF的长为.。
平行四边形矩形菱形经典例题(8套)

经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长.【【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:连接3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC A DCBA DC BD C AB EF∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△.(2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又A F C E D F ==,,AFD CEB ∴△≌△(SAS).AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=A BDE F C A DCB(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=°1390∴∠+∠=°12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△DM AE ∴=AE EP =DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠,1590∠+∠=°4590∴∠+∠=°AE DM ∴⊥AE EP ⊥ A D C B E B C E DA F P FDM EP ∴⊥∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
矩形、菱形、正方形的判定及性质应用举例

ABCD EFO矩形、菱形、正方形的判定及性质应用举例矩形、菱形、正方形的判定和性质是初中数学中最重要的内容之一.在中考中所占的比例较大,常以填空题、选择题、计算题、证明题的形式出现. 现举几例供同学们参考. 一、矩形知识的应用例1(甘肃白银7市课改)如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 .分析:由四边形ABCD 是矩形,利用矩形的对角线互相平分且相等可知,矩形中OA=OB=OD=OC ,由三角形全等可求出阴影部分的面积.解:∵矩形ABCD 的对角线AC 和BD 相交于点O . ∴OA=OB=OD=OC ,AC=BD∵)(,SAS COF AOE COD AOB ∆≅∆∆≅∆ ∴COF AOE COD AOB S S S S ∆∆∆∆==, ∴阴影部分的面积33221=⨯⨯=点评:矩形是特殊的平行四边形,其特殊性表现在角上(四个角都是直角),两条对角线将矩形分成四个等腰三角形,从而可以计算阴影部分的面积.二、菱形知识的应用例2. (山东)如下图,菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB=a ,求:(1)∠ABC 的度数;(2)已知a AO 23=,求对角线AC 的长;(3)求菱形的面积.分析: 因为E 是AB 的中点,且DE ⊥AB 可得等腰三角形ABD 为等边三角形,这样菱形的4个内角都可求出,并且由特殊角的关系很容易求出AC 的长和菱形面积.解:(1)连结BD.在菱形ABCD 中,∵ DE ⊥AB ,E 是AB 的中点,∴ AB=AD=DB. ∴ △ABD 为等边三角形.∴ ∠ABD=60° .∴ ∠ABC=2∠ABD=120°.(2)在菱形ABCD 中 ,AC ⊥BD ,且AC 与BD 互相平分. 由(1)在Rt △ABO 中,a AO 23=a a AO AC 32322=⨯==∴ (3)由(1)知a AB BD ==,∴a a S ⋅⨯=⋅=321BD AC 21菱形 .232a = 点评:(1)本题首先证明△ABD 是等边三角形,从而求出∠ABD 的度数,再利用菱形的性质可求∠ABC.(2)求AC 的长可利用菱形的对角线互相垂直平分(3)菱形的面积可用21AC·BD 求出,也可利用AB·DE 求出. 本题应用了菱形的对角线互相垂直平分的性质,即可求出面积.三、正方形知识的应用例3(浙江台州)把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.分析:本题是将正方形ABCD 绕着点A ,按顺时针方向进行旋转,画出正方形AEFG .构造全等三角形.解:HG HB =. 证法1:连结AH ,∵四边形ABCD ,AEFG 都是正方形.∴90B G ∠=∠=°.由题意知AG AB =,又AH AH =.DCAB GHFEDC AB GHFERt Rt()∴△≌△,AGH ABH HL=∴.HG HB证法2:连结GB.,都是正方形,∵四边形ABCD AEFG∠=∠=∴°.ABC AGF90由题意知AB AG=.∴.∠=∠AGB ABG∴.∠=∠HGB HBG∴.=HG HB点评:本题主要考查正方形的性质及三角形全等的判定,要证HG=HB,转化为证Rt△AGH≌Rt△ABH或HBG∠即可.=HGB∠练习:1.如图,如果要使平行四边行ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是.2.如图,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形.3.如图,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC 于点E,PF⊥CD于点F.(1) 求证:BP=DP;(2) 如图,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.参考答案1.AB AD AC BD,等.=⊥2.证明:根据题意可知DE∆≅C∆CDE'则''',,=∠=∠=CD C D C DE CDE CE C E∵AD//BC ∴∠C′DE=∠CED∴∠CDE=∠CED ∴CD=CE∴CD=C′D=C′E=CE ∴四边形CDC′E为菱形3.(1) 解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.(2) 不是总成立.当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC 边上时,DP >DC>BP,此时BP=DP不成立.说明:未用举反例的方法说理的不得分.(3)连接BE、DF,则BE与DF始终相等.在图中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有BE=DF.。
(完整版)矩形、菱形与正方形-专题训练(含答案)

矩形、菱形与正方形专题训练(含答案)班级________姓名________成绩________一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.12 3 D.16 3第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=____度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为___.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为____________-_,矩形的面积为_______________.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是____cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为____________.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件______________,使▱ABCD是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=____.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_______________________________.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.(8分)如图所示,矩形ABCD中,AE⊥BD于点E,∠DAE∶∠BAE=3∶1,求∠BAE和∠EAO 的度数.22.(10分)如图,已知菱形ABCD中,AB=AC,E,F分别是BC,AD的中点,连结AE,CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形ABCD的面积.23.(12分)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF,求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.24.(10分)在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点,求证:MN与PQ互相垂直平分.参考答案一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( D )A.12 B.24 C.12 D.16第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( B ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( A )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( B )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( C )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( C )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( D )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( B )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( B )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=__72__度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为__20__.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为__40_cm__,矩形的面积为__400_cm2__.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是__16__cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为__2__.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件__AO=BO(答案不唯一)__,使▱ABCD 是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=__5__.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为__(8,4),(3,4)或(2,4)__.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.解:∵∠AFE +∠AEF =∠AEF +∠CED =90°,∴∠AFE =∠DEC .又∵∠A =∠D =90°,EF =EC ,∴△AEF ≌△DCE ,∴AE =CD .设AE =x ,则CD =x ,∴AD +CD =21×32,即x +4+x =16,∴x =6.即AE =6 cm20.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连结BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求MD 的长.解:(1)∵MN 是BD 的垂直平分线,∴BO =DO ,∠BON =∠DOM =90°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BNO =∠DMO ,∴△BON ≌△DOM (AAS ),∴OM =ON .∵OB =OD ,∴四边形BMDN 是平行四边形.∵MN ⊥BD ,∴▱BMDN 是菱形(2)设MD =x ,则MB =x ,MA =8-x ,在Rt △ABM 中,∵BM 2=AM 2+AB 2,∴x 2=(8-x )2+42,解得x =5.∴MD 的长为521.(8分)如图所示,矩形ABCD 中,AE ⊥BD 于点E ,∠DAE ∶∠BAE =3∶1,求∠BAE 和∠EAO 的度数.解:提示:由∠DAE ∶∠BAE =3∶1,求出∠BAE =22.5°,而∠ABD =90°-∠BAE =90°-22.5°=67.5°,∵∠BAO =∠ABD =67.5°,∴∠EAO =∠BAO -∠BAE =67.5°-22.5°=45°22.(10分)如图,已知菱形ABCD 中,AB =AC ,E ,F 分别是BC ,AD 的中点,连结AE ,CF .(1)证明:四边形AECF 是矩形;(2)若AB =8,求菱形ABCD 的面积.解:(1)∵四边形ABCD 是菱形,∴AB =BC ,又∵AB =AC ,∴△ABC 是等边三角形.∵E 是BC 的中点,∴AE ⊥BC (等边三角形三线合一),∠AEC =90°.同理,CF ⊥AD .∵E ,F 分别是BC ,AD 的中点,∴AF =21AD ,EC =21BC .∵四边形ABCD 是菱形,∴AD 綊BC ,∴AF 綊EC ,∴四边形AECF 是平行四边形(一组对边平行且相等的四边形是平行四边形).又∵∠AEC =90°,∴四边形AECF 是矩形(有一个角是直角的平行四边形是矩形)(2)在Rt △ABE 中,∵AE ==4,∴S 菱形ABCD =8×4=3223.(12分)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是点E ,F ,并且DE =DF ,求证:(1)△ADE ≌△CDF ;(2)四边形ABCD 是菱形.解:证明:(1)∵四边形ABCD 是平行四边形,∴∠A =∠C ,又∵DE =DF ,DE ⊥AB ,DF ⊥BC ,∴∠DEA =∠DFC =90°,∴△ADE ≌△CDF (AAS ) (2)由(1)知AD =DC ,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形24.(10分)在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点,求证:MN 与PQ 互相垂直平分.解:证明:连结MP ,NQ ,PN ,MQ ,∵PM 綊21AB ,同理NQ 綊21AB ,∴PM 綊NQ ,∴四边形MPNQ 为平行四边形,又∵PN 綊21CD ,而CD =AB ,∴PN =PM ,∴四边形MPNQ 为菱形,∴MN 与PQ 互相垂直平分。
中考数学精选汇编矩形菱形与正方形---13道题目(含答案)

01如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.答案:(1)由图可知,∠DAG,∠AFB,∠CDE与∠AED相等;(2)选择∠DAG=∠AED,证明如下:∵正方形ABCD,∴∠DAB=∠B=90°,AD=AB,∵AF=DE,在△DAE与△ABF中,,∴△DAE≌△ABF(SAS),∴∠ADE=∠BAF,∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,∴∠DAG=∠AED.02如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【考点】矩形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠ED G,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,OB=OD,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.03如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG 分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.独立思考:(1)AE=_______cm,△FDM的周长为_____cm(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F不是AD的中点,且不与点A、D重合:①△FDM的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).如图将边长为8cm 的正方形纸片ABCD 折叠,使点B 恰好落在AD 边的中点F 处,折痕EG 分别交AB 、CD 于点E 、G ,FN 与DC 交于点M ,连接BF 交EG 于点P.独立思考:(1)AE=_______cm ,△FDM 的周长为_____cm (2)猜想EG 与BF 之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F 不是AD 的中点,且不与点A 、D 重合:①△FDM 的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明). 答案:(1)3, 16(2)EG ⊥BF, EG=BF则∠EGH+∠GEB=90°由折叠知,点B 、F 关于直线GE 所在直线对称∴∠FBE=∠EGH∵ABCD 是正方形∴AB=BC ∠C=∠ABC=90°四边形GHBC 是矩形,∴GH=BC=AB ∴△AFB 全等△HEG ∴BF=EG(3)①△FDM 的周长不发生变化 由折叠知∠EFM=∠ABC=90°∴∠DFM+∠AFE=90°∵四边形ABCD 为正方形,∠A=∠D=90°∴∠DFM+∠DMF=90°∴∠AFE=∠DMF ∴△AEF ∽△DFM ∴=FMD AEF FD AE的周长的周长V V 设AF 为x ,FD=8-x ∴-23 222(8)x AE AE +=-26416x AE -= ∴ 88x x AE AE AE FMD -=++-的周长 △ FMD 的周长=222(8)(8)16(64)16166416x x x x x +--==-- ∴△FMD 的周长不变 ②(2)中结论成立04在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.【考点】矩形的判定;全等三角形的判定与性质.【分析】(1)根据平行线得出∠CED=∠BFD,根据AAS推出两三角形全等即可;(2)根据全等得出DE=DF,根据BD=DC推出四边形是平行四边形,求出∠BEC=90°,根据矩形的判定推出即可.【解答】(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.【点评】本题考查了平行线性质,全等三角形的性质和判定,矩形的判定,平行四边形的判定的应用,注意:有一个角是直角的平行四边形是矩形.05在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,=BC•EG=6×3=18.∴S菱形BCFE【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.06如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.【考点】垂径定理;勾股定理;菱形的判定.【分析】(1)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明;(2)菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论;(3)设DE=x,则根据CE2=DE•AE列方程求出DE,再用勾股定理求出CD.【解答】(1)证明:∵AD是直径,∴∠ABD=∠A CD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.【点评】本题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键..07如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形'''AB C D ,点C 的对应点'C 恰好落在CB 的延长线上,边AB 交边''C D 于点E . (1)求证:'BC BC =.(2)若2AB =,1BC =,求AE 的长.ED 'C 'B'DC BAAB CD B'C 'D 'E(第12题)如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形'''AB C D ,点C 的对应点'C 恰好落在CB的延长线上,边AB 交边''C D 于点E . (1)求证:'BC BC =.(2)若2AB =,1BC =,求AE 的长.答案:解:(1)连结AC 、'AC ,如图.∵四边形ABCD 为矩形,∴∠ABC =90°,即'AB CC ⊥.由旋转,得'AC AC = , ∴'BC BC =. (2)∵四边形ABCD 为矩形,∴,'90AD BC D ABC =∠=∠=︒. ∵'BC BC =,∴''BC AD =. 由旋转,得'AD AD = , ∴''BC AD =. ∵''AED C BE ∠=∠, ∴'AD E ∆≌'C BE ∆. ∴'BE D E =.设AE x =,则'2D E x =-. 在Rt 'AD E ∆中,'90D ∠=︒, 由勾股定理,得22(2)1x x --=.解得54x =. ∴54AE =.AB CD B'C 'D 'E(第12题)E D 'C 'B'DCBA08如图1,四边形ABCD是正方形,点E是边BC上的点,过点E作EF⊥AE,过点F作FG⊥BC交BC的延长线于点G..(1)求证:∠BAE=∠FEG.(2)同学们很快做出了解答,之后李老师将题目修改成:如图2,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线于点F,求证:AE=EF.(3)如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.如图1,四边形ABCD是正方形,点E是边BC上的点,过点E作EF⊥AE,过点F作FG⊥BC 交BC的延长线于点G..(1)求证:∠BAE=∠FEG.(2)同学们很快做出了解答,之后李老师将题目修改成:如图2,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线于点F,求证:AE=EF.(3)如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【解答】解:(1)∵∠AEF=90°,∴∠AEB+∠FEG=90°,又∵直角△ABE中,∠BAE+∠AEB=90°,∴∠BAE=∠FEG;(2)作AB的中点M,连接ME.∵正方形ABCD中,AB=BC,又∵AM=MB=AB,BE=CE=BC,∴MB=BE,∴△ABE是等腰直角三角形,∴∠BME=45°,∴∠AME=135°,又∵∠ECF=180°﹣∠FCG=180°﹣45°=135°.∴∠AME=∠ECF,∴在△AME和△ECF中,,∴△AME≌△ECF,∴AE=EF;(3)在AB上取一点M,使AM=EC,连接ME.∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°∴∠AME=∠ECF∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°∴∠BAE=∠CEF∴在△AME和△ECF中,,∴△AME≌△ECF(ASA),∴AE=EF.09如图,在□ABCD 中,E 、F 分别是边AB 、CD 的中点,BG ∥AC 交DA 的延长线于点G . (1)求证:△ADF ≌△CBE ;(2)若四边形AGBC 是矩形,判断四边形AECF 是什么特殊的四边形?并证明你的结论.GFCEABD如图,在□ABCD 中,E 、F 分别是边AB 、CD 的中点,BG ∥AC 交DA 的延长线于点G . (1)求证:△ADF ≌△CBE ;(2)若四边形AGBC 是矩形,判断四边形AECF 是什么特殊的四边形?并证明你的结论.GFCEABD答案:(1)证明:∵□ABCD ,∴AD =CB ,∠D =∠ABC ,AB =CD , 又∵E 、F 分别是边AB 、CD 的中点,∴DF =BE ,∴△ADF ∽≌△CBE ;(2)四边形AECF 为菱形;∵矩形AGBC ,∴∠ACB =90°,又∵E 为AB 中点, (3)∴CE =21AB =AE ,同理AF =FC ,∴AF =FC =CE =EA ,∴四边形AECF 为菱形.10如图,矩形ABCD中,AD=5,AB=3,在BC边上取一点E,使BE=4,连结AE,沿AE 剪下△ABE,将它平移至△DCF的位置,拼成四边形AEFD.(1)求证:四边形AEFD是菱形;(2)求四边形AEFD的两条对角线的长.如图,矩形ABCD中,AD=5,AB=3,在BC边上取一点E,使BE=4,连结AE,沿AE剪下△ABE,将它平移至△DCF的位置,拼成四边形AEFD.(1)求证:四边形AEFD是菱形;(2)求四边形AEFD的两条对角线的长.答案:(1)证明:∵△ABE平移至△DCF的位置.∴△ABE≌△DCF.∴BE=CF∵四边形ABCD为矩形.∴AD∥BC,AD=BC,∠B=90°.∴EF=EC+CF=EC+BE=BC=AD.∴四边形AEFD为平行四边形.在Rt△ABE中,根据勾股定理得:AE=2222+=+=AB BE345∵AD=5,∴AD=AE.∴四边形AEFD为菱形.(2)连结DE、AF.求出DE=10.求出AF=310.11如图,在正方形ABCD 中,AB=5,P 是BC 边上任意一点,E 是BC 延长 线上一点,连接AP ,作PF ⊥AP ,使PF =PA ,连接CF ,AF ,AF 交CD 边于点G ,连接PG .(1)求证:∠GCF =∠FCE ;(2)判断线段PG ,PB 与DG 之间的数量关系,并证明你的结论; (3)若BP =2,在直线AB 上是否存在一点M ,使四 边形DMPF 是平行四边形,若存在,求出BM 的 长度,若不存在,说明理由.A B CDEFGP A B CDEF GP HKM如图,在正方形ABCD 中,AB=5,P 是BC 边上任意一点,E 是BC 延长 线上一点,连接AP ,作PF ⊥AP ,使PF =PA ,连接CF ,AF ,AF 交CD 边于点G ,连接PG .(1)求证:∠GCF =∠FCE ;(2)判断线段PG ,PB 与DG 之间的数量关系,并证明你的结论; (3)若BP =2,在直线AB 上是否存在一点M ,使四 边形DMPF 是平行四边形,若存在,求出BM 的 长度,若不存在,说明理由.答案:(1)证明:过点F 作FH ⊥BE 于点H ,∵四边形ABCD 是正方形, ∴∠ABC =∠PHF =∠DCB =90º,AB =BC , ∴∠BAP +∠APB =90º∵AP ⊥PF, ∴∠APB +∠FPH =90º ∴∠FPH =∠BAP又∵AP =PF ∴△BAP ≌△HPF ∴PH =AB ,BP =FH ∴PH =BC∴BP +PC =PC +CH ∴CH =BP =FH 而∠FHC =90º. ∴∠FCH =CFH =45º ∴∠DCF =90º-45º=45º ∴∠GCF =∠FCE(2)PG =PB +DG 证明:延长PB 至K ,使BK=DG ,∵四边形ABCD 是正方形 ∴AB=AD, ∠ABK =ADG=90º ∴△ABK ≌△ADG ∴AK=AG, ∠KAB =∠GAD, 而∠APF=90 º,AP=PF ∴∠PAF =∠PFA =45 º ∴∠BAP +∠KAB =∠KAP =45 º=∠PAF ∴△KAP ≌△GAP ∴KP=PG,∴KB +BP=DG +BP =PG 即,PG =PB +DG ; (3)存在.如图,在直线AB 上取一点M ,使四边形DMPF 是平行四边形, 则MD ∥PF ,且MD =FP ,又∵PF=AP ,∴MD=AP ∵四边形ABCD 是正方形,∴AB=AD ,∠ABP=∠DAM∴△ABP ≌△DAM ∴AM =BP=2, ∴BM =AB -AM=5-2=3. ∴当BM=3,BM+AM=AB 时,四边形DMPF 是平行四边形.AB CDEFGPAB CDEFGP HKM12如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.【考点】旋转的性质;菱形的判定.【分析】(1)如图,根据题意证明△OBC为直角三角形,结合OC=,求出∠B即可解决问题.(2)首先证明AC∥OD,结合AC=OD,判断四边形ADOC为平行四边形,根据菱形的定义即可解决问题.【解答】解:(1)如图,由题意得:OC=OD=BD;∵点D是BC的中点,∴CD=BD,OD=BC,∴△OBC为直角三角形,而OC=,∴∠B=30°,∠OCD=90°﹣30°=60°,;∵OD=CD,∴∠COD=∠OCD=60°.(2)∵OD=BD,∴∠DOB=∠B=30°,由旋转变换的性质知:∠COA=∠CAO=∠B=30°,∴∠AOD=90°﹣2×30°=30°,∴∠CAO=∠AOD=30°,∴AC∥OD,而AC=OD,∴四边形ADOC为平行四边形,而OC=OD,∴四边形ODAC是菱形.【点评】该题主要考查了旋转变换的性质、直角三角形的判定、菱形的判定等几何知识点及其应用问题;解题的关键是牢固掌握旋转变换的性质、直角三角形的判定、菱形的判定等几何知识点,并能灵活运用.13如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC 的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)解:(1)证明:如图(1),∵AE是∠BAD的平分线,∴∠BAF=∠DAF,在平行四边形ABCD中,∵AB∥DF,AD∥BC,∴∠BAF=∠F,∠DAF=∠CEF,∴∠F=∠CEF,∴CE=CF;(2)解:四边形ABFC是矩形,理由:如图(2),∵∠ABC=60°,AD∥BC,∴∠BAD=120°,∵∠BAF=∠DAF,∴∠BAF=60°,则△ABE是等边三角形,可得AB=BE=AE,∠BEA=∠CEF=∠AFC=60°,∵BC=2AB,∴AE=BE=EC,∴△ABC是直角三角形,∠BAC=90°,在△ABE和△FCE中∵ABE FCE BE ECBEA CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△FCE(ASA),∴AB=FC,又∵AB∥FC,∴四边形ABFC是平行四边形,再由∠BAC=90°,故四边形ABFC是矩形.。
矩形、菱形、正方形精讲精练(含答案)-
矩形、菱形、正方形重点与难点:矩形、菱形、正方形的性质与判定定理。
一、知识点(1)矩形:有一个角是直角的平行四边形;菱形:有一组邻边相等的平行四边形;正方形:有一个角是直角并且有一组邻边相等的平行四边形。
(注:矩形、菱形、正方形的定义既是性质又是判定)(2)矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形是轴对称图形菱形的性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;正方形的性质:正方形既是矩形又是菱形,它具有矩形和菱形的全部性质;(3)矩形的判定:有三个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;菱形的判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;正方形的判定:先判定是矩形,再判定是菱形;或者先判定是菱形,再判定是矩形。
(4)直角三角形斜边上的中线等于斜边的一半;菱形的面积等于对角线乘积的半二、例题:例1、如图,矩形ABCD中,E为AD上一点,EF⊥CE交AB于F,若DE=2,矩形的周长为16,且CE=EF,求AE的长。
解:∵矩形ABCD∴∠A=∠D=90°(矩形的四个角都是直角)∴∠AEF+∠AFE=90°∵CE⊥EF∴∠AEF+∠DEC=90°∴∠AFE=∠DEC(等角的余角相等)在△AEF和△DCE中B CE D AF⎪⎩⎪⎨⎧=∠=∠∠=∠CE EF DCE AEF D A ∴△AEF ≌ △DCE(AAS )∴AE=DC(全等三角形的对应边相等) ∴2×(AE+DE+CD )=16 即AE=3。
例2、如图,E 是菱形ABCD 边AD 的中点,EF⊥AC 于H ,交CB 的延长线于F ,交AB 于G ,求证:AB 与EF 互相平分。
证明:∵菱形ABCD∴AC 平分∠BAD(菱形的对角线平分对角)AD 平行且等于AB (菱形四条边都相等,平行四边形的对边互相平行) ∠GAE=∠GBF,∠GFB=∠GEA(两直线平行,内错角相等)在△AEH 和△AGH 中⎪⎩⎪⎨⎧∠=∠=∠=∠EHA GHA AH AH EAHGAH ∴△AEH ≌ △AGH(ASA ) ∴AE=AG ∵AE=21AD ∴AG=21AD=21AB 即AG=AB 在△AEG 和△BFG 中⎪⎩⎪⎨⎧=∠=∠∠=∠GB GA GBF GEA FBG EAG ∴△AEG ≌ △BFG(AAS ) ∴AG=BG,EG=FGABCDEFGH例3、如图,以正方形ABCD 的DC 边为一边向外作一个等边三角形,①求证:△ABE 是等腰三角形;②求∠BAE 的度数。
矩形菱形正方形练习题和答案
一、性质1、下列性中.矩形具有而质平行四边形不一定具有的是()A 、对边相等B 、对角相等C 、对角线相等D 、对边平行2 .在矩形ABCD 中.NAOD=130°.则NACB=__3 .已知矩形的一条对角线长是8cm.两条对角线的一个交角为60°.则矩形的周长为4 .矩形ABCD 被两条对角线分成四个小三角形.如果四个小三角形的周长的和是86cm.对角线是13cm.那么矩形的周长是5 .如图所示.矩形ABCD 中.AE ,BD 于E.Nk BAE=30°.BE=1cm.那么DE 的长为 6、直角三角形斜边上的高与中线分别是5cm 和6cm.则它的面积为7、已知.在Rt△ABC 中出口为斜边AC 上的中线.若NA=35°.那么NDBC 二。
8、如图.矩形ABCD 中.AC 与8口交于。
点.BELAC 于E.CFLBD 于F.求证:BE=CF. 9 .如口图.△ABC 中.NACB=90度.点D 、E 分别为AC 、AB 矩形的习题精选AB的中点.点F在BC延长线上.且/CDF=NA.求证:四边形DECF是平行四边形;10.已知:如图.在aABC中.NBACW90°NABC=2NC.AD±AC.交BC或CB的延长线D。
试说明:DC=2AB.11、在4ABC中.NC=90O.AC=BC.AD=BD.PE^AC于点E.PFLBC于点F。
求证:DE=DF二、判定1、下列检查一个门框是否为矩形的方法中正确的是(C)A.测量两条对角线.是否相等B.测量两条对角线.是否互相平分他用曲尺测量门框的三个角.是否都是直角口.用曲尺测量对角线.是否互相垂直2、平行四边形ABCD.E是CD的中点.4人8£是等边三角形.求证:四边形ABCD是矩形3、在平行四边形ABCD中.对角线AC、BD相交于O.EF过点O.且AF,BC. 求证:四边形AFCE是矩形4、平行四边形ABCD中.对角线AC、8口相交于点。
菱形矩形正方形练习题
菱形矩形正方形练习题菱形矩形正方形练习题矩形、菱形与正方形练习题1. 如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm ,四边形ABCD 面积是11cm ,则①②③④四个平行四边形周长的总和为() F (A )48cm(B )36cm (C )24cm(D )18cm2. 图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )2n +1 (D )2n +23. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19 4. 如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为 A.2 B.3 C. 3 D.6 25. (2021浙江衢州,1,3新颜,如图为一农村民居侧面截图,屋坡A F 、A G 分别架在墙体的点B 、点C 处,且A B =A C , 侧面四边形B D E C 为矩形,若测得∠F A G =100︒,则∠FBD =( )A. 35°B. 40°C. 55°D. 70°6. 如图,在矩形ABCD 中,对角线AC ,BD 交于点O .已知∠AOB = 60°,AC =16,则图中长度为8的线段有( ) A .2条7. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( ) A .18.. 如图2,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A和B 为圆心,大于AB 的长为半径画弧,两弧相交于C 、D ,21则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定‧是 A .矩形 B .菱形 C .正方形 D .等腰梯形9.. 已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面AA .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 10. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为() A .3 B .4 C .5 D .611 如图, 四边形ABCD 中,AC=a,BD=b,且AC ⊥BD, 顺次连接四边形ABCD 各边中点, 得到四边形A 1B 1C 1D 1, 再顺次连接四边形A 1B 1C 1D 1各边中点, 得到四边形A 2B 2C 2D 2……, 如此进行下去, 得到四边形A n B n C n D n . 下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形; ③四边形A 5B 5C5D 5的周长; ④四边形A n B n C n D n 的面积是A. ①②B.②③C.②③④D.①②③④ 12. 在菱形ABCD 中,AB=5cm ,则此菱形的周长为()A. 5cmB. 15cmC. 20cmD. 25cm 13. 如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∩A =30°,BC =2,AF =BF, 则四边形BCDE 的面积是()A .23B .33C .4D .43 14. 下列关于矩形的说法中正确的是A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分 15.菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补二、填空题1. 将矩形ABCD 沿AE 折叠,得到如图所示图形。
2024学年八年级数学经典好题专项(矩形、菱形、正方形)练习(附答案)
2024学年八年级数学经典好题专项(矩形、菱形、正方形)练习一、选择题1、菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2、如图,菱形ABCD 中,∠D =150°,则∠1=( )A .30°B .25°C .20°D .15°(2题) (3题) (4题)3、如图,在▱ABCD 中,AB =BC ,下列结论错误的是( )A .四边形ABCD 是菱形B .AB =ADC .AO =OC ,BO =OD D .∠BAD =∠ABC4、如图所示,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .2 3B .3 3C .4 3D .35、如图,菱形ABCD 中,AB=15,∠ADC=120°,则B、D 两点之间的距离为( )A.15 B.3215 C.7.5 D.315(5题) (7题) (8题) (9题)6、菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是( )A.8cm 和cm B.4cm 和cm C.8cm 和cm D.4cm 和cm7、如图,菱形ABCD 的对角线AC ,BD 的长分别为6 cm ,8 cm ,则这个菱形的周长为( )A .5 cmB .10 cmC .14 cmD .20 cm8、如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为点E ,连接DF ,则∠CDF 等于( )A .50°B .60°C .70°D .80°9、如图.剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD ,AD=BC D.∠DAB+∠BCD=180º10、如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E 的坐标为( )A .(2, 3 )B .( 3 ,2)C .( 3 ,3)D .(3, 3 )(10题) (11题) (12题) (13题)二、填空题11、如图,在△ABC 中,点D ,E ,F 分别在边BC ,AB ,CA 上,且DE ∥CA ,DF ∥BA.小聪认为如果AD平分∠BAC ,那么四边形AEDF 是菱形,小聪的说法 .(填“正确”或“不正确”)12、在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =140°,则∠BAD =________°,∠ABD =________°,∠BCA =________°;13、如图,菱形ABCD 的边长为2 cm ,E 是BC 的中点,且AE ⊥BC ,则菱形ABCD 的面积为_____.14、如图,P 是菱形ABCD 的对角线AC 上一点,PE ⊥AD 于点E ,且PE =3 cm ,则点P 到AB 的距离为__ __ cm.(14题) (15题) (17题) (20题)15、如图,在菱形ABCD 中,AB =5,AO =3,点E 在BC 的延长线上,∠E =12∠ABC ,DE =16、菱形ABCD 的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.17、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AC =8 cm ,BD =6 cm ,则该菱形的面积为________cm 2,周长为________cm.18、已知菱形ABCD 的面积为24 cm 2,若对角线AC =6 cm ,则这个菱形的边长为____ cm.19、四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =3,则CE 的长为_________20、如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边的中点,则MP +PN 的最小值是______.三、解答题21、已知:如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC于点F. 四边形DECF 是菱形吗?为什么?22、如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.23、如图,在菱形ABCD中,对角线AC与BD相交于点O,BD=12 cm,AC=6 cm.求菱形的周长.24、已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.25、如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.26、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.参考答案一、选择题1、菱形不具备的性质是( B )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2、如图,菱形ABCD 中,∠D =150°,则∠1=( D )A .30°B .25°C .20°D .15°3、如图,在▱ABCD 中,AB =BC ,下列结论错误的是( D )A .四边形ABCD 是菱形B .AB =ADC .AO =OC ,BO =OD D .∠BAD =∠ABC4、如图所示,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( B )A .2 3B .3 3C .4 3D .35、如图,菱形ABCD 中,AB=15,∠ADC=120°,则B、D 两点之间的距离为( A )A.15 B.3215 C.7.5 D.3156、菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是(C )A.8cm 和cm B.4cm 和cm C.8cm 和cm D.4cm 和cm7、如图,菱形ABCD 的对角线AC ,BD 的长分别为6 cm ,8 cm ,则这个菱形的周长为(D )A .5 cmB .10 cmC .14 cmD .20 cm8、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为点E,连接DF,则∠CDF等于( B )A.50° B.60° C.70° D.80°9、如图.剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD ,AD=BC D.∠DAB+∠BCD=180º解析:∵四边形ABCD是用两张等宽的纸条交叉重叠放在一起而组成的图形,∴AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形).过点A分别作BC,CD边上的高为AE,AF,连接AC,则AE=AF(两纸条相同,纸条宽度相同),∴在平行四边形ABCD中.S△ABC=S△ACD,即BC•AE=CD•AF,∴BC=CD,AB=BC.故B中结论成立;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形),∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A中结论成立;AB=CD,AD=BC(平行四边形的对边相等),故C中结论成立:当四边形ABCD是矩形时,有∠DAB+∠BCD=180º.故D中结论不一定成立,故选D.10、如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为( D )A.(2, 3 ) B.( 3 ,2) C.( 3 ,3) D.(3, 3 )二、填空题11、如图,在△ABC中,点D,E,F分别在边BC,AB,CA上,且DE∥CA,DF∥BA.小聪认为如果AD平分∠BAC,那么四边形AEDF是菱形,小聪的说法正确.(填“正确”或“不正确”)12、在菱形ABCD中,对角线AC、BD相交于点O,若∠ABC=140°,则∠BAD=________°,∠ABD=________°,∠BCA=________°;答案:40,70,2013、如图,菱形ABCD的边长为2 cm,E是BC的中点,且AE⊥BC,则菱形ABCD的面积为__2 3 cm2 ____.14、如图,P是菱形ABCD的对角线AC上一点,PE⊥AD于点E,且PE=3 cm,则点P到AB的距离为__3 __ cm.15、如图,在菱形ABCD中,AB=5,AO=3,点E在BC的延长线上,∠E=12∠ABC,DE=816、菱形ABCD的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.217、如图,在菱形ABCD中,对角线AC、BD相交于点O,若AC=8 cm,BD=6 cm,则该菱形的面积为________cm2,周长为________cm.答案:24,2018、已知菱形ABCD的面积为24 cm2,若对角线AC=6 cm,则这个菱形的边长为__5 __ cm.19、四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=3,则CE的长为___43或23______20、如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边的中点,则MP+PN的最小值是__1 ____.三、解答题21、已知:如图,在△ABC中,CD平分∠ACB交AB于点D,DE∥AC交BC于点E,DF∥BC交AC于点F. 四边形DECF是菱形吗?为什么?解:四边形DECF是菱形.理由如下:∵DE∥FC,DF∥EC,∴四边形DECF为平行四边形.由AC∥DE,知∠2=∠3. ∵CD平分∠ACB,∴∠1=∠2,∴∠1=∠3,∴DE=EC,∴平行四边形DECF为菱形.22、如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.解:(1)∵四边形ABCD 是菱形,AC =8 cm ,BD =6 cm ,∴S 菱形ABCD =12ACꞏBD =12×6×8=24(cm 2).(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12=4 cm ,OB =OD =3 cm ,∴在直角三角形AOB 中,AB =OB 2+OA 2=32+42=5 cm ,∴DH =S 菱形ABCD AB =4.8 cm.23、如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,BD =12 cm ,AC =6 cm.求菱形的周长.解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12AC ,BO =12 BD.∵AC =6 cm ,BD =12 cm , ∴AO =3 cm ,BO =6 cm.在Rt △ABO 中,由勾股定理,得AB =AO 2+BO 2=32+62=3 5 cm ,∴菱形的周长=4AB=4×3 5 =12 5 cm.24、已知:如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD.(1)求证:四边形AODE 是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE 的面积.解答:(1)证明:∵DE ∥AC ,AE ∥BD ,∴四边形AODE 是平行四边形,∵在菱形ABCD 中,AC ⊥BD ,∴ AOD=90 , ∴平行四边形AODE 是是矩形;(2)∵∠BCD=120°,AB ∥CD ,∴∠ABC=180°‐120°=60°,∵AB=BC ,∴△ABC 是等边三角形,∴OA=21×6=3, OD=OB=6×23=33,∴四边形AODE 的面积=OA ∙OD=9325、如图,在菱形ABCD 中,点P 是BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得∠AED =∠ABC ,∠ABF =∠BPF .求证:(1)△ABF ≌△DAE ;(2)DE =BF +EF .证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC . ∴∠BP A =∠DAE .∵∠ABC =∠AED ,∴∠BAF =∠ADE .∵∠ABF =∠BPF ,∠BP A =∠DAE ,∴∠ABF =∠DAE .∵AB =DA ,∴△ABF ≌△DAE (ASA).(2)∵△ABF ≌△DAE , ∴BF =AE ,AF =DE .∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26、已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2.(1)若CE =1,求BC 的长;(2)求证:AM =DF +ME.(1)解:∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠1=∠ACD ,∵∠1=∠2,∴∠ACD =∠2,∴MC =MD ,∵ME ⊥CD ,∴CD =2CE , ∵CE =1,∴CD =2,∴BC =CD =2(2)证明:如图,∵F 为边BC 的中点,∴BF =CF =12BC ,∴CF =CE ,在菱形ABCD 中,AC 平分∠BCD ,∴∠ACB =∠ACD ,在△CEM 和△CFM 中,∵⎩⎪⎨⎪⎧CE =CF ,∠ACB =∠ACD ,CM =CM ,∴△CEM ≌△CFM(SAS),∴ME =MF ,延长AB 交DF 的延长线于点G , ∵AB ∥CD ,∴∠G =∠2, ∵∠1=∠2,∴∠1=∠G ,∴AM =MG ,在△CDF 和△BGF 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠FC FB DFC GFB G 2,∴△CDF ≌△BGF(AAS),∴GF =DF , 由图形可知,GM =GF +MF ,∴AM =DF +ME。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形、正方形、菱形的几何性质
1、矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.
2、一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为_______________
3、在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为____________.
4、在Rt △ABC 中,BD 为斜边AC 上的中线,若∠A=35°,那么∠DBC= 。
5、如图所示,在正方形ABCD 中,M 是BC 上一点,连结AM ,作AM 的垂线GH 交于G ,交CD 于H ,若AM =10cm ,则GH =________
6、如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是________. 7如图,△ABC 中,∠ACB==90︒,点D 、E 分别为AC 、AB 的中点,点F 在BC 延长线上,且∠CDF=∠A ,求证:四边形DECF 是平行四边形;
(6题
)
(5题) (7题)
8已知:如图,在△ABC中,∠BAC≠90°∠ABC=2∠C,AD⊥AC,交BC或CB的延长线D。
试说明:DC=2AB.
9 、平行四边形ABCD,E是CD的中点,△ABE是等边三角形,
求证:四边形ABCD是矩形
10、平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,
PB⊥PD,垂足为P。
求证:四边形ABCD为矩形
11、已知:如图,平行四边形ABCD的四个内角的平分线分别相交
于E、F、G、H,求证:四边形EFGH为矩形.
12、如图,△ABC中,点O是AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论。
13.若菱形的周长为24 cm,一个内角为60°,则菱形的面积为______ cm2。
14.已知:菱形的周长为40cm,两条对角线长的比是3:4。
求两对角线长分别是。
15、P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于
点F,PF=3cm,则P点到AB的距离是_____ cm
16菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_______.
17.:如图,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F.
求证:四边形AEDF是菱形;
18如图,边长为a的菱形A B C D中,∠D A B=60°,E为A D上异于A、D两点的一动点,F是C D上一动点,且A E+C F=a.(1)证明:不论E、F怎样移动,△B E F都是等边三角形;(2)求出△B E F的面积的最小值
19、如图,Rt△ABC中,∠ACB=900,∠BAC=600,DE垂直平分BC,垂足为D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形。
20如图,在△A B C中,∠B A C=90°,A D⊥B C于D,C E平分∠A C B,交A D 于G,交A B于E,E F⊥B C于F,求证:四边形A E F G是菱形.
21、如图,已知在□ABCD中,AD=2AB,E、F在直线AB上,且AE=AB=BF,说明CE⊥
DF.。