平面图形面积关系

合集下载

平面图形公式

平面图形公式

一.公式:1.长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2面积=长×宽字母公式:S=ab2.正方形:周长=边长×4字母公式:C=4a面积=边长×边长字母公式:S=a3.平行四边形的面积=底×高字母公式: S=ah4.三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母公式: S=ah÷25.梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】二.平行四边形面积公式推导:剪拼、平移1.三角形面积公式推导:旋转平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=底×高,所以三角形面积=底×高÷22.梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2 等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

长方形框架拉成平行四边形,周长不变,面积变小。

《平面图形的面积》课件

《平面图形的面积》课件
《平面图形的面积》ppt课 件
contents
目录
• 引言 • 平面图形的面积基础知识 • 矩形面积的计算 • 三角形面积的计算 • 圆形面积的计算 • 多边形面积的计算 • 总结与回顾
01
引言
课程简介
平面图形面积的概念
介绍平面图形面积的基本概念,包括长方形、正方形、三角形、圆形等。
面积计算的意义
实际应用案例分析
通过分析一些实际应用案例,让学生更好地理解 平面图形面积在现实生活中的应用,并培养他们 解决实际问题的能力。
感谢形面积的计算公式
三角形面积的计算公式
面积 = (底 × 高) ÷ 2。
公式推导
通过将三角形划分为两个直角三角形,利用直角三角形的面积公式 推导得出。
适用范围
适用于所有三角形,无论是直角三角形、锐角三角形还是钝角三角 形。
计算三角形的面积
01
02
03
确定底和高
根据题目或图形信息,确 定三角形的底和高。
总结词
准确、权威
详细描述
在国际单位制中,面积的单位是平方米,符号为m²。其他常用的面积单位还有平方厘米、平方分米、公顷、平方 千米等。
面积的计算公式
总结词
全面、准确
详细描述
对于不同的平面图形,有不同的面积计算公式。例如,矩形面积 = 长 × 宽,圆形面积 = π × r²(其 中r为半径),三角形面积 = 0.5 × 底 × 高。这些公式是计算平面图形面积的基础。
在给定的圆中,确定半径的长度 。
代入公式
将半径的长度代入圆的面积公式中 ,计算出圆的面积。
结果表示
将计算出的面积值表示在相应的位 置上。
圆形面积的应用
计算圆的周长

平面图形的推导过程及公式

平面图形的推导过程及公式

周长:圆、椭圆或其他‎闭合的曲线‎的周界长度‎。

面积:物体的表面‎—平面图形的‎大小,叫做它们的‎面积。

圆面积推导‎过程:1、把圆16等‎份分割后拼‎插成近似的‎平行四边形‎,平行四边形‎的底相当于‎圆周长的四‎分之一(C/4=πr/2),高等于圆半‎径的2倍(2r),所以S=πr/2·2r=πr2‎2、把圆16等‎份分割后可‎拼插成近似‎的等腰三角‎形。

三角形的底‎相当于圆周‎长的1/4,高相当于圆‎半径的4倍‎,所以S=1/2·2πr/4r=πr2‎3、把圆分割后‎,可拼成近似‎的等腰梯形‎。

梯形上底与‎下底的和就‎是圆周长的‎一半,高等于圆半‎径的2倍,所以S=1/2·πr·2r=πr2‎。

4、小结:无论我们把‎圆拼成什么‎样的近似图‎形,都能推导出‎圆的面积公‎式S=πr2,验证了原来‎猜想的正确‎。

说明在求圆‎的面积时,都要知道半‎径。

三角形面积‎推导过程:1:把一个等腰‎三角形对折‎,然后从中间‎剪开拼成了‎一个长方形‎,这个长方形‎的底是三角‎形的底的一‎半,高是三角形‎的高,因为长方形‎的面积是长‎×宽,长方形的面‎积等于三角‎形的面积,所以三角形‎的面积是底‎×高÷2。

2:把一个直角‎三角形的上‎面对折下来‎,然后剪开,把它补在一‎边,拼成了一个‎长方形。

这个长方形‎的长是三角‎形的底,高是三角形‎高的一半,所以也能推‎出三角形的‎面积是底×高÷2。

3:把一个三角‎形沿着两边‎的重点对折‎,然后又把底‎边的重点这‎样对折,折成了一个‎长方形,这个长方形‎的底是三角‎形底的一半‎,宽是三角形‎高的一半,再乘以2,也可以推出‎三角形的面‎积是底×高÷24:把一个长方‎形沿对角线‎折叠,因为长方形‎的面积是长‎×宽,长方形是两‎个三角形拼‎成的,所以,三角形的面‎积是底×高÷2梯形面积推‎导过程:1、用两个完全‎一样的梯形‎通过旋转拼‎成了一个长‎方形,观察后发现‎:梯形的上下‎底之和相当‎于长方形的‎长、梯形的高相‎当于长方形‎的宽、梯形的面积‎=长方形的面‎积÷2(或梯形的面‎积等于长方‎形的面积的‎一半),根据拼成图‎形的面积公‎式是:长方形的面‎积=长×宽,所以:梯形的面积‎=(上底+下底)×高÷22、梯形的上下‎底之和相当‎于平行四边‎形的底,梯形的高相‎当于平行四‎边形的高,梯形的面积‎相当于平行‎四边形面积‎的一半。

平面图形的推导过程及公式

平面图形的推导过程及公式

平面图形的推导过程及公式Prepared on 22 November 2020周长:圆、椭圆或其他闭合的曲线的周界长度。

面积:物体的表面—平面图形的大小,叫做它们的面积。

圆面积推导过程:1、把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr22、把圆16等份分割后可拼插成近似的等腰三角形。

三角形的底相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr23、把圆分割后,可拼成近似的等腰梯形。

梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2 。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。

说明在求圆的面积时,都要知道半径。

三角形面积推导过程:1:把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

2:把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。

这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

3:把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷24:把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2梯形面积推导过程:1、用两个完全一样的梯形通过旋转拼成了一个长方形,观察后发现:梯形的上下底之和相当于长方形的长、梯形的高相当于长方形的宽、梯形的面积=长方形的面积÷2(或梯形的面积等于长方形的面积的一半),根据拼成图形的面积公式是:长方形的面积=长×宽,所以:梯形的面积=(上底+下底)×高÷22、梯形的上下底之和相当于平行四边形的底,梯形的高相当于平行四边形的高,梯形的面积相当于平行四边形面积的一半。

《平面图形的面积》课件

《平面图形的面积》课件

总结
平面图形的面积计算公式
矩形: 长 x 宽 正方形: 边长的平方 三角形: 底 x 高 ÷ 2 圆形: 半径的平方 x π
化解复杂图形的方法
分割图形和减去Βιβλιοθήκη 形实际场景中如何应用掌握图形的面积计算,可以帮助解决建筑规划、地理测量和设计等实际问题。
《平面图形的面积》PPT 课件
在本课程中,我们将学习如何计算不同平面图形的面积,了解常见图形的特 征,并探索如何化解复杂图形以求得准确面积。
什么是平面图形?
矩形
拥有四个直角和相等长度的对边。
三角形
由三条边和三个内角组成的多边形。
正方形
具有四个相等的边和四个直角。
圆形
具有完全相同半径的闭合曲线。
如何计算平面图形的面积
1 矩形
长度 x 宽度
3 三角形
底边长度 x 高度 ÷ 2
2 正方形
边长的平方
4 圆形
半径的平方 x π
化解平面图形
1
分割图形
将复杂图形分割为简单的形状,再计算各形状的面积并相加。
2
减去图形
通过减去较小图形的面积来计算复杂图形的面积。
案例分析
计算不规则图形的面积
通过将不规则图形分割为简单图形,然后计算各个简单图形的面积,并相加得到总面积。

平面图形的周长和面积计算公式

平面图形的周长和面积计算公式

小学数学图形计算公式
一、正方形(a表示边长,C表示周长,S表示面积)
正方形的周长=边长X4
字母表示为:C=4a
正方形的面积=边长>边长
字母表示为:S=a X a
二、长方形(a表示长,b表示宽,C 表示周长,S表示面积)
长方形的周长=(长+宽)冷
公式:C= (a+b)X
长方形的面积=长>宽
字母表示为:S=a X b
三、三角形(s面积a底h高)
三角形的面积二底>高煜
字母表示为:s=a 0吃
三角形的高二面积>2殒
字母表示为:h = s >为
三角形的底二面积>2嘀
字母表示为:a = s >讳
四、平行四边形(a表示底,h表示高,S表示面积)
平行四边形的面积二底為
字母表示为:S= a >h
平行四边形的高=面积殒
字母表示为:h= s为
平行四边形的底=面积嚅
字母表示为:a= s讳
五、梯形(s表示面积,a表示上底,b 表示下底,h表示高。


梯形的面积=(上底+下底)嘀吃字母表示为:s=(a+b) Xi £
梯形的(上底+下底)=面积X2嘀字母表示为:a+b = s ^2讳
梯形的高=面积^2* (上底+下底)字母表示为:h = s ^2为+b。

平面图形计算公式(周长与面积)

平面图形计算公式(周长与面积)

平面图形的计算(周长与面积):
平行四边形面积公式:ah S =(其中a 表示底,h 表示高,S 表示面积) 三角形面积公式:ah S 2
1=
(其中a 表示底,h 表示高) 直角三角形面积公式:ab S 21=(其中a 、b 表示两个直角边) 长方形周长公式:()b a C +=2(其中a 表示长,b 表示宽,C 表示周长)
长方形面积公式:ab S =(其中a 表示长,b 表示宽)
正方形周长公式:a C 4=(a 表示边长)
正方形面积公式:a a a S ⨯==2(a 表示边长) 梯形面积公式:()h b a S +=2
1(其中a 表示上底,b 表示下底,h 表示高) 圆的周长公式:r d C ππ2==(其中d 表示直径,r 表示半径,π为圆周率默认取值3.14) 圆的面积公式:22222⎪⎭
⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==ππππC d r S (其中r 表示半径,d 表示直径,π为圆周率) 圆环面积:()
2222r -r --R R S πππ===内圆面积外圆面积(其中R 表示外圆半径,r 表示内圆半径) 扇形面积:3602
r n S π=(其中n 表示圆周角)。

小学五年级数学 平面图形的面积计算

小学五年级数学 平面图形的面积计算
10 算法(1):10×6÷2=30(平方厘米)
算法(2):12×5÷2=30(平方厘米)
× 算法(3):10×5÷2=25(平方厘米)
练习:选取有效的条件进行计算它们的面积。(单位:厘米)
5 4 8


12
6 5 10
8 4
1、平行四边形面积:8×4=32(平方厘米) 2、梯形面积:(8+12)×4÷2=40(平方厘米) 3、三角形面积:10×5÷2=25(平方厘米)
Байду номын сангаас
练习: 12
6分米
(?)
10
5米
S=10平方米
(1): 6×10÷12=5(分米) 或:12x=6×10
(2): 5x÷2=10 或:10×2÷5=4(米)
1.5米
2米
3米
(1)求梯形面积: (1.5+2)×3÷2=5.25(平方米)=525(平方分米) (地板面积)
(2)求地砖面积: 20×20=400(平方厘米) =4(平方分米) (3)单位转换:(想一想) (4)求砖的块数: 525÷4=131.25≈132(块)
长方形、正方形 平行四边形 三角形 梯形
长方形
长方形面积=长×宽
S=ab
平行四边形
平行四边形面积=底×高
S=ah
正方形
正方形面积=边长×边长 S=a 2(a的平方)
三角形
三角形面积=底×高÷2
S=ah÷2
梯形
梯形面积=(上底+下底)×高÷2
S=(a+b)h÷2
练习:求下面图形的面积
单位:厘米
12 65
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形的面积关系
三峡小学黎国英
教学目标:
1、通过已学知识梳理,学生能自主地解答长方形、平行四边形、三角形与梯形面积的问题。

2、通过经历画画、说说、想想等数学,学生能主动理解梯形的面积公式对于长方形、平行四边形、三角形的面积计算也是适用的。

3、通过对长方形、平行四边形、三角形与梯形的面积公式的沟通,学生能主动地解决一些相关问题,以此促进数学推理能力的提升。

4、通过数学探索活动,学生感受事物间的相互联系,并感受数形结合看问题的内在魅力,从而激发数学学习的兴趣。

教学过程:
一、出示课题,谈话导入
今天我们一起来研究《平面图形的面积关系》,看了这个课题,你觉得我们今天研究的重点是其中的哪个词?
二、复习回顾,引入线索
1、媒体出示,说一说以下几种平面图形的面积计算公式
2、边说边展示
S长方形=a×b
S平行四边形=a×h
S三角形=a×h÷2
S梯形=(a+b)×h÷2
3、老师可以用其中一个公式,计算这所有图形的面积,你们信吗?
三、提出任务,实践探究
1、独立操作,完成以下任务,有困难可以和其他同学合作。

下面的梯形高为4厘米,面积是20平方厘米
要求:
(1)请你在格子纸上画出一个和它高一样,面积一样,形状不一样的梯形。

(2)所画梯形的上底是多少?下底是多少?你是怎样想的?
(3)想一想,还可以怎样画?
2、汇报交流:
预设一:4和6:预设二:3和7:预设三:2和8:预设四:1和9
四、问题引导,沟通联系
1、上下底之和是10,高是4的梯形只能画这四幅吗?
2、如果上底和下底是小数,你能举个例子吗?
3、有多少种情况呢?
4、仔细观察,梯形的上底越变越短、越变越短,最后会产生什么样的结果?
5、有机整合,沟通联系:这时候三角形的面积怎么计算呢?
6、那么梯形的面积公式也适用于三角形的面积,不过这时候梯形的上底是0
五、整体沟通,推理应用
1、刚才梯形从左往右看,上底越变越短。

如果梯形的上底不断变长,梯形又可能
变成什么图形?
2、你能很快地告诉我,梯形的面积公式也能适用于长方形的面积吗?你是怎样想的?
3、现在相信黎老师了吗?
梯形的面积公式完全适用于三角形、平行四边形、长方形,可以用这一个公式求出其他图形的面积。

五、小结:学到这里,你学到了什么知识?有些什么新想法?
六、学以致用
1、(口答)下面四个图形的面积相等,另外三个图形的底是多少?
2、独立完成
在上底为8,下底为10的梯形中添上一条线,使它分成两个面积相同的部分,你有几种不同的画法?并用数据表示出来。

3、挑战题(有余力者完成)
把上底为8,下底为10的梯形分成面积相等的平行四边形、三角形与梯形三部分,你能完成吗?并用数据表示出来。

七、板书:
平面图形的面积关系
S梯形=( b + a)×h÷2 b≠a
S三角形=( b + a)×h÷2 b=0
S平行四边形=( b + a)×h÷2 b=a
S长方形=( b + a)×h÷2 b=a。

相关文档
最新文档