集合常用逻辑用语选择填空题型
高中数学集合与常用逻辑用语100题(含答案解析)

高中数学集合与常用逻辑用语100题(含答案解析)一、单选题1.已知集合{}2,0xA y y x ==≥,(){}ln 2B x y x ==-,则A B =( )A .[]1,2B .()1,2C .[)1,2D .(),-∞+∞2.已知,R a b ∈,则“ln ln a b >”是“sin sin a b b a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.命题():0,p x ∀∈+∞,1ln x x +≤的否定为( ) A .()0,x ∃∈+∞,1ln x x +≤ B .()0,x ∀∈+∞,1ln x x +≥ C .()0,x ∃∈+∞,1ln x x +>D .()0,x ∀∈+∞,1ln x x +>4.若集合{}23A x Z x x =∈≤,{}2,B x y x y A ==∈,则A B =( )A .{}0,1,2B .{}0,2C .{}0,1D .{}1,25.已知向量(),2m k =-,()1,3n =,则“k 6<”是“m 与n 的夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知集合2{|230}A x x x =--≥,{B x y ==,则A B ⋃=( ) A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞7.已知集合{}2()1A xx a =-<∣,{1,0,1,2,3}B =-,若{0,1}A B =,则实数a 的取值范围是( ) A .[0,1]B .(0,1)C .[1,)+∞D .(,0)-∞8.方程22x x =的所有实数根组成的集合为( ) A .()0,2B .(){}0,2C .{}0,2D .{}22x x =9.设全集{}24U x N x =∈-<<,{}0,2A =,则UA 为( )A .{}1,3B .{}0,1,3C .{}1,1,3-D .{}1,0,1,3-10.已知0a >,则“3a a a >”是“3a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.设p :3x <,q :()()130x x +-<,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件12.设π:3p α=;:tan q α=p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件13.设{M x x =≥,b = ) A .b M ⊆B .b M ∉C .{}b M ∉D .{}b M ⊆14.已知集合{A x y ==,{}1,2,3,4,5B =,则A B =( ). A .{}2,3B .{}1,2,3C .{}1,2,3,4D .{}2,3,415.已知非零向量a ,b ,c ,则“||1a b -≤,||2b c -≤”是“||3a c -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.设集合{}|33A x x =-<<,集合{}|25B x x =-≤≤,则A B =( ) A .{}|35x x -<≤B .{}|32x x -<≤-C .{}|23x x -≤<D .{}|35x x <≤17.已知集合(){}{}22log 213,40A x x B x x =-≤=-≤,则()A B =R ( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .122x x ⎧⎫<≤⎨⎬⎩⎭C .{}22x x -≤≤D .∅18.命题“0x ∀>,2x x >”的否定是( )A .00x ∃>,200x x ≤B .00x ∃≤,200x x ≤C .0x ∀>,2x x ≤D .0x ∀≤,2x x >19.若01a <<,则“log log a a x y >”是“x y a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件20.若数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21.设集合{}1,0,1,2A =-,{B y y ==,则A B =( ) A .{}0B .{}0,1,2C .{}0,1D .{}0,2 22.已知集合(){}ln 3A x N y x =∈=-,{}12B x x =-≤<,则A B =( ) A .{}1,0,1-B .{}1C .{}0,1D .{}0,1,223.已知集合{1,0,1,2,3,4}A =-,{}2ln 2B x x =<,图中阴影部分为集合M ,则M 中的元素个数为( )A .1B .2C .3D .424.设x ∈R ,则“(1)(2)0x x -+≥”是“|2|1x -<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件25.设全集{}2,1,0,1,2,3U =--,集合{}1,0,1,3A =-,{}2,0,2B =-,则U ()A B ⋂=( ) A .{}0,1,2B .2,0,2C .{}0,2D .{}1,1,3-26.给出下列三个命题:①“全等三角形的面积相等”的否命题 ①若“2lg 0x =,则1x =-”的逆命题 ①“若x y ≠或x y ≠-,则x y ≠”的逆否命题.其中真命题的个数是( ) A .0B .1C .2D .327.已知全集2,1,0,1,2U ,{}21A x Z x =∈-<<,{}1,0,1B =-,则()U B A ⋂=( )A .∅B .{}0C .{}1D .{}0,128.已知集合{}2230A x x x =∈--<Z ,{}1,1,2,3B =-,则A B =( )A .{}1,2-B .{}1,1,2,3-C .{}1,2D .{}1,329.“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件30.已知集合{1,0,1,2,3,4,5}A =-,集合{|34}=-<<B x x ,则 A B =( ) A .{1,0,1,2,3}-B .{0,1,2,3}C .{1,0,1,2}-D .{1,0,1,2,3,4}-31.设集合{}12022A x x =-<<,{}22530B x x x =+-≤,则A B =( )A .{}32022x x -<≤B .132x x ⎧⎫-<≤⎨⎬⎩⎭C .112x x ⎧⎫-<≤⎨⎬⎩⎭D .{}1x x ≥-32.已知集合(){}2log 12A x x =-≤,{}2230B x x x =--≤,则()RA B =( )A .[]1,3B .()(),13,-∞-⋃+∞C .(]1,3D .(](),13,-∞⋃+∞33.已知集合{}2,3,4,5A =,{B x y ==,则A B =( )A .{}2B .{}3C .{}2,3D .{}2,3,434.“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件35.设命题3:,3n p n N n ∀∈>,则命题p 的否定为( ) A .3,3n n N n ∃∉> B .3,3n n N n ∃∉≤ C .3,3n n N n ∃∈≤D .3,3n n N n ∀∈>36.已知α,R β∈,则“cos cos αβ=”是“存在k Z ∈使得()1kk απβ=+-”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件37.将有理数集Q 划分为两个非空的子集M 与N ,且满足M N Q M N ⋃=⋂=∅,,M 中的每一个元素都小于N 中的每一个元素,这种有理数的分割()M N ,就是数学史上有名的戴德金分割.试判断,对于任一戴德金分割()M N ,,下列选项中不可能成立的是( )A .M 有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 没有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 38.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件39.设集合{}{}|14|3A x x B x x =-<<=≤,,则()B A =R ( )A .{}|34x x ≤<B .{}|34x x <<C .{}|13x x -<≤D .{}1x x >-40.若01a <<,则“log log a a b c <”是“b c >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件41.已知集合{}03A x x =<<,{}24B x x =≤,则A B =( )A .()0,2B .[)2,0-C .[)0,3D .(]0,242.已知集合{}02A x x =<<,{}2230B x x x =+-≥,则如图所示的阴影部分表示的集合为( )A .(][),32,-∞-⋃+∞B .()[),32,-∞-⋃+∞C .()(),02,-∞+∞D .(][),02,-∞⋃+∞43.若向量(),3a m =-,()3,1b =,则“1m <”是“向量a ,b 夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件44.设集合{}A y y x ==,{B x y ==,全集为R ,则RA B =( )A .[)0,∞+B .(),0∞-C .{}0,1D .()(){}0,0,1,145.已知集合1|0,N 4x A x x x +⎧⎫=≤∈⎨⎬-⎩⎭,{0,1,2,3,4}B =,则( ) A .A B = B .B A C .A B B = D .A B46.若集合12xA x x ⎧⎫-=∈>⎨⎬⎩⎭R ,(){}2log 11B x x =+<,则A B =( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .10,3⎛⎫⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭47.若集合{}20A x x x =-=,B x y ⎧=⎨⎩,则A B =( )A .∅B .{}0C .{}1D .{}0,148.已知集合{}24A x Z x =∈<,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}2,1,0--B .{}2,1--C .{1,0}-D .{}1-49.若集合61A x ZN x ⎧⎫=∈∈⎨⎬-⎩⎭,(){}lg 3B x y x ==-,则A B =( ) A .{}2,3,4,7 B .{}3,4,7 C .{}1,4,7 D .{}4,750.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,5-B .(]1,1-C .()1,3D .[)1,351.已知,l m 是两条不同的直线,αβ,是两个不同的平面,命题p :若m α⊂,m β∥,则αβ∥;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥;则下列命题正确的是( ) A .p q ∧B .p q ⌝∧C .p q ∨⌝D .p q ⌝∧⌝52.“2x =”是“2320x x -+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件53.已知命题p :0x ∃∈R ,0sin 1x <;命题q :0x ∃∈R ,00sin cos x x +,则下列命题中的真命题是( ) A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨54.已知集合{}2,x A y y x R ==∈,{}24B x x =≤,则A B =( )A .[]22-,B .[)2,0-C .[]0,2D .(]0,255.已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( ) A .3B .4C .8D .1656.已知全集{}N 27U x x =∈-≤<,(){}1,5,6UA B ⋃=,{}2,4B =,则图中阴影部分表示的集合是( )A .{}2,1,0,3--B .{}0,3C .{}0,2,3,4D .{}357.已知集合{}34A x x =-<<,{}250B x x x =+>.则A B ( )A .()5,4-B .()0,4C .()3,0-D .()5,0-58.已知集合(){},22,0M x y y x xy ==-≤,(){}2,5N x y y x ==-,则M N ⋂中的元素个数为( ) A .0B .1C .2D .l 或259.设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( ) A .{}22x x -<< B .{}22x x -≤≤ C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥60.设非零复数1z ,2z 在复平面内分别对应向量OA ,OB ,O 为原点,则OA OB ⊥的充要条件是( )A .211z z =-B .21i zz =C .21z z 为实数D .21z z 为纯虚数61.命题“若24x <,则22x -<<”的逆否命题是( ) A .若22x -<<,则24x < B .若24x ≥,则2x ≥或2x -≤ C .若22x -<<,则24x ≥ D .若2x ≥或2x -≤,则24x ≥62.已知集合(){}22,4A x y xy =+=,(){},2B x y y ==,则集合A B 中元素的个数为( ) A .3B .2C .1D .063.已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( ) A .[)1,+∞ B .[)2,+∞ C .(],1-∞D .(),1-∞64.已知集合{}23180A x x x =--≤,{}2log 1B x x =>,则A B =( )A .[)(]3,22,6-B .[)(]3,22,6--⋃C .[)3,2--D .(]2,665.已知命题p :“23m <<是方程22123x y m m+=--表示椭圆”的充要条件;命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件,则下列命题为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∨⌝D .p q ⌝∧⌝66.已知命题p :()010,x ∃∈+∞,0lg 1x >,则命题p 的否定为( ) A .()10,x ∀∈+∞,1lg x ≤ B .()10,x ∀∈+∞,lg 1x C .()10,x ∀∉+∞,lg 1xD .()10,x ∀∉+∞,1lg x ≤67.集合{}0,1,2,3A =的真子集的个数是( ) A .16B .15C .8D .768.已知集合{}1A x x =>,{}13B x x =-≤<,则()R A B ⋂=( ) A .{}13x x <<B .{}11x x -≤<C .{}13x x ≤<D .{}11x x -≤≤69.若p :24x ≤≤,q :13x ≤≤,则p 为q 的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分又不必要条件70.若命题p 为“0x ∃≥,()10x x -<”,则p ⌝为( ) A .0x ∀<,()10x x -≥ B .0x ∀≥,()10x x -≥ C .0x ∃≥,()10x x -≥D .0x ∃<,()10x x -<71.已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1B .0C .1-D .272.命题“0x ∀>,210x ->”的否定为( ) A .0x ∀>,210x -≤ B .0x ∀≤,210x -≤ C .00x ∃>,0210x -≤D .00x ∃>,0210x ->73.已知{}2430M x x x =-+<,{|N x y ==,则M N ⋃=( )A .(]1,2B .(](),21,3-∞-⋃C .(](),23,-∞-+∞ D .(](),21,-∞-⋃+∞74.命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是( ) A .x ∃∉R ,320x ax bx c +++≠ B .x ∀∈R ,320x ax bx c +++≠ C .x ∀∉R ,320x ax bx c +++≠D .x ∀∈R ,320x ax bx c +++=75.已知集合{}220A xx x =+-≤∣, 集合(){}2log 1B x y x ==+∣, 则A B ⋂=( ) A .[-21],B .(-11],C .(]12-,D .[)1,∞+ 76.若集合{12}A x x =-<<∣,{|1B x x =<或}3x >,则()R A B ⋂=( ) A .{13}xx -<<∣ B .{11}xx -<<∣ C .{23}x x <≤∣ D .{12}xx ≤<∣ 77.已知命题20:,0p x x ∃∈R ,则p ⌝是( )A .2,0x x ∀∉RB .2,0x x ∀∈<RC .200,0x x ∃∈RD .200,0x x ∃∈<R78.若方程22121x y m m +=+--表示的曲线为C ,则( )A .21m -<<-是C 为椭圆的充要条件B .21m -<<-是C 为椭圆的充分条件C .312m -<<-是C 为焦点在x 轴上椭圆的充要条件D .302m -<<是C 为焦点在x 轴上椭圆的充分条件79.已知集合{}{|ln 1|A x x B x =<=,,则()R A B =( ) A .[2,e )B .(0,2)C .(2,e ]D .(0,e )80.“0mn >”是“方程221x y m n-=为双曲线方程”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题81.已知函数()()2221e xf x ax x =-+,则( )A .()f x 有零点的充要条件是1a <B .当且仅当(]0,1a ∈,()f x 有最小值C .存在实数a ,使得()f x 在R 上单调递增D .2a ≠是()f x 有极值点的充要条件 82.下列选项中,能够成为“关于x 的方程2||10x x a -+-=有四个不等实数根”的必要不充分条件是( ) A .51,4a ⎛⎫∈ ⎪⎝⎭B .51,4a ⎡⎫∈⎪⎢⎣⎭C .()1,2a ∈D .91,8a ⎛⎫∈ ⎪⎝⎭三、解答题83.若实数数列()12:,,,2n n A a a a n ≥满足()111,2,,1k k a a k n +-==-,则称数列nA 为E 数列.(1)请写出一个5项的E 数列5A ,满足150a a ==,且各项和大于零; (2)如果一个E 数列n A 满足:存在正整数()1234512345,,,,i i i i i i i i i i n <<<<≤使得12345,,,,i i i i i a a a a a 组成首项为1,公比为2-的等比数列,求n 的最小值;(3)已知()122,,,2m a a a m ≥为E 数列,求证:3211,,,222m a a a -为E 数列且224,,,222m a a a 为E 数列”的充要条件是“122,,,m a a a 是单调数列”.84.已知命题p :实数x 满足()42220x x a a ⋅+-⋅-≤;命题q :实数x 满足2320x x -+<.若p 是q 的必要条件,求实数a 的取值范围.85.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.86.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫ ⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭. (1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ;(3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)87.已知命题p :“0x R ∃∈,20048x a x +≤”为假命题,命题q :“实数a 满足415a>-”.若p q ∨是真命题,p q ∧是假命题,求a 的取值范围. 88.求证:角θ为第二象限角的充要条件是sin 0tan 0θθ>⎧⎨<⎩. 89.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ①P 是x ①S 的必要条件,求m 的取值范围.90.已知p :()222100x x a a -+-≥>,q :()()150x x +-<.(1)当3x =-时,p 为真命题,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件:求实数a 的取值范围.91.已知集合{}2,12x A y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>. (1)求A B ;(2)若C A ⊆,求实数a 的取值范围.92.判断命题的真假:如果12,n n 分别是直线12,l l 的一个方向向量,则1l 与2l 垂直的充要条件是1n 与2n 垂直.四、填空题93.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.94.以下有关命题的说法错误的命题的序号是_______.①若命题p :某班所有男生都爱踢足球,则¬p :某班至少有一个男生爱踢足球; ①已知a ,b 是实数,那么“a b >”是"ln ln "a b >的必要不充分条件;①若αβ>则sin sin αβ>;①幂函数253(1)m y m m x --=--在,()0x ∈+∞时为减函数,则2m =.95.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.96.曲线0:p x ∃∈R ,320010x x -+≥,则p ⌝为___________.97.命题“0x ∃①R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.98.命题“x R ∃∈,20x +≤”的否定是______.五、概念填空99.存在量词与存在量词命题100.判断正误.(1)命题“任意一个自然数都是正整数”是全称量词命题.( )(2)命题“三角形的内角和是180 ”是全称量词命题.( )(3)命题“梯形有两边平行”不是全称量词命题.( )参考答案:1.C【解析】【分析】利用指数函数的性质可化简集合A ,根据对数函数性质得集合B ,然后计算交集.【详解】 由已知{}2,0[1,)x A y y x ∞==≥=+,{}ln(2)B x y x ==-(){|20}{|2},2x x x x =->=<=-∞,①[1,2)A B ⋂=.故选:C .2.A【解析】【分析】由ln ln a b >及对数函数的单调性可得0a b >>;将sin sin a b b a +>+变形化同构,进而构造函数,利用导数讨论函数的单调性可得a b >,即可得解.【详解】由ln ln a b >,得0a b >>.由sin sin a b b a +>+,得sin sin a a b b ->-.记函数()sin ()x x f x x R =-∈,则()1cos 0f x x '=-≥,所以函数()f x 在R 上单调递增,又sin sin a a b b ->-,则()()f a f b >,所以a b >.因此“ln ln a b >”是“sin sin a b b a +>+”的充分不必要条件.故选:A .3.C【解析】【分析】根据全称量词命题的否定直接得出结果.【详解】因为全称量词命题的否定是特称量词命题,故原命题的否定是()0,x ∃∈+∞,1ln x x +>.故选:C4.C【解析】【分析】先解不等式求出集合A ,再求出集合B ,然后求两集合的交集即可【详解】解不等式23x x ≤,得03x ≤≤,又x ∈Z ,所以{}0,1,2,3A =, 所以{}132,0,,1,22B x y x y A ⎧⎫==∈=⎨⎬⎩⎭,所以{}0,1A B =. 故选:C5.B【解析】【分析】先求出m 与n 的夹角为钝角时k 的范围,即可判断.【详解】当m 与n 的夹角为钝角时,0m n ⋅<,且m 与n 不共线,即6032k k -<⎧⎨≠-⎩所以k 6<且23k ≠-.故“k 6<”是“m 与n 的夹角为钝角”的必要不充分条件.故选B.6.D【解析】【分析】根据一元二次不等式的解法和函数定义域的定义,求得集合,A B ,集合集合并集的运算,即可求解.【详解】由不等式2230x x --≥,解得1x ≤-或3x ≥,所以集合{|1A x x =≤-或3}x ≥, 又由20x -≥,解得2x ≥,所以集合{}2B x x =≥,所以(][),12,A B ⋃=-∞-⋃+∞.故选:D .7.B【解析】【分析】按照交集的定义,在数轴上画图即可.【详解】由题可得集合{}{}2()111A xx a x a x a =-<=-<<+∣,所以要使{0,1}A B =,则需110112a a -≤-<⎧⎨<+≤⎩,解得01a <<, 故选:B.8.C【解析】【分析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由22x x =,解得2x =或0x =,所以方程22x x =的所有实数根组成的集合为{}{}2|20,2x R xx ∈==; 故选:C9.A 【解析】【分析】根据全集U 求出A 的补集即可.【详解】{}{}24=0,1,2,3U x N x =∈-<<,{}0,2A =,{}U =1,3A ∴.故选:A.10.B【解析】【分析】对a 的取值进行分类讨论,结合指数函数的单调性解不等式3a a a >,利用集合的包含关系判断可得出结论.【详解】若01a <<,由3a a a >可得3a <,此时01a <<;若1a =,则3a a a =,不合乎题意;若1a >,由3a a a >可得3a >,此时3a >.因此,满足3a a a >的a 的取值范围是{01a a <<或}3a >, 因为{01a a <<或}3a > {}3a a >,因此,“3a a a >”是“3a >”的必要不充分条件.故选:B.11.C【解析】【分析】解不等式化简命题q ,再利用充分条件、必要条件的定义直接判断作答.【详解】解不等式得:13x ,即:13q x -<<,显然{|13}x x -<< {|3}x x <,所以p 是q 成立的必要不充分条件.故选:C12.A【解析】【分析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【详解】当π3α=时,tan α=p 则q 成立;当tan α=,3k k Z παπ=+∈,即若q 则p 不成立;综上得p 是q 充分不必要条件,故选:A.13.D【解析】【分析】根据元素与集合的关系,集合与集合的关系判断即可得解.【详解】解:因为{M x x =≥,b =所以b M ∈,{}b M ⊆.故选:D.14.C【解析】【分析】先化简集合A ,再利用集合的交集运算求解.【详解】因为集合{{}4A x y x x ==≤,{}1,2,3,4,5B =,所以A B = {}1,2,3,4,故选:C15.A【解析】【分析】根据充分、必要性的定义,结合向量减法的几何意义判断条件间的推出关系,即可得答案.【详解】由||1a b -≤,||2b c -≤,如下图示,||||||3a c a b b c -≤-+-≤,当且仅当a ,b ,c 共线时前一个等号成立,充分性成立;当||3a c -≤,不一定有||1a b -≤,||2b c -≤,必要性不成立. 综上,“||1a b -≤,||2b c -≤”是“||3a c -≤”的充分而不必要条件. 故选:A16.C【解析】【分析】利用集合的交运算求A B 即可.【详解】由题设,A B ={}|33x x -<<⋂{}|25{|23}x x x x -≤≤=-≤<. 故选:C17.A【解析】【分析】先求出集合A 和集合A 的补集,集合B ,再求出()A B ⋂R【详解】由22log (21)3log 8x -≤=,得0218x <-≤,解得1922x <≤, 所以1922A x x ⎧⎫=<≤⎨⎬⎩⎭,所以12R A x x ⎧=≤⎨⎩或x >92}, 由240x -≤得22x -≤≤,所以{}22B x x =-≤≤,所以()A B =R 122x x ⎧⎫-≤≤⎨⎬⎩⎭故选:A18.A【解析】【分析】根据命题的否定的定义判断.【详解】全称命题的否定是特称命题,命题“0x ∀>,2x x >”的否定是:00x ∃>,200x x ≤.故选:A.19.A【解析】【分析】根据一直关系判断,x y 的大小关系进行等价转化即可得解.【详解】由01a <<,log log 0a a x y y x >⇔>>,x y a a y x ≥⇔>,故为充分不必要条件. 故选:A20.A【解析】【分析】利用等比数列的定义通项公式即可判断出结论.【详解】解:“m ∀,*n N ∈,m n m n a a a +=”,取1m =,则11n n a a +=-, {}n a ∴为等比数列.反之不成立,{}n a 为等比数列,设公比为q ()0q ≠,则1m n m n a q +-+=-,()()112n n m m m n a a q q q --+-=-⨯-=,只有1q =-时才能成立满足m n m n a a a +=. ∴数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的充分不必要故选:A .21.B【解析】【分析】求得集合B 中对应函数的值域,再求A B 即可.【详解】因为{B y y ==∣{|0}y y =≥,又{}1,0,1,2A =-, 故A B ={}0,1,2.故选:B22.C【解析】【分析】由对数函数定义域可求得集合A ,由交集定义可得结果.【详解】由30x ->得:3x <,(){}{}ln 30,1,2A x N y x ∴=∈=-=,{}0,1A B ∴⋂=.故选:C.23.C【解析】【分析】由Venn 图得到()A M A B =⋂求解. 【详解】如图所示()A M A B =⋂,2ln 2x <,22ln ln e x ∴<,解得e e x -<<且0x ≠,(e,0)(0,e)B ∴=-又{1,0,1,2,3,4}A =-,{1,1,2}A B ∴=-,(){0,3,4}A A B ∴⋂=,{0,3,4}M ∴=,所以M 中元素的个数为3 故选:C24.B【分析】根据充分必要条件的定义判断.【详解】(1)(2)0x x -+≥,则2x -≤或1≥x ,不满足21x -<,如2x =-,不充分,21x -<时,13x <<,满足(1)(2)0x x -+≥,必要性满足.应为必要不充分条件.故选:B .25.D【解析】【分析】根据集合的运算法则计算.【详解】由已知{1,1,3}U B =-,所以U (){1,1,3}A B =-.故选:D .26.B【解析】【分析】写出相应命题,根据相关知识直接判断可得.【详解】“全等三角形的面积相等”的否命题为:不全等的三角形的面积不相等.易知为假命题;若“2lg 0x =,则1x =-”的逆命题为:若1x =-,则2lg 0x =.显然为真命题;“若x y ≠或x y ≠-,则x y ≠”的逆否命题为:若x y =,则x y =且x y =-.易知为假命题. 故选:B27.C【解析】【分析】根据集合的运算法则计算.{2,1,2}U A =-,(){1}U B A =.故选:C .28.C【解析】【分析】求出集合A ,利用交集的定义可求得结果.【详解】{}{}{}2230130,1,2A x x x x x =∈--<=∈-<<=Z Z ,因此,{}1,2A B =. 故选:C.29.B【解析】【分析】先由已知得点()1,1在圆2220x y y a ++-=外,求出a 的范围,再根据充分条件和必要条件的定义分析判断【详解】由已知得点()1,1在圆2220x y y a ++-=外,所以22211210240a a ⎧++⨯->⎨+>⎩,解得14a -<<, 所以“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的必要不充分条件, 故选:B30.A【解析】【分析】根据交集的定义计算.【详解】由已知{1,0,1,2,3}A B =-.故选:A .【解析】【分析】化简集合B ,结合交集运算即可.【详解】 因为集合{}21253032B x x x x x ⎧⎫=+-≤=-≤≤⎨⎬⎩⎭,所以112A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭, 故选:C .32.D【解析】【分析】先解出集合A 、B ,再求A B ,从而求解补集.【详解】由()2log 12x -≤,即014x <-≤,解得15x <≤,所以(]1,5A =.由2230x x --≤得()3x -⋅()10x +≤,即13x -≤≤,所以[]1,3B =-,由此(]1,3A B =,于是()(]()R ,13,A B ⋂=-∞⋃+∞,故选:D.33.C【解析】【分析】由一元二次不等式的解法求出函数y B ,然后根据交集的定义即可求解.【详解】解:因为集合{}2,3,4,5A =,集合{{}{}23003B x y x x x x x ===-≥=≤≤,所以{}2,3A B ⋂=.故选:C.34.A【分析】根据直线和圆的位置关系求出b ,然后利用充分条件和必要条件的定义进行判断.【详解】①圆22:9C x y +=的半径3r =,若圆C 上恰有4个不同的点到直线l 的距离等于1,则必须满足圆心(0,0)到直线:l y x b =-的距离2d =<,解得b -<<又((⊆-,①“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的充分不必要条件.故选:A.35.C【解析】【分析】由全称命题的否定是特称命题即可得解.【详解】根据全称命题的否定是特称命题可知,命题3:,3n p n N n ∀∈>的否定命题为3,3n n N n ∃∈≤,故选:C36.D【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式即可判断.【详解】(1)当存在k Z ∈使得()1kk απβ=+-时, 则()cos ,2,cos cos (1)cos ,21,k k n n Z k k n n Z βαπββ=∈⎧=+-=⎨-=+∈⎩;即不能推出cos cos αβ=.(2)当cos cos αβ=时,2k αβπ=+或2k απβ=-,k Z ∈,所以对第二种情况,不存在k Z ∈时,使得()1kk απβ=+-成立,故“cos cos αβ=”是“存在k Z ∈使得()1k k απβ=+-”的既不充分不必要条件.故选:D37.A【解析】【分析】由题意依次举例对四个命题判断,从而确定答案.【详解】M 有一个最大元素,N 有一个最小元素,设M 的最大元素为m ,N 的最小元素为n ,若有m <n ,不能满足M①N=Q ,A 错误;若{|M x Q x =∈<,{|2}N x Q x =∈;则M 没有最大元素, N 也没有最小元素,满足其它条件,故B 可能成立;若{|0}M x Q x =∈<,{|0}N x Q x =∈,则M 没有最大元素,N 有一个最小元素0,故C 可能成立;若{|0}M x Q x =∈,{}0N x Q x =∈;M 有一个最大元素,N 没有最小元素,故D 可能成立;故选:A .38.D【解析】 【分析】 首先解出绝对值不等式与分式不等式,再根据充分条件、必要条件的定义判断即可;【详解】解:因为322x -≤,所以33222x -≤-≤,解得1722x ≤≤;由2102x x +≤-,即()()212020x x x ⎧+-≤⎨-≠⎩,解得122x -≤<;所以1722x ≤≤与122x -≤<互相不能推出,故“322x -≤”是“2102x x +≤-”的既不充分也不必要条件; 故选:D39.B【解析】【分析】根据补集运算得{}R |3x B x =>,再根据交集运算求解即可.【详解】解:因为{}{}|14|3A x x B x x =-<<=≤,,所以{}R |3x B x =>,所以{}()|34R B A x x ⋂=<<故选:B40.A【解析】【分析】利用函数log a y x =在(0,)+∞单调递减,可得log log 0a a b c b c <⇔>>,分析即得解【详解】由01a <<,故函数log a y x =在(0,)+∞单调递减故log log 0a a b c b c <⇔>>即log log a a b c b c <⇒>,充分性成立; b c >推不出log log a a b c <,必要性不成立;故“log log a a b c <”是“b c >”的充分不必要条件.故选:A41.D【解析】解一元二次不等式求集合B ,再利用集合交运算求A B .【详解】 由题设,{}24{|22}B x x x x =≤=-≤≤,又{}03A x x =<<, 所以{}(]{|22}030,2A x x B x x -≤≤⋂<<==.故选:D42.A【解析】【分析】根据阴影部分表示的集合为R A B ⋂求解.【详解】 因为集合{}02A x x =<<,所以R {|0A x x =≤或2}x ≥, 又因为{}2230{|3B x x x x x =+-≥=≤-或1}x ≥, 所以阴影部分表示的集合为R {|3A B x x ⋂=≤-或2}x ≥,故选:A43.B【解析】【分析】 由向量a ,b 夹角为钝角可得0a b ⋅<且a ,b 不共线,然后解出m 的范围,然后可得答案.【详解】若向量a ,b 夹角为钝角,则0a b ⋅<且a ,b 不共线所以330133m m -<⎧⎨⋅≠-⋅⎩,解得1m <且9m所以“1m <”是“向量a ,b 夹角为钝角”的必要不充分条件故选:B44.B【分析】化简集合A ,B ,根据补集及交集运算即可.【详解】{}A y y x R ===,{[0,)B x y ∞===+(,0)R R A B B ∴==-∞,故选:B45.D【解析】【分析】解分式不等式求集合A ,再判断集合之间的包含关系,即可判断各选项的正误.【详解】由题设,{|14,N}{0,1,2,3}A x x x =-≤<∈=,又{0,1,2,3,4}B =,所以A B ,即A 、B 、C 错误,D 正确.故选:D46.C【解析】【分析】根据分式不等式解法解出集合A ,根据对数的运算法则计算出集合B ,再根据集合交集运算得结果. 【详解】(){}113003A x x x x x ⎧⎫=-⋅>=<<⎨⎬⎩⎭, (){}{}{}2log 1101211B x x x x x x =+<=<+<=-<<,①10,3A B ⎛⎫ ⎪⎝=⎭. 故选:C.47.B【解析】先化简集合A ,B ,再利用交集运算求解.【详解】 因为{}{}200,1A x x x =-==,B x y ⎧=⎨⎩={}|1x x <, 所以A B ={}0,故选:B48.C【解析】【分析】先解出集合A ,再根据B A ⊆确定集合B 的元素,可得答案.【详解】由题意得,{}{|22}1,0,1A x Z x =∈-<<=-,①{}1,B a =,B A ⊆, ①实数a 的取值集合为{}1,0-,故选:C.49.D【解析】【分析】首先用列举法表示集合A ,再根据对数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:集合{}62,3,4,71A x Z N x ⎧⎫=∈∈=⎨⎬-⎩⎭,集合(){}{}lg 33B x y x x x ==-=>,则{}4,7A B ⋂=,故选:D .50.D【解析】【分析】先根据一元二次不等式解得集合A ,然后利用交集运算法则求出答案.【详解】解:由题意得:{}{}2230|13A x x x x x =--<=-<<,{}15B x x =≤≤ {}[)|131,3A B x x ∴=≤<=故选:D51.B【解析】【分析】先根据空间线面位置关系判断命题,p q 的真假,再根据且、或、非命题判断真假即可.【详解】解:命题p :若m α⊂,m β∥,则αβ∥,还可能相交,故是假命题,;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥,是真命题.所以p ⌝为真命题,q ⌝为假命题,所以p q ∧,p q ∨⌝,p q ⌝∧⌝均为假命题,p q ⌝∧为真命题,故选:B52.A【解析】【分析】解方程2320x x -+=,利用集合的包含关系判断可得出结论.【详解】解方程2320x x -+=可得1x =或2x =,{}2 {}1,2,因此,“2x =”是“2320x x -+=”的充分不必要条件.故选:A.53.A【解析】【分析】判断命题p ,q 的真假,再借助真值表逐一判断作答.【详解】因当00x =时,0sin 01x =<,即命题p 是真命题,因当04x π=时,00sin cos x x +,即命题q 是真命题, 因此,p q ∧,p q ∨都是真命题,()p q ⌝∨是假命题,而p ⌝是假命题,则()p q ⌝∧是假命题,同理()p q ∧⌝是假命题,所以,B ,C ,D 都不正确,A 正确.故选:A54.D【解析】【分析】首先解一元二次不等式求出集合B ,再根据指数函数的性质求出集合A ,最后根据交集的定义计算可得;【详解】解:由24x ≤,即()()220x x -+≤,解得22x -≤≤,所以{}{}24|22B x x x x =≤=-≤≤,又{}()2,0,x A y y x R ∞==∈=+,所以(]0,2A B ⋂=. 故选:D55.C【解析】【分析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.56.B【解析】【分析】确定全集中的元素,根据(){}1,5,6U A B ⋃=可确定A B ⋃={}0,2,3,4,再结合图中阴影部分的含义即可得答案.全集{}{}N 270,1,2,3,4,5,6U x x =∈-≤<=,又因为(){}1,5,6U A B ⋃=,所以A B ⋃={}0,2,3,4,而{}2,4B =所以阴影部分表示的集合是()U A B ∩即为{}0,3,故选:B.57.B【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()()2550,50,x x x x B +=+>⇒=-∞-⋃+∞, 又{34}A x x =-<<,所以()0,4A B =.故选:B58.A【解析】【分析】首先联立方程,然后判断交点个数,即可判断选项.【详解】首先联立方程22250y x y x xy =-⎧⎪=-⎨⎪≤⎩,得2230x x --=,解得:1x =-或3x =,当1x =-时,4y =-,此时0xy >,舍去;当3x =时,4y =,此时0xy >,舍去,所以M N ⋂为空集.故选:A59.B【分析】根据不等式的解法,分别求得集合,A B ,结合集合补集和交集的运算,即可求解.【详解】 由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R {|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤.故选:B.60.D【解析】【分析】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =,计算出21z z ,然后结合OA OB ⊥可得答案. 【详解】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =, 且21212122122111()i z x x y y x y x y z x y ++-=+, 由OA OB ⊥知12120x x y y +=且12x y -210x y ≠,故OA OB ⊥的充要条件是21z z 为纯虚数, 故选:D .61.D【解析】【分析】根据命题和逆否命题的关系可得答案.【详解】 原命题的条件是“若24x <”,结论为“22x -<<”,则其逆否命题是:若2x ≥或2x -≤,则24x ≥,故选:D .【解析】【分析】利用直线与圆的位置关系判断.【详解】因为圆心(0,0)到直线y =2的距离d =2=r ,所以直线2y =与圆224x y +=相切,所以A B 的元素的个数是1,故选:C .63.C【解析】【分析】根据集合的包含关系,列出参数a 的不等关系式,即可求得参数的取值范围.【详解】①集合{}{}2131M x x x x =+<=<,且N M ⊆,①1a ≤.故选:C .64.B【解析】【详解】先求解集合A 和集合B 中的不等式,利用交集的定义即得解【分析】由2318(6)(3)0x x x x --=-+≤,解得36x -≤≤,则[]3,6A =-, 不等式2log 1x >,即2x ,可得2x <-或2x >,则(,2)(2,)B =-∞-⋃+∞所以[)(]3,22,6A B ⋂=--⋃故选:B .65.C【解析】【分析】先判断命题p,q 的真假,从而判断,p q ⌝⌝的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】 当52m =时,22123x y m m+=--表示圆, 故命题p :“23m <<是方程22123x y m m+=-- 表示椭圆”的充要条件是假命题, 命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件为真命题,则p ⌝是真命题,q ⌝是假命题,故p q ∧是假命题,p q ∨⌝是假命题,p q ⌝∨⌝是真命题,p q ⌝∧⌝是假命题, 故选:C66.A【解析】【分析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p :()010,x ∃∈+∞,0lg 1x >,故命题p 的否定为:()10,x ∀∈+∞,1lg x ≤. 故选:A.67.B【解析】【分析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合A 的元素个数为4,故集合A 的真子集个数为42115-=.故选:B.68.D【解析】【分析】先求出集合A 的补集,进而求交集即可.【详解】①{}1A x x =>,①(]R ,1A ∞=-,又{}13B x x =-≤<,①()[]R 1,1A B ⋂=-.故选:D69.D【解析】【分析】根据充分条件和必要条件的定义即可得出答案.【详解】解:因为p :24x ≤≤,q :13x ≤≤, 所以,p q q p ⇒⇒,所以p 为q 的既不充分又不必要条件.故选:D.70.B【解析】【分析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“0x ∃≥,()10x x -<”的否命题为“0x ∀≥,()10x x -≥”,故选:B71.C【解析】【分析】 由一元二次方程根的分布可得010a∆>⎧⎪⎨<⎪⎩求命题q 的参数a 范围,再由命题间的关系求m 的最值即可.【详解】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C72.C【解析】【分析】根据含有一个量词的命题的否定的方法进行求解.【详解】全称命题的否定是特称命题,则命题“0x ∀>,210x ->”的否定为“00x ∃>,0210x -≤”. 故选:C.73.D【解析】【分析】利用集合M 、N 的含义,将其化简,然后求其并集即可.【详解】解:由2430x x -+<可得13x <<,所以(1,3)M =,由240x -≥可得2x -≤或2x ≥,所以(][),22,N =-∞-+∞, 所以(](),21,M N =-∞-+∞.故选:D.74.B【解析】【分析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是x ∀∈R ,320x ax bx c +++≠.故选:B75.B【解析】【分析】先求出集合A ,B ,进而根据交集的定义求得答案.【详解】由题意,()(){}[]()|1202,1,1,A x x x B =-+≤=-=-+∞,所以(1,1]A B ⋂=-故选:B.76.D【解析】【分析】先求得R B ,然后求得正确答案.【详解】{}R |13B x x =≤≤,()R A B ⋂={12}x x ≤<∣故选:D77.B【解析】【分析】根据存在量词命题的否定的知识确定正确选项.【详解】原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以B 选项符合. 故选:B78.C【解析】【分析】根据椭圆的性质及焦点的性质可写出其充要条件,然后逐项分析即可.【详解】解:对于A 、B 选项: 曲线22:121x y C m m -=++表示椭圆的充要条件是2010,2121m m m m m +>⎧⎪-->⇔-<<-⎨⎪+≠--⎩且32m ≠-,所以A ,B 不正确;对于C 、D 选项: 方程22121x y m m +=+--表示焦点在x 轴上椭圆321012m m m ⇔+>-->⇔-<<-,所以C 对,D 错.故选:C79.A【解析】【分析】先化简集合A ,B ,再利用集合的补集和交集运算求解.【详解】因为集合{}(){|ln 10,|[1,2)A x x e B x =<==-=,, 所以{|1R B x x =<-或2}x ≥,()[. 2,)R A B e ⋂=故选:A80.C【解析】【分析】 先求出方程221x y m n -=表示双曲线时,m n 满足的条件, 然后根据“小推大”的原则进行判断即可.【详解】 因为方程221x y m n-=为双曲线方程,所以0mn >, 所以“0mn >”是“方程221x y m n-=为双曲线方程”的充要条件. 故选:C.81.BCD【解析】【分析】对于A ,将函数有零点的问题转化为方程有根的问题,根据一元二次方程有根的条件可判断其正误;对于B ,分类讨论a 的取值范围,利用导数判断函数的最值情况;对于C ,可举一具体实数,说明()f x 在R 上单调递增,即可判断其正误;对于D ,根据导数与函数极值的关系判断即可. 【详解】对于A ,函数()()2221e xf x ax x =-+有零点⇔方程2210ax x -+=有解,当0a =时,方程有一解12x =; 当0a ≠时,方程2210ax x -+=有解01,0440a a a a ≠⎧⇔⇒≤≠⎨∆=-≥⎩, 综上知()f x 有零点的充要条件是1a ≤,故A 错误;对于B ,由()()2221e xf x ax x =-+得()()222e x f x x ax a '=+-,当0a =时,()24e xf x x '=-,()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,此时()f x 有最大值()0f ,无最小值;当01a <<时,方程2210ax x -+=有两个不同实根1x ,()212x x x <,当[]12,x x x ∈时,()f x 有最小值()00f x <,当()()12,,x x x ∈-∞⋃+∞时,()0f x >;当1a =时,()()221e x f x x =-有最小值0;当1a >时,()0f x >且当x →-∞时,()0f x →,()f x 无最小值; 当0a <时,x →+∞时,()f x →-∞,()f x 无最小值, 综上,当且仅当(]0,1a ∈时,()f x 有最小值,故B 正确;对于C ,因为当2a =时,()()22221e xf x x x =-+,()224e 0x f x x '=≥在R 上恒成立,此时()f x 在R 上单调递增,故C 正确;对于D ,由()()222e xf x x ax a '=+-知,当0a =时,0x =是()f x 的极值点,当0a ≠,2a ≠时,0x =和2ax a-=都是()f x 的极值点,。
集合与常用逻辑用语》综合测试卷

集合与常用逻辑用语》综合测试卷1.选择题1.下列命题的否定是真命题的是()A。
有些实数的绝对值是正数B。
所有平行四边形都不是菱形C。
任意两个等边三角形都是相似的D。
3是方程的一个根答案:B2.已知R为实数集,集合A={x|x>1},B={x|x≥2},则(R-B)∩A=()A。
(1,2)B。
[1,2)C。
(-∞,1]D。
[2,+∞)答案:B3.已知集合A={-2,1,9,π},B={1,9},则A-B=()A。
{0,1,9}B。
{1,9}C。
{0,1,9,π}D。
{-2,0,1,9}答案:D4.以下四个命题既是特称命题又是真命题的是()A。
锐角三角形的内角是锐角或钝角B。
至少有一个实数x,使x2+x+1>0C。
两个无理数的和必是无理数D。
存在一个负数,使它的平方大于100答案:A5.“p是q的充要条件”是()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件答案:C6.已知全集U={x∈Z|0<x<6},集合A={3,4,5},则(U-C)∩A=()A。
{1,2}B。
{0,1,2}C。
{1,2,3}D。
{0,1,2,3}答案:B7.已知R是实数集,集合A={x|1<x<2},B={x|2<x<3},则阴影部分表示的集合是()A。
[0,1]B。
(0,1]C。
[0,1)D。
(0,1)答案:D8.设命题p:∀x∈R,x-4x+2m≥0(其中m为常数),则“m≥1”是“命题p为真命题”的()A。
充分不必要条件B。
必要不充分条件C。
充分且必要条件D。
既不充分也不必要条件答案:C9.若命题“存在x∈R,使得x/(4x+1)<1/4”是假命题,则实数m的取值范围是()A。
(-∞,-1)B。
(-∞,2)C。
[-1,1]D。
(-∞,0)答案:B10.已知集合A={x|x=x},B={1,m,2},若A⊆B,则实数m 的值为()A。
2B。
√2C。
《集合与常用逻辑用语》单元测试题(文科)

《集合与常用逻辑用语》单元测试题(文科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知全集U =R ,集合A ={x |x =2n ,n ∈N}与B ={x |x =2n ,n ∈N},则正确表示集合A 、B 关系的韦恩(Venn)图是( A )2.已知集合M ={y |y =x 2+1,x ∈R},N ={y |y =x +1,x ∈R},则M ∩N 等于( D )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y |y =1或y =2}D .{y |y ≥1}3.若集合A ={x ||2x -1|<3},B ={x |2x +13-x<0},则A ∪B 是( C ) A .{x |-1<x <-12或2<x <3} B .{x |2<x <3}C .{x |x <2或x >3}D .{x |-12<x <2} 4.设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若α∥β,l ⊂α,m ⊂β则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则α⊥β.则下列命题为真命题的是( B )A .p 或qB .¬p 或qC .p 且qD .p 且¬q5.在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的( A)A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.下列结论错误的...是( D ) A .命题“若p ,则q ”与命题“若¬q ,则¬p ”互为逆否命题B .命题p :∀x ∈[0,1],e x ≥1,命题q :∃x ∈R ,x 2+x +1<0,则p ∨q 为真C . 若p ∨q 为假命题,则p 、q 均为假命题D .“若am 2<bm 2,则a <b ”的逆命题为真命题7.“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题是(D )A .若x =a 且x =b ,则x 2-(a +b )x +ab =0.B .若x =a 或x =b ,则x 2-(a +b )x +ab ≠0.C .若x =a 且x =b ,则x 2-(a +b )x +ab ≠0.D .若x =a 或x =b ,则x 2-(a +b )x +ab =0.8.命题p :∀x ∈[0,+∞),(log 32)x ≤1,则(B )A .p 是假命题,¬p :∃x 0∈[0,+∞),(log 32)x 0>1B .p 是真命题,¬p :∃x 0∈[0,+∞),(log 32)x 0>1C .p 是假命题,¬p :∀x ∈[0,+∞),(log 32)x ≥1D .p 是真命题,¬p :∀x ∈[0,+∞),(log 32)x ≥19.非空数集{}*123n A a a a a n =∈N ,,,,()中,所有元素的算术平均数记为E A (),即123n a a a a E A n ++++=().若非空数集B 满足下列两个条件:①B A ⊆;②E B E A =()(),则称B 为A 的一个“保均值子集”.据此,集合{}12345,,,,的“保均值子集”有( C ) A .5个 B .6个 C .7个 D .8个10记实数12,,x x …n x 中的最大数为max {12,,x x …n x },最小数为min{12,,x x …n x }.已知ABC ∆的三边边长为a 、b 、c (a b c ≤≤),定义它的倾斜度为max{,,}min{,,},a b c a b c t b c a b c a=∙ 则“t=1”是“ABC ∆为等边三解形”的BA.充分布不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件二、填空题(本大题共7个小题,每小题5分,共35分,把正确答案填在题中横线上)11.已知命题甲:a +b ≠4,命题乙:a ≠1且b ≠3,则命题甲是命题乙的________条件. 既不充分也不必要12. 已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为 m -n13.已知集合A 满足条件:当p ∈A 时,总有-1p +1∈A (p ≠0且p ≠-1),已知2∈A ,则集合A 中所有元素的积等于___1 14.函数f (x )=log a x -x +2(a >0且a ≠1)有且仅有两个零点的充要条件是___ a >1_____.15. 设函数f (x )=x 2-2x +m .(1)若∀x ∈[0,3],f (x )≥0恒成立, m 的取值范围 m ≥1 ;(2)若∃x ∈[0,3],f (x )≥0成立, m 的取值范围 m ≥-3 .16. 设A ={x |x -1x +1<0},B ={x ||x -b |<a },若“a =1”是“A ∩B ≠Ø”的充分条件,则实数b 的取值范围是___(-2,2)_____.17.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题: ①曲线C 不可能为圆;②若1<t <4,则曲线C 为椭圆;③若曲线C 为双曲线,则t <1或t >4;④若曲线C 为焦点在x 轴上的椭圆,则1<t <52. 其中真命题的序号是___ ③④___(写出所有正确命题的序号)三、解答题(本大题共5个小题,共65分,解答应写出文字说明,证明过程或演算步骤)18.(本小题满分12分)求方程ax 2+2x +1=0有且只有一个负实数根的充要条件.解:方程ax 2+2x +1=0有且仅有一负根.当a =0时,x =-12适合条件. 当a ≠0时,方程ax 2+2x +1=0有实根,则Δ=4-4a ≥0,∴a ≤1,当a =1时,方程有一负根x =-1.当a <1时,若方程有且仅有一负根,则1a<0,∴a <0. 综上,方程ax 2+2x +1=0有且仅有一负实数根的充要条件为a ≤0或a =1.19.(本小题满分12分)已知函数f (x )是R 上的增函数,a 、b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b ).”(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.[解析] (1)逆命题是:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0,真命题.用反证法证明:设a +b <0,则a <-b ,b <-a ,∵f (x )是R 上的增函数,∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设f (a )+f (b )≥f (-a )+f (-b )矛盾,所以逆命题为真.(2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ),则a +b <0,为真命题.由于互为逆否命题同真假,故只需证原命题为真.∵a +b ≥0,∴a ≥-b ,b ≥-a ,又∵f (x )在R 上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ).∴f (a )+f (b )≥f (-a )+f (-b ),∴原命题真,故逆否命题为真.20.(本小题满分13分)已知集合A ={x |x 2-2x -3≤0,x ∈R},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.[解析] A ={x |-1≤x ≤3} B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧ m -2=0m +2≥3,⎩⎪⎨⎪⎧m =2m ≥1,∴m =2. (2)∁R B ={x |x <m -2或x >m +2}A ⊆∁R B ,∴m -2>3或m +2<-1.∴m >5或m <-3.因此实数m 的取值范围是m >5或m <-3.21(本小题满分14分).已知命题p :指数函数f (x )=(2a -6)x 在R 上单调递减,命题q :关于x 的方程x 2-3ax +2a 2+1=0的两个实根均大于3.若p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x 在R 上单调递减,∴0<2a -6<1,∴3<a <72. 若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧ Δ=(-3a )2-4(2a 2+1)≥0--3a 2>3f (3)=9-9a +2a 2+1>0,∴⎩⎨⎧ a ≥2或a ≤-2a >2a <2或a >52,故a >52, 又由题意应有p 假或q 假若p 假则3a ≤或a ≥72,若q 假,则52a ≤, 故a 的取值范围是{a |a ≤3或a ≥72}.22.(本小题满分14分) 已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0,且¬p 是¬q 的充分条件,求实数a 的取值范围.解析: 由⎩⎪⎨⎪⎧ x 2-4x +3<0,x 2-6x +8<0,得⎩⎪⎨⎪⎧1<x <3,2<x <4,即2<x <3. ∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵¬p ⇒¬q ,∴q ⇒p .∴B ⊆A .∴2<x <3含于集合A ,即2<x <3满足不等式2x 2-9x +a <0.设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0, 需⎩⎪⎨⎪⎧ f (2)≤0,f (3)≤0,即⎩⎪⎨⎪⎧ 8-18+a ≤0,18-27+a ≤0,∴a ≤9. 故所求实数a 的取值范围是{a |a ≤9}.。
高中数学集合与常用逻辑用语专题100题(含答案)

高中数学集合与常用逻辑用语专题100题(含答案)学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则()U B A ⋃为( ) A .{}1,3B .{}2,3,4C .{}0,1,2,3D .{}0,2,3,42.已知集合{}{}2|3,|560A x x B x x x =<=-+<,则( )A .B A ⊆ B .A B =∅C .A B ⊆D .A B =R3.已知集合{}210A x x =->,{}3180B x x =-+>,则A B =( ) A .1,62⎛⎫ ⎪⎝⎭B .1,32⎛⎫ ⎪⎝⎭C .()3,6-D .()6,3-4.已知集合{}13A x x =-<≤,{}1,0,2,3B =-,则A B =( ) A .{}1,0,2,3-B .{}0,3C .{}0,2D .{}0,2,35.已知集合{}3xA yy ==∣,{}0,1,2B =,则A B ⋂=( ) A .{}1,2 B .()0,+∞ C .{}0,1,2 D .[)0,+∞6.设集合{}11A x x =-≤≤,{}220B x x x =-<,则A B =( )A .{}10x x -≤<B .{}01x x <≤C .{}12x x ≤<D .{}12x x -≤<7.设R x ∈,则“12x -≤<”是“23x -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件8.已知集合{}10A x ax =-=,{}24,N B x x x =≤<∈,且A B B ⋃=,则实数a 的所有值构成的集合是( ) A .12⎧⎫⎨⎬⎩⎭B .13⎧⎫⎨⎬⎩⎭C .11,23⎧⎫⎨⎬⎩⎭D .110,,23⎧⎫⎨⎬⎩⎭9.已知A ,B 为实数集R 的两个非空子集,若A B ,则下列命题正确的是( )A .xB ∀∈,x A ∈ B .x B ∃∉,x A ∈C .x A ∀∈,x B ∈D .x A ∃∈,x B ∉10.设2x ππ<<,则“2cos 1x x <”是“cos 1x x >-”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.设集合{}1,2,3A =,{}23B x Z x =∈-<<,则A B ⋃=( ) A .{}1B .{}1,2C .{}0,1,2,3D .{}1,0,1,2,3-12.已知全集{}1,0,1,2,3,4,6M =-,集合{}{}N|04,N|26P x x Q x x =∈<<=∈<<,则()MP Q =( )A .{}6B .{}1,0,3,4,6-C .{}4,5D .{}413.已知集合13log 1A x x ⎧⎫⎪⎪=>⎨⎬⎪⎪⎩⎭,{}4B x x =<,则A B =( ) A .13x x ⎧⎫<⎨⎬⎩⎭B .103x x ⎧⎫<<⎨⎬⎩⎭C .143x x ⎧⎫<<⎨⎬⎩⎭D .{}4x x <14.设集合{}1,2,4A =,{}Z 13B x x =∈≤<,则A B ⋃=( ) A .{}1,2B .[)1,4C .{}1,2,4D .{}1,2,3,415.已知全集为U ,集合A ,B 为U 的非空真子集,()U UA B B ⋃=,则()U B A ⋂=( ) A .AB .BC .∅D .U16.下列选项中,p 是q 的必要不充分条件的是( )A .p :1a >,q ;()log a f x x =(0a >,且1a ≠)在()0,∞+上为增函数B .p :1a >,1b >,q :()x f x a b =-(0a >,且1a ≠)的图象不过第二象限C .p :2x ≥且2y ≥,q :224x y +≥D .p :a c b d +>+,q :a b >且c d >17.已知集合91log 2A x x ⎧⎫=>⎨⎬⎩⎭,{}4B x x =<,则A B =( )A .{}03x x <<B .{}13x x <<C .{}14x x <<D .{}34x x <<18.命题:0,sin(1)1x x ∃>-≥的否定为( ) A .0,sin(1)1x x ∃>-< B .0,sin(1)1x x ∃≤-≥ C .0,sin(1)1x x ∀>-<D .0,sin(1)1x x ∀≤-<19.集合{}sin y y x ==( ) A .RB .{}11x x -≤≤C .{}01x x ≤≤D .{}0x x ≥20.已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( ) A .A BB .B AC .A B =D .A B =∅21.定义集合{|A B x x A -=∈ 且}x B ∉.己知集合{}Z 26U x x =∈-<<,{}0,2,4,5A =,{}1,0,3B =-,则()UA B -中元素的个数为( )A .3B .4C .5D .622.已知不等式组20,100x y x y x -≥⎧⎪+-≤⎨⎪≥⎩,构成的平面区域为D .命题p :对()x y D ∀∈,,都有30x y -≥;命题():,q x y D ∃∈,使得22x y ->.下列命题中,为真命题的是( ) A .()()p q ⌝∧⌝ B .p q ∧ C .()p q ⌝∧D .()p q ∧-23.设集合{}1,2,3,4,5,6U =,{}1,2,3,6A =,{}2,3,4B =,则()UA B =( )A .{}3B .{}1,6C .5,6D .{}1,324.命题“0x R ∃∈,00e 1xx -≥”的否定是( )A .0x R ∃∈,00e 1xx -< B .0x R ∃∈,00e 1xx -<C .x R ∀∈,e 1x x -≤D .x R ∀∈,e 1x x -<25.已知命题p :角θ为第二或第三象限角,命题q :sin tan 0θθ+<,命题p 是命题q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件26.已知集合{|212}x A x =≤,则N A 的子集个数为( )A .4B .8C .16D .3227.已知全集{0,U =1,2,3,4},集合{}1,4A =,集合{}3,4B =,则()UB A =( )A .{0,1,2,3}B .{}4C .{2,3,4}D .{}0,228.已知a ,b 为实数,则“a b >”是“()()sin10sin10log 21log 21a b ︒︒-<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件29.已知集合{}|2x A x x N *=∈,{}2|log (1)0B x x =-=,则A B =( )A .{}1,2B .{}2C .∅D .{}0,1,230.已知集合{}11A x x =∈-≤≤Z ,{}02B x x =≤≤,则A B 的子集个数为( ) A .2B .3C .4D .631.“02m <<”是“方程2212x y m m+=-表示焦点在x 轴上椭圆”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件32.定义集合{A B x x A -=∈且}x B ∉.已知集合{}0,2,4,5A =,{}1,0,3B =-,则A B -=( )A .{}0B .{}1,3-C .{}2,4,5D .{}1,0,2,3,4,5-33.设集合{|2}M x x =≤,{}540N x x =-≥,则M N =( )A .[2,2]-B .(,2]-∞C .5,24⎡⎤⎢⎥⎣⎦D .52,4⎡⎤-⎢⎥⎣⎦34.已知集合21A x x ⎧⎫=≤⎨⎬⎩⎭,{}3,2,1,1,2,3B =---,则A B =( )A .3,2,1,2,3B .{}2,1--C .{}1,1,2,3-D .{}3,2--35.设α,β为两个不同的平面,则α∥β的一个充要条件可以是( ) A .α内有无数条直线与β平行B .α,β垂直于同一个平面C .α,β平行于同一条直线D .α,β垂直于同一条直线36.已知,m n 是平面α内的两条直线,则“直线l m ⊥且l n ⊥”是“l α⊥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件的37.已知集合{}2|430A x x x =-+<,11142xB x ⎧⎫⎪⎪⎛⎫=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∣,则A B ⋃=( ). A .∅ B .(1,3) C .(1,2] D .[0,3)38.设集合{}1A x x =<,集合{B x y ==,则A B =( ) A .()1,1-B .()0,1C .[)0,1D .()1,+∞39.已知直线a 、b 、l 和平面α、β,a α⊂,b β⊂,l αβ=,且αβ⊥.对于以下命题,下列判断正确的是( ) ①若a 、b 异面,则a 、b 至少有一个与l 相交; ①若a 、b 垂直,则a 、b 至少有一个与l 垂直. A .①是真命题,①是假命题 B .①是假命题,①是真命题 C .①是假命题,①是假命题D .①是真命题,①是真命题40.命题“R x ∀∈,20x ≥”的否定是( ) A .R x ∀∈,20x < B .R x ∀∈,20x ≥C .0R x ∃∈,200x < D .0R x ∃∈,200x ≥41.已知{}1,0,1,3,5A =-,(){}40B x x x =-<,则A B =( ) A .{}0,1B .{}1,1,3-C .{}0,1,3D .{}1,342.下列有关命题的说法正确的是( ) A .若+=-a b a b ,则a b ⊥B .“sin x =的一个必要不充分条件是“3x π=”C .若命题p :0x ∃∈R ,0e 1<x ,则命题p ⌝:x ∀∈R ,e 1x ≥D .α、β是两个平面,m 、n 是两条直线,如果m n ⊥,m α⊥,n β,那么αβ⊥ 43.已知集合{}{14,|1A x x B x x =≤≤=≤-或}3x ≥,则RA B ⋂=( )A .[]3,4B .[]1,4C .[)3,+∞D .[)1,344.设x ∈R ,则“230x x -<”是“41x ->”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件45.命题“对x R ∀∈,都有sin 1x ≤-”的否定为( ) A .对x R ∀∈,都有sin 1x >- B .对x R ∀∈,都有sin 1x ≤- C .0x R ∃∉,使得0sin 1x >-D .0x R ∃∈,使得0sin 1x >-46.命题“0x ∀>,220x x ++≥”的否定是( ) A .0x ∃>,220x x ++< B .0x ∀>,220x x ++< C .0x ∃≤,220x x ++<D .0x ∀≤,220x x ++<47.设全集{}1,2,3,4,5,6U =,集合{}{}1,3,52,3,4,5S T ==,,则()U S T ⋃=( ) A .{3,5}B .{2,4}C .{1,2,3,4,5}D .{2,3,4,5,6}48.设集合{}{}29,1,1,2,3A x x B =<=-,则A B =( )A .{1,1,2}-B .{1,2}C .{1,2,3}D .{1,1,2,3}-49.已知数列{}n a 为等比数列,则“5a ,7a 是方程2202210x x ++=的两实根”是”61a =,或61a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件50.已知全集{}N 06U x x =∈<<,{}3,4,5A =,{}2,4B =,则()U A B =( ) A .{}1,2,3B .{}2,3,4C .{}2,3D .{}251.若集合{}2,0xA y y x ==≥,(){}2log 2B x y x ==-,则A B =( )A .{}12x x <<B .{}1x x ≥C .{}12x x ≤<D .{}2x x <52.设命题:p 函数23y x =在()0,∞+上单调递减;命题:q 若2a =,则直线1:220l ax y +-=与直线2:2220l x ay a +-+=平行,则下列结论中是真命题的是( ) A .p q ∧B .p q ∨C .p q ∧⌝D .p q ⌝∨53.已知m ,n 不全为0,则“直线20mx ny --=与圆224x y +=相离”是“点(,)m n 在圆224x y +=内”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件54.命题“()00,x ∃∈+∞,002sin 0xx +<”的否定是( )A .(),0x ∀∈-∞,2sin 0x x +≥B .()0,x ∀∈+∞,2sin 0x x +≥C .()0,0x ∃∈-∞,002sin 0xx +≥D .()00,x ∃∈+∞,002sin 0xx +>55.已知全集R,{0},{2}U A x x B x x ==≤=≥∣∣,则集合()U A B ⋃=( ) A .{0}xx >∣ B .{2}xx <∣ C .{02}xx ≤≤∣ D .{02}xx <<∣ 56.已知全集{}{}R,0,2||U A x x B x x ==≥=≤,则集合()UA B =( )A .{|0x x ≤或2}x ≥B .{|0x x <或2}x >C .{}|02x x ≤≤D .{}|02x x <<57.设集合{}2230x x x --≤,102B xx ⎧⎫=>⎨⎬-⎩⎭,则A B ⋃=( ) A .{}2,3 B .[)3,∞-+ C .[]2,3D .[)1,-+∞58.设集合{}2,4,8,16A =,{}5B x x =≤,则()R A B ⋂=( ) A .{}2,4B .{}4,8C .{}8,16D .{}2,1659.已知非零向量11,a x y ,22,b x y ,则“1212x x y y =”是“//a b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件60.已知集合201x A x x ⎧⎫-=>⎨⎬+⎩⎭,{}3log 1B x x =≤∣,则A B =( ) A .(,1)(2,3]-∞-⋃ B .(2,3] C .()0,2D .(,2)-∞61.下题中,正确的命题个数为( ) ①函数1()lg(1)1f x x x=++-的定义域为()()1,11,-+∞;① 已知命题:N P x ∀∈,31x ≥则P 命题的否定为:3N,1x x ∃∈≤;①已知()f x 是定义在[0,1]的函数,那么“函数()f x 在[0,1]上单调递减”是“函数()f x 在[0,1]上的最小值为f (1)”的必要不充分条件;①被称为“天津之眼”的天津永乐桥摩天轮,是一座跨河建造、 桥轮合一的摩天轮假设“天津之眼”旋转一周需30分钟,且是匀速转动的,则经过5分钟,转过的角的弧度3π A .1B .2C .3D .462.“20m -<<”是“方程2212x y m m-=+”表示椭圆的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件63.已知集合{}12A x x =<≤,{}2320B x x x =-+≤,则A B =( )A .{}12x x ≤<B .{}12x x ≤≤C .{}12x x <<D .{}12x x <≤64.设全集{}3,2,1,0,1,2,3U =---,集合{}1,0,1,2A =-,{}3,0,2,3B =-,则()⋃=U B A ( )A .{}3,3-B .{}0,2C .{}1,1-D .{}3,2,0,2,3--65.设集合{}{2324,2xM x x N x -=≤=≥,则M N =( )A .[2,2]-B .51,4⎡⎤-⎢⎥⎣⎦C .5,4⎛⎤-∞ ⎥⎝⎦D .52,4⎡⎤-⎢⎥⎣⎦66.设集合{}{}215,4A x N xB x x =∈≤≤=,则A B =( ) A .{1,2}B .{}1,2,3C .{}3,4,5D .{4,5}67.已知集合{}|12A x x =-<<,[)0,4B =,则A B ⋃=( ) A .()1,-+∞B .()1,4-C .()0,4D .()1,468.已知向量(),1a x =,(),9b x =-,则“3x =”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件69.设R x ∈,则“2x <”是“11x -<”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件70.已知集合{|03}A x x =<<,集合{|1}B x x =<,则A B ⋃=( )A .()3-∞,B .()1∞-,C .()01,D .()03,71.下列说法正确的是( ) A .若P Q ∨为真命题,则P Q ∧为真命题 B .“若22am bm <,则a b <”的逆命题为真命题 C .已知R a ∈,“1a >”是“11a<”的充分不必要条件 D .“x ∀、R y ∈,若0x y +≠,则1x ≠且1y ≠-”是真命题 72.设a >0,b >0,则“94a b +≤”是“49ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件73.设集合()(){}110A x x x =+-<,{}0B y y =>,则()RA B =( )A .∅B .[)0,1C .()1,0-D .(]1,0-74.已知集合M ,N 是全集U 的两个非空子集,且()U M N ⊆,则( ) A .M N ⋂=∅ B .M N ⊆ C .N M⊆D .()U N M U ⋃=75.若集合{}2Z |340A x x x =∈--<,{B x x =>,则A B =( )A .()1,4-B .)4C .{}2,3D .{}376.“tan α=是“43πα=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件77.“x y ≠”是“x y ≠”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件78.设集合{}N 2M x x =∈>-,集合{}237N x x =+<,则M N =( )A .()2,2-B .{}0,1C .{}1D .{}0,1,279.设集合{}22S x x =-≤,{}2,1,0,1T =--,则S T( )A .{}2,1--B .{}2,1-C .{}1,0,1-D .{}2,1,0,1--80.已知集合{}21A x x =-<<,集合{}B x m x m =-≤≤,若A B ⊆,则m 的取值范围是( ) A .()0,1B .(]0,2C .[)1,+∞D .[)2,+∞81.设集合{}2,1S =--,{}1,2T =-,则S T ( )A .{}1-B .{}2,2-C .{}2,1,1--D .{}2,1,0,1-- 82.设a ∈R ,则“2a =-”是“直线1l :20ax y +=与直线2l :()140x a y +++=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件83.下列命题中,真命题的是( )A .7个身高各不相同的人排成一排照相,个子最高的站正中间,从正中间向左边一个比一个矮,从正中间向右边也一个比一个矮,则共有30种不同的排法B .“1a >,1b >”是“1ab >”的充分不必要条件C .函数sin y x =的周期是2πD .随机变量X 服从二项分布(),B n p ,()34E X =,()916D X =,则34p =84.已知a ,R b ∈,下列四个条件中,使“1ab>”成立的必要不充分条件是( ) A .a b >B .1a b >+C .1a b >=D .1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭85.设集合{}0A x x =<,{}1B x x =≤,则()A B =R ( ) A .∅B .[]0,1C .()0,∞+D .[)1,+∞86.已知命题0:p x ∃∈R ,03sin 2x =;命题:q x ∀∈R ,cos 122x≥.则下列命题为真命题的是( ). A .p q ∧ B .()()p q ⌝∧⌝ C .()p q ⌝∨ D .()p q ⌝∧二、多选题87.下列说法正确的是( )A .市教委为了解附中高中生对参加某项社会实践活动的意向,拟采用分层抽样的方法从我校三个年级的学生中抽取一个容量为60的样本,已知我校高一、高二,高三年级学生之比为6①5①4,则应从高三年级中抽取20名学生B .方差描述了一组数据围绕平均数波动的大小,方差越大,数据的离散程度越大,方差越小,数据的离散程度越小C .命题“0x ∀>,()2lg 10x +≥”的否定是“0x ∃>,()2g 0 l 1x +<”D .线性回归方程ˆˆˆybx a =+对应的直线至少经过其样本数据点中的一个点 88.下列选项中,与“2x x >”互为充要条件的是( )A .1x >B .222x x >C .11x <D .|(1)|(1)x x x x -=-89.下列说法中正确的有( )A .若0a b <<,则2ab b >B .若0a b >>,则b a a b> C .(0,)∀∈+∞x ,“1x m x+≥恒成立”是“2m ≤”的充分不必要条件 D .若0,0,1a b a b >>+=,则11a b+的最小值为4 三、填空题 90.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.91.命题“若0a >,则二元一次不等式10x ay +-≥表示直线10x ay +-=的右上方区域(包含边界)”的条件p :_________,结论q :_____________,它是_________命题(填“真”或“假”).92.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.93.已知命题“x ∀∈R ,220x x m -+>”为假命题,则实数m 的取值范围为______. 94.给出如下四个命题:①“抛物线24y x =的焦点坐标是()1,0”为真命题;①若p :02x x <-,则p ¬:02x x -≥; ①“1x ∀≥,212x +≥”的否定是“1x ∃<,212x +<”;①“任意[]1,2x ∈,20x a -≤”为真命题的一个充分不必要条件是4a ≥.其中不正确的命题的是 ___________.四、解答题95.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284x B x ⎧⎫=<<⎨⎬⎩⎭. (1)当1a =-时,求()U A B ⋃;(2)若A ∩B =A ,求实数a 的取值范围.96.已知函数()()4log 5f x x =-+()g x x α=(α为常数),且()g x 的图象经过点(P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .97.已知集合A 为函数9lg2x y x-=-的定义域,集合B 是不等式()2280x a x -++≥的解集(1)4a =时,求R A B ⋂;(2)若A B B ⋃=,求实数a 的取值范围.98.已知函数22()(21)2ln 4f x a x x x =+--,e 是自然对数的底数,0x ∀>,e 1x x >+.(1)求()f x 的单调区间;(2)记p :()f x 有两个零点;q :ln 2a >.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.99.已知5:21p x ≥+,22:20q x mx m --≤,其中0m >. (1)若p 是q 的充分条件,求实数m 的取值范围;(2)是否存在m ,使得p ⌝是q 的必要条件?若存在,求出m 的值;若不存在,请说明理由.五、双空题100.已知函数()221x b f x x +=+是定义在[]22-,的奇函数,则实数b 的值为_________;若函数()22g x x x a =-++,如果对于[]12,2x ∀∈-,2[1,2]x ∃∈-,使得()()12f x g x =,则实数a 的取值范围是__________.参考答案:1.C【解析】【分析】利用集合的补集与并集运算求解.【详解】因为全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,所以{}0,1,3U B =,(){}0,1,2,3U B A ⋃=.故选:C .2.A【解析】【分析】解不等式化简集合B ,再逐一分析各个选项即可判断作答.【详解】解不等式2560x x -+<得:23x <<,则有{|23}B x x =<<,因此有{}{|23}|3x x x x <<⊆<,即B A ⊆,C 不正确,A 正确;A B B =≠∅,B 不正确;R A B A ⋃=≠,D 不正确.故选:A3.A【解析】【分析】先解不等式,再根据集合交集运算即可求解.【详解】 因为12A x x ⎧⎫=>⎨⎬⎩⎭,{}6B x x =<,所以1,62A B ⎛⎫⋂= ⎪⎝⎭. 故选:A.4.D【解析】【分析】根据集合的交集运算,即可求解.【详解】由题意得:{}0,2,3A B =,故选:D5.A【解析】【分析】先求出A ,再根据交集的定义可求A B .【详解】{}|0A y y =>,故{}1,2A B =,故选:A.6.B【解析】【分析】先解出集合B ,再直接计算交集.【详解】 因为{}11A x x =-≤≤,{}{}22002B x x x x x =-<=<<,所以{}01A B x x ⋂=<≤. 故选:B .7.A【解析】【分析】 解不等式23x -≤,利用集合的包含关系判断可得出结论.【详解】 由23x -≤可得323x -≤-≤,解得15x -≤≤, 因为{}12x x -≤< {}15x x -≤≤,因此,“12x -≤<”是“23x -≤”的充分而不必要条件. 故选:A.8.D【解析】求出集合B ,由已知可得出A B ⊆,分0a =、0a ≠两种情况讨论,结合A B ⊆可求得实数a 的取值.【详解】 因为{}{}24,N 2,3B x x x =≤<∈=,由A B B ⋃=可得A B ⊆.当0a =时,A B =∅⊆,合乎题意;当0a ≠时,1A B a ⎧⎫=⊆⎨⎬⎩⎭,则12a =或3,解得12a =或13. 因此,实数a 的取值集合为110,,23⎧⎫⎨⎬⎩⎭. 故选:D.9.C【解析】【分析】根据真子集的含义,即可判断出答案.【详解】因为A B ,故由真子集的定义可得知x A ∀∈,x B ∈,故选:C10.B【解析】【分析】根据余弦函数的性质,以及充分条件、必要条件的判定方法,即可求解.【详解】由cos 1x x >-且(,)2x ππ∈,可得(cos )cos 1x x x x -=<, 所以cos cos cos 1x x x x x ⋅<<,即2cos 1x x <,所以必要性成立; 当23x π=时,可得222(cos )1336πππ⋅=<,满足2cos 1x x <, 但22cos cos 1333x x πππ=⨯=-<-,即充分性不成立, 所以“2cos 1x x <”是“cos 1x x >-”的必要而不充分条件.11.D【解析】【分析】先求出{}1,0,1,2B =-,从而求出并集.【详解】{}1,0,1,2B =-,A B ⋃={}1,0,1,2,3-故选:D12.D【解析】【分析】利用集合间的运算关系逐一判断即可【详解】由题可知{}{}{}1,2,3,1,0,4,6,3,4,5M P P Q ==-=,①{}4M P Q =,故选:D13.B【解析】【分析】 根据对数函数的单调性解不等式求集合A ,再由集合的交运算求A B .【详解】 由题设,11133311log 1log log (0,)33A x x x x ⎧⎫⎧⎫⎪⎪⎪⎪=>=>=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,而{}4B x x =<, 所以A B =103x x ⎧⎫<<⎨⎬⎩⎭. 故选:B14.C【解析】【分析】求出集合B ,利用并集的定义可求得结果.【详解】 因为{}{}Z 131,2B x x =∈≤<=,故{}1,2,4A B ⋃=.故选:C.15.B【解析】【分析】由题干信息画出韦恩图,求出答案.【详解】因为()U U A B B ⋃=,所以U A B ⊆,由韦恩图可知:()U B A B =.故选:B16.D【解析】【分析】利用对数函数的性质可判断A ;利用指数函数的性质可判断B ;利用不等式的性质及取特值法可判断CD.【详解】对于A ,利用对数函数的性质可知,p 是q 的充要条件,故A 错误;对于B ,利用指数函数的性质知()x f x a b =-过定点()0,1b -,若函数图像不过第二象限,则1a >,1b >,所以p 是q 的充要条件,故B 错误;对于C ,当2x ≥且2y ≥能推出224x y +≥,但224x y +≥不能推出2x ≥且2y ≥,例:取0x =且2y =满足224x y +≥,所以p 是q 的充分不必要条件,故C 错误; 对于D ,a b >且c d >可推出a c b d +>+,反过来取1,3,2,1a c b d ====-满足a c b d +>+,所以p 是q 的必要不充分条件,故D 正确;故选:D17.D【解析】【分析】根据对数函数的单调性解不等式求集合A ,再由集合的交运算求A B .【详解】由题设,{|3}A x x =>,而{}4B x x =<,所以A B ={}34x x <<.故选:D18.C【解析】【分析】根据特称命题的否定为全称命题可求解.【详解】根据特称命题的否定为全称命题,因此命题:0,sin(1)1x x ∃>-≥的否定为“0,sin(1)1x x ∀>-<”.故选:C.19.B【解析】【分析】利用正弦函数的值域可得正确的选项.【详解】{}{}[]sin 111,1y y x y y ==-≤≤=-,故选:B.20.B【解析】【分析】解不等式,得到()1,2A =-,进而判断两集合的关系.【详解】220x x --<,解得:12x -<<,所以()1,2A =-,故B A ,其他选项均不正确. 故选:B.21.B【解析】【分析】首先要理解A -B 的含义,然后按照集合交并补的运算规则即可.【详解】因为{}0,2,4,5A =,{}1,0,3B =-,所以{}2,4,5A B -=, 又因为{}1,0,1,2,3,4,5U =-,所以(){}U 1,0,1,3A B -=-. 故选:B.22.B【解析】【分析】画出不等式组表示的平面区域D ,结合图形由线性规划的知识可判断命题p 、 q 的真假,然后根据复合命题真假判断结论即可求解.【详解】不等式组表示的平面区域D 如图中阴影部分(包含边界)所示.根据不等式组表示的平面区域结合图形可知,命题p 为真命题,命题q 也为真命题,所以根据复合命题真假判断结论可得ACD 错误,B 选项正确.故选:B23.B【解析】【分析】由补集和交集的定义可求得结果.【详解】由题设可得{}1,5,6U B =,故(){}1,6U A B =,故选:B.24.D【解析】【分析】根据特称量词命题的否定为全称量词命题判断即可;【详解】命题“0R x ∃∈,00e 1x x -≥”为特称量词命题,其否定为R x ∀∈,e 1x x -<; 故选:D25.D【解析】【分析】利用切化弦判断充分性,根据第四象限的角判断必要性.当角θ为第二象限角时,sin 0,cos 0,cos 10θθθ><+>, 所以sin sin cos sin sin (cos 1)sin tan sin 0cos cos cos θθθθθθθθθθθθ+++=+==<, 当角θ为第三象限角时,sin 0,cos 0,cos 10θθθ<<+>, 所以sin sin cos sin sin (cos 1)sin tan sin 0cos cos cos θθθθθθθθθθθθ+++=+==>, 所以命题p 是命题p 的不充分条件.当sin tan 0θθ+<时,显然,当角θ可以为第四象限角,命题p 是命题p 的不必要条件. 所以命题p 是命题q 的既不充分也不必要条件.故选:D26.C【解析】【分析】求出N={0,1,2,3}A ,即得解.【详解】解:由题得2log 1222122,log 12x x ≤=∴≤.因为2222log 8log 12log 16,3log 124<<∴<<.所以N={0,1,2,3}A .所以N A 的子集个数为4216=个.故选:C27.D【解析】【分析】根据集合并集和补集的计算方法计算即可.【详解】A ①B ={1,3,4},()U B A ={0,2}.故选:D.28.B【解析】由充分条件、必要条件的定义及对数函数的单调性即可求解.【详解】解:因为0sin101<<,所以sin10log x y ︒=在()0,∞+上单调递减,当a b >时,()sin10log 21a ︒-和()sin10log 21b ︒-不一定有意义,所以“a b >”推不出“()()sin10sin10log 21log 21a b ︒︒-<-”;反之,()()sin10sin10log 21log 21a b ︒︒-<-,则21210a b ->->,即12a b >>, 所以“()()sin10sin10log 21log 21a b ︒︒-<-”可推出“a b >”.所以“a b >”是“()()sin10sin10log 21log 21a b ︒︒-<-”的必要不充分条件.故选:B.29.B【解析】【分析】分别求出集合,A B ,根据集合的交集运算得出答案.【详解】由题意知:{}{}|20,1,2x A x x N *=≤∈=,{}{}2|log (1)02B x x =-== {}2A B ⋂=.故选:B.30.C【解析】【分析】求出A B 的集合,然后找出子集个数即可.【详解】由题可知{}1,0,1A =-,所有{}0,1A B =,所有其子集分别是{}{}{},1,0,0,1∅,所有共有4个子集故选:C31.C【分析】 先根据方程2212x y m m+=-表示焦点在x 轴上的椭圆求出x 的取值范围,再根据充分必要条件的定义即可求解.【详解】解:①方程2212x y m m+=-表示焦点在x 轴上的椭圆, 0202m m m m >⎧⎪∴->⎨⎪>-⎩,解得:12m <<,∴“02m <<”是“方程2212x y m m+=-表示焦点在x 轴上椭圆”的必要不充分条件. 故选:C.32.C【解析】【分析】根据题中定义直接求解即可.【详解】因为{}0,2,4,5A =,{}1,0,3B =-,所以{}2,4,5A B -=,故选:C33.D【解析】【分析】求解简单不等式,解得集合,M N ,再求集合的交集即可.【详解】 因为集合{}22M x x =-≤≤,54N x x ⎧⎫=≤⎨⎬⎩⎭, 所以52,4M N ⎡⎤=-⎢⎥⎣⎦. 故选:D .【解析】【分析】解分式不等式,求得集合A ,再根据集合的交集运算,求得答案。
第一章 集合与常用逻辑用语综合测试(解析版)

第一章 集合与常用逻辑用语综合测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2022·新疆昌吉·高一期末)“0a b >>”是“1a b >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据充分条件、必要条件的定义判断即可;【详解】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1a b >,但是不满足0a b >>, 故“0a b >>”是“1a b>”的充分不必要条件. 故选:B2.(2022·全国·高一期末)已知{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}2230B x R x x =∈--=,{}13C x x =-≤<,则有( )A .U AB = B .U BC = C .U A C ⊇D .A C ⊇【答案】A【解析】【分析】化简集合B ,再由集合的运算即可得解.【详解】 因为{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}13C x x =-≤<,所以{}1,3U A =-, 又{}{}22301,3B x R x x =∈--==-,所以U A B =,故A 正确,所以U B A C =≠,故B 错误;所以集合C 与集合U A ,集合A 均没有互相包含关系,故CD 错误.故选:A.3.(2022·福建·莆田一中高一期末)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4 【答案】A【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4MN =,则(){}5U M N =. 故选:A.4.(2022·江苏·高一)已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤23,x ∴≤ x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.5.(2022·宁夏·银川唐徕回民中学高一期中)已知全集U =R ,{|0}A x x =≤,{|1}B x x =≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D【解析】【详解】试题分析:因为A ∪B={x|x≤0或x≥1},所以(){|01}U C A B x x ⋃=<<,故选D.考点:集合的运算.6.(2022·江苏·高一期末)已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是A .13a a ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13a a ⎧⎫≥⎨⎬⎩⎭∣ 【答案】C【解析】【分析】求得命题p 为真命题时a 的取值范围,由此求得命题p 为假命题时a 的取值范围.【详解】先求当命题p :x R ∀∈,2230ax x ++>为真命题时的a 的取值范围(1)若0a =,则不等式等价为230x +>,对于x R ∀∈不成立,(2)若a 不为0,则04120a a >⎧⎨∆=-<⎩,解得13a >, ∴命题p 为真命题的a 的取值范围为13a a ⎧⎫>⎨⎬⎩⎭∣, ∴命题p 为假命题的a 的取值范围是13a a ⎧⎫≤⎨⎬⎩⎭∣. 故选:C【点睛】本小题主要考查根据全称量词命题真假性求参数的取值范围.7.(2022·广东广雅中学高一期末)设集合U ={1,2,3,4,5},A ={1,3,5},B ={2,3,5},则图中阴影部分表示的集合的真子集有( )个A .3B .4C .7D .8【答案】C【解析】【分析】 先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU (A∩B )={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数.【详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:C U (A∩B )={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C .【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题.8.(2022·江苏·高一单元测试)在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0k =,1,2,3.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =⋃⋃⋃;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”其中正确的结论有( )A .①②B .③④C .②③D .②③④ 【答案】D【解析】【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误;而242-=+,故[]22-∈,故②正确;由“类”的定义可得[][][][]012Z 3⊆,任意Z c ∈,设c 除以4的余数为}{()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈⋃⋃⋃,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确若整数a ,b 属于同一“类”,设此类为[]}{()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故a ,b 除以4 的余数相同,故a ,b 属于同一“类”,故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确;故选:二、多选题9.(2022·江苏·高一单元测试)已知p :1x >或3x <-,q :x a >,则a 取下面那些范围,可以使q 是p 的充分不必要条件( )A .3a ≥B .5a ≥C .3a ≤-D .1a <【答案】AB【解析】【详解】p :1x >或3x <-,q :x a >,q 是p 的充分不必要条件,故1a ≥,范围对应集合是集合{}1a a ≥的子集即可,对比选项知AB 满足条件.故选:AB.10.(2022·江苏·南京师大附中高一期末)设r 是p 的必要条件,r 是q 的充分条件,s 是r 的充分必要条件,s 是p 的充分条件,则下列说法正确的有( ) A .r 是q 的必要条件B .s 是q 的充分条件C .s 是p 的充分必要条件D .p 是q 的既不充分也不必要条件【答案】BC【解析】【分析】 根据条件得到p r s q ⇔⇔⇒可判断每一个选项.【详解】由题意,,,,p r r q r s s p ⇒⇒⇔⇒,则p r s q ⇔⇔⇒.故选:BC.11.(2022·广东汕尾·高一期末)设{}29140A x x x =-+=,{}10B x ax =-=,若A B B =,则实数a 的值可以为( )A .2B .12C .17D .0【答案】BCD【解析】【分析】先求出集合A ,再由A B B =可知B A ⊆,由此讨论集合B 中元素的可能性,即可判断出答案.【详解】集合2{|9140}{2A x x x =-+==,7},{|10}B x ax =-=,又A B B =,所以B A ⊆,当0a =时,B =∅,符合题意,当0a ≠时,则1{}B a =,所以12a=或17a =, 解得12a =或17a =, 综上所述,0a =或12或17, 故选:BCD 12.(2022·重庆·高一期末)已知全集为U ,A ,B 是U 的非空子集且U A B ⊆,则下列关系一定正确的是( )A .x U ∃∈,x A ∉且xB ∈B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈ 【答案】AB【解析】【分析】根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答.【详解】全集为U ,A ,B 是U 的非空子集且U A B ⊆,则A ,B ,U 的关系用韦恩图表示如图,观察图形知,x U ∃∈,x A ∉且x B ∈,A 正确;因A B =∅,必有x A ∀∈,x B ∉,B 正确;若A U B ,则()()U U A B ⋂≠∅,此时x U ∃∈,[()()]U U x A B ∈⋂,即x A ∉且x B ∉,C 不正确; 因A B =∅,则不存在x U ∈满足x A ∈且x B ∈,D 不正确.故选:AB三、填空题13.(2022·安徽·高一期中)设集合12|3A x N y N x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 的子集个数为________ 【答案】16【解析】【分析】先化简集合A ,再利用子集的定义求解.【详解】解:{}0,1,3,9=A ,故A 的子集个数为4216=,故答案为:1614.(2022·浙江浙江·高一期中)0x ∃>,12x x +>的否定是___________. 【答案】0x ∀>,12x x+≤ 【解析】【分析】利用含有一个量词的命题的否定的定义求解.【详解】解:因为0x ∃>,12x x +>是存在量词命题, 所以其否定是全称量词命题,即0x ∀>,12x x+≤, 故答案为:0x ∀>,12x x +≤. 15.(2022·江苏·高一)某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.【答案】5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.16.(2022·江苏·高一)已知集合{|1A x x =<-,或{}2}|23x B x a x a >=≤≤+,,若“x A ∈”是“x B ∈”的必要条件,则实数a 的取值范围是___________.【答案】4a或13a【解析】∵“x A ∈”是x B ∈”的必要条件,∴B A ⊆,当B =∅时,23a a >+,则3a >;当B ≠∅时,根据题意作出如图所示的数轴,由图可知3231a a a +>⎧⎨+<-⎩或3222a a a +>⎧⎨>⎩,解得4a 或13a ,综上可得,实数a 的取值范围为4a或13a .四、解答题 17.(2022·江苏·高一)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,()U A B ;(2)若A ∩C ≠∅,求a 的取值范围.【答案】(1)A ∪B ={x |1<x ≤8},()U A B ={x |1<x <2} (2){a |a <8}【解析】【分析】(1)根据集合的交并补的定义,即可求解;(2)利用运算结果,结合数轴,即可求解.(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∵U A ={x |x <2或x >8},∴()U A ∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,作图易知,只要a 在8的左边即可,∴a <8.∴a 的取值范围为{a |a <8}.18.(2022·江苏·高一)设全集为Z ,2{|2150}A x x x =+-=,{|10}B x ax =-=.(1)若15a =,求()Z A B ⋂; (2)若B A ⊆,求实数a 的取值组成的集合C .【答案】(1){}5,3- (2)11,,053⎧⎫-⎨⎬⎩⎭【解析】【分析】(1)若15a =,求出集合A ,B ,即可求()Z A B ⋂; (2)若B A ⊆,讨论集合B ,即可得到结论.(1)解: {}2{|2150}5,3A x x x =+-==-, 当15a =,则{}{|10}5B x ax =-==, 则{}()5,3Z A B ⋂=-;(2)解:当B =∅时,0a =,此时满足B A ⊆,当B ≠∅时,1{}B a=,此时若满足B A ⊆, 则15a =-或13a=,解得15a =-或13, 综上11,,053C ⎧⎫=-⎨⎬⎩⎭. 19.(2022·河南驻马店·高一期末)已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<.(1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.【解析】(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤- 若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时,若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为43t >. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >, 若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,1t >-即为所求. 20.(2022·江苏·高一)已知命题:R P x ∃∈,使240x x m -+=为假命题.(1)求实数m 的取值集合B ;(2)设{}34A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值围.【解析】(1)解:由题意,得关于x 的方程240x x m -+=无实数根,所以1640∆=-<m ,解得4m >,即}|{4m m B =>;(2)解:因为{}34A x a x a =<<+为非空集合,所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,则34a ≥,即43a ≥, 所以423a ≤<, 21.(2022·江苏·高一)已知集合{}|14A x x =-≤≤,{2B x x =<-或}5x >.(1)求B R ,()A ⋂R B ;(2)若集合{}21|C x m x m =<<+,且∃x C x A ∈∈,为假命题.求m 的取值范围.【答案】(1){}25B x x =-≤≤R ,()()(),25,R A B ⋂=-∞-⋃+∞(2)2m ≤-或1m ≥【解析】(1){}25B x x =-≤≤R ,{R 1A x x =<-或}4x >,(){R 2A B x x ⋂=<-或}5x >;(2)∵∃x C x A ∈∈,为假命题,∴x C x A ∀∈∉,为真命题,即A C ⋂=∅,又{}21|C x m x m =<<+,{}|14A x x =-≤≤,当C =∅时,21m m ≥+,即1m ≥,A C ⋂=∅;当C ≠∅时,由A C ⋂=∅可得,2111m m m <+⎧⎨+≤-⎩,或2124m m m <+⎧⎨≥⎩, 解得2m ≤-,综上,m 的取值范围为2m ≤-或1m ≥.22.(2022·北京西城·高一期末)设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明. (1){}2,3,5A =,{}6,10,15B ∴=(2)设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数大于等于7个, 所以生成集B 中元素个数的最小值为7.(3)不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。
集合与常用逻辑用语测试题和答案

集合与常用逻辑用语测试题和答案work Information Technology Company.2020YEAR集合与常用逻辑用语测试题和答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选中,只有一项是符合题目要求的)1.(2013·新课标全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B2.(2014·昆明模拟)已知集合S={1,2},集合T={a},∅表示空集,如果S∪T=S,那么a的值构成的集合是( )A.∅B.{1}C.{2}D.{1,2}3.已知命题p:∃x0∈R, x20-3x0+3≤0,则下列说法正确的是( )A.p:∃x0∈R, x20-3x0+3>0,且p为真命题 ;B.p:∃x0∈R, x20-3x0+3>0,且p为假命题;C.p:∀ x∈R, x2-3x+3>0,且p为真命题;D.p:∀ x∈R, x2-3x+3>0,且p为假命题4.(2013·辽宁高考)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0}B.{0,1}C.{0,2}D.{0,1,2}5.已知ab>0,若a>b,则1/a<1/b的否命题是( )A.已知ab≤0,若a≤b,则1/a≥1/bB.已知ab≤0,若a>b,则1/a≥1/bC.已知ab>0,若a≤b,则1/a≥1/bD.已知ab>0,若a>b,则1/a≥1/b6.(2014·西城模拟)已知集合{1,2,3,4,5}的非空子集A具有性质P:当a∈A时,必有6-a∈A.则具有性质P的集合A的个数是( )A.8B.7C.6D.57.设a,b为实数,则“0<ab<1”是“b<1/a”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2014·哈尔滨模拟)给定下列两个命题: ①“p∨q”为真是“p”为假的必要不充分条件; ②“∃x0∈R,使sinx0>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是( ) A.①真②假 B.①假②真 C.①和②都为假 D.①和②都为真9.(2013·山东高考)给定两个命题p,q,若p是q的必要而不充分条件,则p是q 的( )A.充分而不必要条件;B.必要而不充分条件;C.充要条件;D.既不充分也不必要条件10.(2014·金华模拟)给出下列命题: (1)等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;(2)“x≠1”是“x2≠1”的必要充分条件;(3)函数y=lg(x2+ax+1)的值域为R,则实数-2<a<2;(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件. 其中真命题的个数是( )A.1B.2C.3D.411.已知函数f(x)=x2+bx+c,则“c<0”是“∃x0∈R,使f(x0)<0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件12.已知下列四个命题: ①命题“若α=,则tanα=1”的逆否命题为假命题; ②命题p:∀x∈R,sinx≤1,则p:∃x0∈R,使sinx0>1; ③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件; ④命题p:“∃x0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(p)∧q为真命题. 其中正确的个数是( ) A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横上)13.(2014·银川模拟)若命题“∃x0∈R,+(a-3)x0+4<0”为假命题,则实数a的取值范围是14.(2014·青岛模拟)已知A={x|1/8<2-x<1/2<1},B={x|log2(x-2)<1},则A∪B=15.(2014·玉溪模拟)已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是16.已知下列四个结论: ①命题“若p,则q”与命题“若q,则p”互为逆否命题; ②命题p:∃x0∈[0,1],≥1, 命题q:∃x0∈R,+x0+1<0,则p∨q为真; ③若p∨q为假命题,则p,q均为假命题; ④“若am2<bm2,则a<b”的逆命题为真命题.其中正确结论的序号是 .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知A={x||x-a|<4},B={x||x-2|>3}. (1)若a=1,求A∩B. (2)若A∪B=R,求实数a的取值范围.18.(12分)已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R.若p∨q为真命题、p∧q为假命题,求实数m的取值范围.19.(12分)(2014·黄山模拟)已知全集U=R,集合A={x|(x-2)(x-3)<0}, B={x|(x-a)(x-a2-2)<0}. (1)当a=1/2时,求(∁U B)∩A.(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.20.(12分)(2014·枣庄模拟)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足x2-x-6≤,x2+2x-8>0(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.22.(12分)(能力挑战题)已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0,求p的取值范围.答案解析1.【解析】选B.由A={x|x2-2x>0}得,A={x|x<0或x>2},又B={x|-5<x<5},所以A∪B=R.2.【解析】选D.因为S={1,2},T={a},S∪T=S,所以T⊆S,a∈S,所以a=1或a=2,故选D.3.【解析】选C.依题意,命题p:∃x0∈R,-3x0+3≤0的否命题为不存在x∈R,使得x2-3x+3≤0,即对任意的x∈R,x2-3x+3>0.又x2-3x+3=+>0,所以命题p为假命题,所以p 为真命题.4.【解析】选B. B={x||x|<2}={x|-2<x<2},则A∩B={0,1,2,3,4}∩{x|-2<x<2}={0,1}.5.【解析】选C.条件ab>0是大前提,所以其否命题是:已知ab>0,若a≤b,则≥.6.【解析】选B.由题意,知3∈A可以,若1∈A,则5∈A,若2∈A,则4∈A,所以具有性质P的集合A有{3},{1,5},{1,3,5},{2,4},{2,3,4},{1,2,4,5}, {1,2,3,4,5},共7个.7.【解析】选D.若0<ab<1,则当a>0时,有b<,当a<0时,有b>.当b<时,不妨设b=-1,a=1,满足b<,但ab=-1,不满足0<ab<1.所以0<ab<1是b<成立的既不充分也不必要条件,选D.8.【解析】选D.①中,“p∨q”为真,说明,p,q至少有一为真,但不一定p为真,即“p”不一定为假;反之,“p”为假,么p 一定为真,即“p∨q”为真,命题①为真;特称命题的否定是全称命题,所以,②为真,综上知,①和②都为真.9.【解析】选A.因为p是q的必要而不充分条件,所以q是p的必要而不充分条件,即p是q的充分而不必要条件..10.【解析】选B.若首项为负,则公比q>1时,数列为递减数列,an+1<an(n∈N*),当an+1>an(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故(2)正确;函数y=lg(x2+ax+1)的值域为R,x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故(3)错误;“a=1”时,“函数y=cos2x-sin2x=cos2x 的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=〒1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误.故选B.11.【解析】选A.若c<0,则Δ=b2-4c>0,所以∃x0∈R,使f(x0)<0,成立.若∃x0∈R,使f(x0)<0,则有Δ=b2-4c>0,即b2-4c>0即可,所以当c=1,b=3时,满足Δ=b2-4c>0,所以“c<0”是“∃x0∈R,使f(x0)<0”的充分不必要条件,故选A.12.【解析】选B.①中的原命题为真,所以逆否命题也为真,所以①错误.②根据全称命题的否定是特称命题知,②为真.③当函数偶函数时,有φ=+k π(k∈Z),所以为充要条件,所以③正确.④因为sinx+cosx=sin的最大值为<,所以命题p为假命题,p为真,三角函数在定义域上不单调,所以q为假命题,所以(p)∧q为假命题,所以④错误.所以正确的个数为2,故选B。
集合与常用逻辑用语综合测试题(基础、好用、含答案)
集合与常用逻辑用语综合测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2011·安徽高考)集合U={1,2,3,4,5,6},S={1,4,5},T={2,3,4},则S∩(∁U T)等于() A.{1,4,5,6}B.{1,5}C.{4} D.{1,2,3,4,5}2.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数3.若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确的命题是()A.①与②B.①与③C.②与④D.③与④5. (2011·广东高考)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0B.1 C.2D.36.(2011·陕西高考)设集合M={y|y=|cos2x-sin2x|,x∈R},N={x||x-1i|<2,i为虚数单位,x∈R},则M∩N为()A.(0,1) B.(0,1]C.[0,1) D.[0,1]7.(2011·湖南高考) “x>1”是“|x|>1”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件8.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题.②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A B ”的逆否命题.其中真命题为( )A .①②B .②③C .④D .①②③9.(2012·汕尾质检)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2012·梅州模拟)已知命题p :∃a ,b ∈(0,+∞),当a +b =1时,1a +1b =3,命题q :∀x ∈R ,x 2-x +1≥0恒成立,则下列命题是假命题的是( )A .綈p ∨綈qB .綈p ∧綈qC .綈p ∨qD .綈p ∧q第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)11.命题“∃x ∈R ,x =sin x ”的否定是______.12.非零向量a 、b ,“a +b =0”是“a ∥b ”的________条件.13.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={1,2,3,4},Q ={x | x +12<2,x ∈R},则P -Q =________.14.(2012·揭阳模拟)已知函数y =lg(4-x )的定义域为A ,集合B ={x |x <a },若P :“x ∈A ”是Q :“x ∈B ”的充分不必要条件,则实数a 的取值范围________.三、解答题(本大题共6小题,共80分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)写出下列命题的否定,并判断真假.(1)p :正数的对数都是正数;(2)p :∀x ∈Z ,x 2的个位数字不等于3.16.(本小题满分13分)已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=12x2-x+52,0≤x≤3}.(1)若A∩B=∅,求a的取值范围;(2)当a取使不等式x2+1≥ax恒成立的最小值时,求(∁R A)∩B.17.(本小题满分13分)(2012·广州模拟)已知函数f(x)=4sin2(π4+x)-23cos 2x-1,x∈[π4,π2].(1)求f(x)的最大值及最小值;(2)若条件p:f(x)的值域,条件q:“|f(x)-m|<2”,且p是q的充分条件,求实数m的取值范围.18.(本小题满分14分)已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p或q”是假命题,求a的取值范围.19.(本小题满分14分)命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2-x-6≤0或x2+2x-8>0.若綈p是綈q的必要不充分条件,求a的取值范围.20.(本小题满分14分)设命题甲:直线x=y与圆(x-a)2+y2=1有公共点,命题乙:函数f(x)=2-|x+1|-a的图象与x轴有交点,试判断命题甲与命题乙的条件关系,并说明理由.答案及解析1.【解析】∁U T={1,5,6},S∩(∁U T)={1,5}.【答案】 B2.【解析】“奇函数”的否定,是“不是奇函数”,因此否命题应为“若函数f(x)不是奇函数,则f(-x)不是奇函数”.【答案】 B3.【解析】a=(4,3),|a|=42+32=5;当|a|=5时,x=±4.【答案】 A4.【解析】对于②,l与m可相交、平行、异面,不正确,对于④,α与β可相交,不正确.【答案】 B5.【解析】∵直线y=x与单位圆x2+y2=1有两个交点,∴A∩B的元素有2个.【答案】 C6.【解析】由y=|cos2x-sin2x|=|cos 2x|,得M=[0,1];因为|x-1i|<2,所以|x+i|<2,即x2+1<2,所以-1<x<1,即N=(-1,1),∴M∩N=[0,1).【答案】 C7.【解析】|x|>1⇔x>1或x<-1,故x>1⇒|x|>1,但|x|>1D/⇒x>1(如x=-2),∴x>1是|x|>1的充分不必要条件.【答案】 A8.【解析】①的逆命题为:“若x,y互为倒数,则xy=1”是真命题;②的否命题为:“面积不相等的三角形不是全等三角形”是真命题;命题③是真命题,所以它的逆否命题也是真命题.命题④是假命题,所以它的逆否命题也是假命题.【答案】 D9.【解析】∵0<x<π2,∴0<sin x<1,由x·sin x<1知x sin2x<sin x<1,因此必要性成立.由x sin2x<1得x sin x<1sin x,而1sin x>1,因此充分性不成立.【答案】 B10.【解析】当a,b∈(0,+∞),且a+b=1时,1 a+1b=(a+b)(1a+1b)=2+ba+ab≥4≠3,∴p为假命题.对∀x∈R,x2-x+1=(x-12)2+34≥34≥0恒成立.∴命题q是真命题,∴綈p∧綈q是假命题.【答案】 B11.【解析】 ∵所给命题是特称命题,∴它的否定应为全称命题.【答案】 ∀x ∈R ,x ≠sin x12.【解析】 对于非零向量a ,b ,若a +b =0,则a =-b ,∴a ∥b .但a ∥b ,有a =λb (λ∈R),不一定有a +b =0,∴“a +b =0”是“a ∥b ”的充分不必要条件.【答案】 充分不必要13.【解析】 因为x ∉Q ,所以x ∈∁R Q ,∵Q ={x |-12≤x <72},∴∁R Q ={x |x <-12或x ≥72},则P -Q ={4}.【答案】 {4}14.【解析】 由4-x >0,知A =(-∞,4).又B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分不必要条件.∴A B ,∴a >4.【答案】 (4,+∞)15.【解】 (1)綈p :存在一个正数,它的对数不是正数.真命题.(2)綈p :∃x ∈Z ,x 2的个位数字等于3,假命题.16.【解】 A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.(1)当A ∩B =∅时,⎩⎨⎧a 2+1≥4a ≤2, 所以a ≤-3或3≤a ≤2.(2)由x 2+1≥ax ,得x 2-ax +1≥0, 依题意知,Δ=a 2-4≤0,则-2≤a ≤2,即a 的最小值为-2.当a =-2时,A ={y |y <-2或y >5},所以∁R A ={y |-2≤y ≤5},故(∁R A )∩B ={y |2≤y ≤4}.17.【解】 (1)∵f (x )=2[1-cos(π2+2x )]-23cos 2x -1=2sin 2x -23cos 2x +1=4sin(2x -π3)+1.又∵π4≤x ≤π2,∴π6≤2x -π3≤2π3,即3≤4sin(2x -π3)+1≤5,∴f (x )max =5,f (x )min =3.(2)∵|f (x )-m |<2,∴m -2<f (x )<m +2.又∵p 是q 的充分条件,∴⎩⎨⎧ m -2<3m +2>5,解之得3<m <5. 因此实数m 的取值范围是(3,5).18.【解】 由题意知a ≠0,若命题p 正确,由于a 2x 2+ax -2=(ax +2)(ax -1)=0.∴x =1a 或x =-2a .若方程在[-1,1]上有解,满足-1≤1a ≤1或-1≤-2a ≤1,解之得a ≥1或a ≤-1.若q 正确,即只有一个实数x 满足x 2+2ax +2a ≤0.则有Δ=0,即a =0或2.若p 或q 是假命题.则p 和q 都是假命题,有⎩⎨⎧-1<a <1,a ≠0且a ≠2.所以a 的取值范围是(-1,0)∪(0,1).19.【解】 由x 2-4ax +3a 2<0,且a <0.得3a <x <a .∴记p :对应集合A ={x |3a <x <a ,a <0}.又记B ={x |x 2-x -6≤0或x 2+2x -8>0}={x |x <-4或x ≥-2}.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件.因此A B .∴a ≤-4或3a ≥-2(a <0),解之得-23≤a <0或a ≤-4.20.【解】 命题甲:若直线x =y 与圆(x -a )2+y 2=1有公共点. 则|a -0|12+12≤1,-2≤a ≤ 2. 命题乙:函数f (x )=2-|x +1|-a 的图象与x 轴有交点,等价于a =2-|x +1|有解. ∵|x +1|≥0,-|x +1|≤0,∴0<2-|x +1|≤1,因此0<a ≤1.∴命题乙⇒命题甲,但命题甲D ⇒/命题乙.故命题乙是命题甲的充分不必要条件.。
高中数学集合与常用逻辑用语专题训练100题(尾部含答案)
高中数学集合与常用逻辑用语专题训练100题(尾部含答案)学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知集合{}5,8A =,{}23100B x x x =--≤,则()R A B ⋂=( )A .{}5B .{}8C .{}2,5,8-D .{}2-2.设全集{}3,2,1,0,1,2,3U =---,集合{}1,0,1,2A =-,{}3,2,3B =-,则()UA B =( ) A .{}1,0-B .{}0,1C .{}1,1-D .{}1,0,1-3.已知,a b 都是实数,则“2211log log a b<”是“a b >”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .即不充分也不必要条件4.已知公差为d 的等差数列{an }的前n 项和为Sn ,则“Sn ﹣nan <0,对n >1,n ∈N *恒成立”是“d >0”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件5.已知集合{}1,2,3,4A =,{}2,4,5B =,则A B =( ) A .{}1B .{}2,4C .{}2,3,4D .{}1,2,3,4,56.已知集合{}1,0,1M =-,{}21N y y x ==-,则MN =( )A .0B .{}1,0-C .{}0,1D .{}1,0,1-7.已知集合{}3,2,1,0,1,2,3A =---,{}230B x x =-≤,则A B =( )A .{}1,0,1-B .{}0,1C .{}0,1,2D .1,0,1,28.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (其中AB BC =ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为l ,m ,n ,给出以下两个命题::p l m n =+,2:q m l n =⋅.则下列选项为真命题的是( )A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝9.设a ∈R ,则“1a =”是“直线12x ay ++=与30x ay --=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知集合{}28xA x =<,集合{}B x x a =>,若A B =∅,则实数a 的取值范围为( ) A .(,2)-∞B .(2,)+∞C .(,3]-∞D .[3,)+∞11.已知集合()(){}20A x a x x a =--<,若2A ∉,则实数a 的取值范围为( ) A .()(),12,-∞+∞ B .[)1,2 C .()1,2 D .[]1,212.设集合402x A xx ⎧⎫-=>⎨⎬+⎩⎭,{2B x x =≤或5}x ,则()R A B =( ) A .{}22x x -<< B .{}22x x -≤≤C .{|4x x ≤或5}x ≥D .{|2x x ≤或5}x ≥13.已知全集U =R ,集合{}216,{3}A x x B x x =<=>∣∣,则()UA B =( )A .()4,3-B .[)3,4C .(]4,3-D .()3,414.已知集合{}2280A x x x =-->,则A =R( )A .[]4,2-B .()4,2-C .()2,4-D .[]2,4-15.已知p :3x y +>,q :1x >且2y >,则q 是p 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件16.已知l ,m 是两条不同的直线,α,β为两个不同的平面,若l β∕∕,l m ∕∕,则“m α⊥”是“αβ⊥”的( )条件. A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要17.已知集合{}{}220,1,0,1,2,3A x x x B =--<=-,则A B 中的元素个数为( ) A .1B .2C .3D .418.已知直线1:30l ax y +-=,直线()2:2130l a x y a --+=,则“1a =-”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件19.已知集合{}{}2|230,|ln(21)0M x x x N x x =--<=->,则M ∩N =( )A .(1,32)B .(12,32)C .(-1,32)D .(-1,12)20.已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件21.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,522.若全集{1,2,3,4,5,6}U =,{1,4}M =,{2,3}P =,则集合()()U UM P =( ) A .{1,2,3,4,5,6}B .{2,3,5,6}C .{1,4,5,6}D .{5,6}23.已知集合[]5,4U =-,{}220A x x x =-≤,20x B x x +⎧⎫=≤⎨⎬⎩⎭,则()U A B ⋂=( ) A .∅ B .[]0,2 C .[)2,0-D .[]0,2-24.已知集合A ={}250x x x -≤,B ={}21,x x k k Z =-∈,则A B 中元素的个数为( ) A .2B .3C .4D .525.已知集合M ={1,2,3},{}240,N x x x a a M =-+=∈,若MN ≠∅,则a 的值为( ) A .1B .2C .3D .1或226.“22x ≠是”21x ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件27.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1B . {}1,0-C .{}0,1,2D .{}1,0,1-28.设集合{}N 4M x x =∈<,{}Z 326xN x =∈≤,则MN =( )A .{}1,2,3B .{}0,1C .{}1,2D .{}0,1,229.已知x ∈R ,则“2cos 1x >”是“03x π≤<”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件30.已知不等式组20100x y x y x -≥⎧⎪+-≤⎨⎪≥⎩,构成的平面区域为D .命题p :对()x y D ∀∈,,都有30x y -≥;命题q :(),x y D ∃∈,使得20x y ->.下列命题中,为真命题的是( ) A .()()p q ⌝∧⌝B .p q ∧C .()p q ⌝∧D .()p q ∧⌝31.已知命题:p x ∃,y R ∈,sin()sin sin x y x y +=+;命题:q x ∀,y R ∈,sin sin 1x y ⋅,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨32.设集合{}1,0,A n =-,{},,B x x a b a A b A ==⋅∈∈.若A B A =,则实数n 的值为( ) A .1-B .0C .1D .233.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则A B ⋃=( ) A .{}0,1B .{}1,2-C .[]1,2-D .()1,2-34.设集合{{},1,0,1A yy B ===-∣,则A B =( ) A .{}1B .{}0,1C .{}1,0-D .{}1,0,1-35.已知集合{}24M x x ==,N 为自然数集,则下列结论正确的是( )A .{}2M =B .2M ⊆C .2M -∈D .M N ⊆36.集合{}12,N A x x x =-≤≤∈,{}1B =,则A B =( ) A .{11x x -≤<或}12x <≤ B .{}1,0,2- C .{}0,2D .{}237.已知命题p :若直线与抛物线只有一个交点,则直线与抛物线相切.命题q :等轴则下列命题为真命题的是( ) A .p 且qB .p 或qC .()p ⌝或qD .p 且()q ⌝38.设命题p :n N ∀∈,33n n >,则命题p 的否定为( )A .n N ∃∈,33n n >B .n N ∃∉,33n n ≤C .n N ∃∈,33n n ≤D .n N ∀∉,33n n >39.“所有可以被5整除的整数,末位数字都是5”的否定是( ) A .所有可以被5整除的整数,末位数字都不是5 B .所有不可以被5整除的整数,末位数字不都是5C .存在可以被5整除的整数,末位数字不是5D .存在不可以被5整除的整数,末位数字是540.已知集合{}22(,)|(0,{(,)|S x y x y T x y y x =+===,则S T ⋃=( )A .{B .{(C .SD .T41.“A B =∅”是“A =∅或B =∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件42.已知集合{}14U x x =∈-<<N ,集合{0,1}A =,则UA ( )A .{0,2,3}B .{1,0,2,3}-C .{2,3}D .{2,3,4} 43.已知集合{}2540M x x x =-+<,{1,0,1,2,3}N =-,则MN =( )A .{2,3}B .{0,1,2}C .{1,2,3,4}D .∅44.已知命题:(0,)p x ∀∈+∞,sin 0x x ->;命题:q a ∀∈R ,()22()log a f x x +=在定义域上是增函数.则下列命题中的真命题是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨45.已知集合{}1,3,A m =,{B =,B A ⊆,则m =( ) A .9B .0或1C .0或9D .0或1或946.已知集合{}0,1,2,3A =,{}2B x x =∈>Z ,则A B ⋃=( ) A .NB .ZC .{}0,1,2,3D .()0,∞+47.已知命题:p 若sin sin x y >,则x y >;命题:R q a ∀∈,()()22log a f x x +=在定义域内是增函数.则下列命题中的真命题是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝D .()p q ⌝∨48.若:12p x -≤≤,:11q x -≤≤,则p 为q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件49.设全集U Z =,集合{}0,1A =,{}1,0,1,2B =-,则()U A B =( )A .ZB .{}1,2-C .{}0,1D .1,0,1,250.设P :3x <,q :13x ,则p 是q 成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件51.“sin cos αα=”是“π2π4k α=+,k ∈Z ”的( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要52.下列说法中正确的是( )A .已知随机变量X 服从二项分布14,3B ⎛⎫⎪⎝⎭.则()89E X =B .“A 与B 是互斥事件”是“A 与B 互为对立事件”的充分不必要条件C .已知随机变量X 的方差为()D X ,则()()2323D X D X -=- D .已知随机变量X 服从正态分布()24,N σ且()60.85P X ≤=,则()240.35P X <≤=53.已知命题:1p Q ∈,命题:q 函数()f x=1的定义域是[)1,+∞,则以下为真命题的是( ) A .p q ∧ B .p q ∨ C .p q ⌝∧D .p q ⌝∨54.“224x y +≥”是“2x ≥且2y ≥”的( )条件. A .必要不充分 B .充分不必要 C .充要D .既不充分也不必要55.“a b =”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 56.若集合11,,0,1,44A ⎧⎫=--⎨⎬⎩⎭,{}4xB y y ==,则A B =( )A .{}1,4B .{}0,1,4C .1,0,1,44⎧⎫-⎨⎬⎩⎭D .11,,0,1,44⎧⎫--⎨⎬⎩⎭57.已知集合{}2,3,4,5B =,{}2,1,4,5C =--,非空集合A 满足:A B ⊆,A C ⊆,则符合条件的集合A 的个数为( )A .3B .4C .7D .858.已知△ABC 的三个内角为A ,B ,C ,则“3A π<”是“sin A ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件59.已知集合{}4,5,6,8A =,{}3,5,7,8B =,则A B =( ) A .{}5,8B .5,6C .{}3,6,8D .{}3,4,5,6,7,860.“两个三角形相似”是“两个三角形三边成比例”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件61.集合{}1,0,1,2A =-,{}2log 2B x x =<,则A B =( ) A .{}1,2B .{}1,0,2-C .{}2D .{}1,0-62.l ,m 是两条不重合的直线,α,β是两个不重合的平面,若l α⊂,m β⊂,则“l //m ”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件63.已知全集2{|760}U x N x x =∈-+≤,A ={1,3,4},B ={2,4,6},则(UA )B =( ) A .{2,5}B .{2,6}C .{2,5,6}D .{2,4,5,6}64.设集合{}2120A x x x =+-≤,(){}0.5log 12B x x =->-,则A B =( )A .∅B .(]1,4C .(]1,3D .[]4,3-65.已知命题:R p x ∀∈,ln 10x x -+<,则p ⌝是( ) A .R x ∀∉,ln 10x x -+≥ B .R x ∀∈,ln 10x x -+≥ C .R x ∃∉,ln 10x x -+≥D .R x ∃∈,ln 10x x -+≥66.已知集合{R|2}A y y =∈>,{}R |ln B x y x =∈=,则R ()A B =( ) A .,2]-∞( B .[2,)+∞ C .(0,2]D .(0,2)67.已知集合{}13P x R x =∈≤≤,{}24Q x R x =∈≥,则()RPQ =( )A .[]2,3B .(]2,3-C .[)1,2D .[]1,268.已知集合{}|2,M y y xx ==-∈R ∣,1,7xN y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,则( ) A .M N B .N M ⊆ C .M N =RD .N RM69.已知命题:p x R ∀∈,cos 1x <;命题:q x R +∃∈,|ln |0x ≤,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨70.已知平面α,β,直线m ,αβ⊥,则“m α∥”是“m β⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件71.已知集合{|(1)0,}A x x x x =-<∈R ,1{|2,}2B x x x =<<∈R ,集合A B =( ) A .∅B .1{|1,}2x x x <<∈R C .{|22,}x x x -<<∈RD .{|21,}x x x -<<∈R72.若集合201x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}220B x x x =--<,则()R A B =( ) A .[)1,2 B .(]1,1-C .()1,1-D .()1,273.集合{}12,A x x x N =-≤≤∈,{}1B =,则A B =( ) A .{}1112x x x -≤≤<≤或B .{}1,0,2-C .{}0,2D .{}2 74.已知集合{}21,Z M x x n n ==-∈,{}1,2,3,4,5N =,则M N =( )A .{}1,3,5B .{}1,2,3,4,5C .{}21,Z x x n n =-∈D .∅75.函数()3f x x x =+,则1a >-是()()120f a f a ++>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件76.已知集合{}2A x x =<,{}2,1,0,1,2B =--,则A B =( )A .{}0,1B .{}1,0,1-C .2,0,1,2D .1,0,1,277.“直线430x y m ++=与圆2220x y x +-=相切”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件78.“2263x x +”是“||7x ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件 79.已知集合{}{}21,,(1)(6)0A y y k k Z B x x x ==-∈=--≤,则A B =( )A .{}135,, B .{}35, C .[]16,D .∅80.已知集合()(){}22,10M x y x y =++=,()(){},ln 2N x y y x ==+,则M N ⋃=( ) A .{}1,0-B .(){}1,0-C .MD .N81.已知集合{}210A x x =->,{}2|3180B x x x =--<,则A B =( )A .1,62⎛⎫ ⎪⎝⎭B .1,32⎛⎫ ⎪⎝⎭C .()3,6-D .()6,3-82.已知全集{1,0,1,3,4,5,6}U =-,集合{1,1}R =-,{4,5}Q =,则()UR Q ⋃=( ) A .{}1-B .{1,3}-C .{0,3,6}D .{1,0,3,6}-83.已知集合{}{}2|4,,|4A x x x Z B y y =<∈=>,则A B =( )A .()()4,22,4--B .{}3,3-C .()2,4D .{}3二、多选题84.若“260x x --<”是“4a x <<”的充分不必要条件,则实数a 的值可以是( ) A .3-B .2-C .1D .285.下列命题中,真命题有( ) A .“1x ≠”是“1x ≠”的必要不充分条件B .“若6x y +≥,则x ,y 中至少有一个大于3”的否命题C .0x ∃∈R ,0202xx <D .命题“0x ∃<,220x x --<”的否定是“00x ∀≥,20020x x --≥”86.已知a ∈R ,命题“0x ∃>,x a a -<”的否定是( ) A .0x ∀>,x a a -≥ B .0x ∃≤,x a a -< C .0x ∀>,2x a ≥或0x ≤D .0x ∃>,x a a -≥87.下列条件中,为“关于x 的不等式210mx mx -+>对x R ∀∈恒成立”的充分不必要条件的有( ) A .04m ≤< B .02m << C .14m <<D .16m -<<88.下列命题是真命题的是( ) A .所有的素数都是奇数B .有一个实数x ,使2230x x ++=C .命题“x R ∀∈,0x x +≥”的否定是“x R ∃∈,0x x +<”D .命题“x R ∃∈,20x +≤”的否定是“x R ∀∈,20x +>”89.已知幂函数()()41mf x m x =-,则下列选项中,能使得f af b 成立的一个充分不必要条件是( ) A .110ab<< B .22a b > C .ln ln a b > D .22a b >三、解答题90.如图,在 ABC 中,F 是BC 中点,直线l 分别交AB ,AF ,AC 于点D ,G ,E .如果AD =λAB ,AE =μAC ,λ,μ∈R . 求证:G 为 ABC 重心的充要条件是1λ+1μ=3.91.已知函数()()()313x xf x m m R -=--∈是定义域为R 的奇函数.(1)若集合(){}|0A x f x =≥,|0x m B x x m -⎧⎫=<⎨⎬+⎩⎭,求A B ; (2)设()()22332x xg x af x -=+-,且()g x 在[)1,+∞上的最小值为-7,求实数a 的值.92.设全集{2}U xx =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求UA ,()U AB ⋂,A B ,()UA B93.已知a ∈R ,集合(){}222log log 2A x R x x =∈≥,集合()(){}10B x R x x a =∈--<. (1)求集合A ; (2)若RB A ⊆,求a 的取值范围.94.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .95.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围. 四、填空题96.命题“0x R x ∈∃,”的否定是___________. 97.若命题p :x ∀∈R ,2240ax x -+为真命题,则实数a 的取值范围为___________.98.写出一个能说明“若函数()f x 为奇函数,则()00f =”是假命题的函数:()f x =_________.99.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.100.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.参考答案:1.B 【解析】 【分析】求出集合B ,利用交集和补集的定义可求得结果. 【详解】因为{}{}2310025B x x x x x =--≤=-≤≤,则{R 2B x x =<-或}5x >,因此,(){}R 8A B ⋂=. 故选:B. 2.D 【解析】 【分析】 求出{}2,1,0,1UB =--即得解.【详解】 由题设,{}2,1,0,1UB =--,则(){}1,0,1U A B ⋂=-,故选:D. 3.C 【解析】 【分析】利用对数函数的单调性,结合充分性和必要性的讨论,即可判断和选择. 【详解】因为2log y x =在()0,+∞是单调增函数,又2211log log a b<, 故可得110a b<<,则0a b >>,故a b >,满足充分性; 若a b >,不妨取2,1a b =-=-,显然110,0a b <<,故2211log ,log a b没有意义, 故必要性不成立; 综上所述,“2211log log a b<”是“a b >”的充分不必要条件. 故选:C .【解析】 【分析】 将()112n n n S na d -=+,an =a 1+(n ﹣1)d 代入Sn ﹣nan <0,并化简,再结合n 的取值范围,即可求解. 【详解】解:()112n n n S na d -=+,an =a 1+(n ﹣1)d , 则Sn ﹣nan ()112n n na d -=+-na 1﹣n (n ﹣1)d ()12n n d -=-,则“Sn ﹣nan <0,对n >1,n ∈N *恒成立”,故d >0, 若d >0,则Sn ﹣nan ()12n n d -=-<0,对n >1,n ∈N *恒成立,故“Sn ﹣nan <0,对n >1,n ∈N *恒成立”是“d >0”的充分必要条件. 故选:C . 5.B 【解析】 【分析】根据交集的知识确定正确答案. 【详解】依题意集合{}1,2,3,4A =,{}2,4,5B =,所以{}2,4A B =. 故选:B 6.D 【解析】 【分析】首先求集合N ,再求M N ⋂. 【详解】211y x =-≥-,即{}1N y y =≥-,{}1,0,1M =-,所以{}1,0,1M N ⋂=-. 故选:D【解析】 【分析】解出集合B ,利用交集的定义可求得结果. 【详解】因为{}{230B x x x x =-≤=≤,因此,{}1,0,1A B =-.故选:A. 8.A 【解析】 【分析】根据题意,求得,,l m n ,判断命题,p q 的真假,再结合逻辑连接词判断复合命题的真假即可. 【详解】根据题意可得圆弧BE ,EG ,GI 对应的半径分别为,,AB BC AB AB DG --, 也即,,2AB BC AB AB BC --, 则弧长,,l m n 分别为()(),,2222AB BC AB AB BC πππ--,则()()2222m n BC AB AB BC AB l πππ+=-+-==,故命题p 为真命题;()(22222222227448AB AB ln AB AB BC BC BC BC BC πππ⎛⎫=-⨯=⨯-=- ⎪⎝⎭,而(2222221748AB m BC BC BCππ⎛⎫=-=- ⎪⎝⎭,故2ln m =,命题q 为真命题. 则p q ∧为真命题,()p q ∧⌝,()p q ⌝∧,()()p q ⌝∧⌝均为假命题. 故选:A. 9.A 【解析】 【分析】利用直线垂直的判断条件可求1a =±,从而可得正确的选项. 【详解】直线12x ay ++=与30x ay --=垂直,则210,1a a -==±, ∈“1a =”是“直线12x ay ++=30x ay --=垂直”的充分不必要条件. 故选:A. 10.D 【解析】 【分析】先求出集合A ,B ,再由A B =∅求出实数a 的取值范围. 【详解】{}{}{}{}328223,x x A x x x x B x x a =<=<=<=>.又A B =∅,所以a 的取值范围为[3,)+∞. 故选:D 11.D 【解析】 【分析】利用元素与集合的关系求解. 【详解】 因为2A ∉,所以()()2220a a --≥, 解得12a ≤≤. 故选:D . 12.B 【解析】 【分析】求解分式不等式解得集合A ,再求补集和交集即可. 【详解】 因为402x x ->+,即()()420x x -+>,解得2x <-或4x >,故{|2A x x =<-或4}x >, 则A R{|24}x x =-≤≤,则()R A B ={|22}x x -≤≤.故选:B.13.C 【解析】 【分析】先化简集合A ,求得UB ,再去求()U A B ∩即可解决.【详解】因为{}216{44},{3}A xx x x B x x =<=-<<=>∣∣∣, 所以{}3UB x x =∣,则()(]4,3U A B ⋂=-.故选:C. 14.D 【解析】 【分析】根据不等式的解法,求得集合A ,结合补集的概念及运算,即可求解. 【详解】由不等式2280x x -->,可得(4)(2)0x x -+>,解得2x <-或4x >, 即集合{|2x x <-或4}x >,所以[]{|24}2,4A x x =-≤≤=-R.故选:D. 15.A 【解析】 【分析】直接按照充分条件必要条件的定义判断即可. 【详解】若1x >且2y >,则3x y +>,反之则不然,比如0,4x y ==,故q 是p 的充分不必要条件. 故选:A. 16.A 【解析】 【分析】根据空间中的平行关系与垂直关系,结合充分条件和必要条件的定义即可得出答案. 【详解】解:因为l β∕∕,l m ∕∕, 当m α⊥,则l α⊥,又因为l β∕∕,则在平面β内存在一条直线a 使得a α⊥,再根据面面垂直的判定定理可得αβ⊥,故“m α⊥”可以推出“αβ⊥”, 当αβ⊥时,m 与α平行相交都有可能,故“αβ⊥”不一定可以推出“m α⊥”, 所以“m α⊥”是“αβ⊥”的充分不必要条件. 故选:A. 17.B 【解析】 【分析】解不等式求得集合A ,由此求得A B ,由此确定正确答案. 【详解】因为{}{}{}22012,1,0,1,2,3A x x x x x B =--<=-<<=-,所以{0,1}A B =,则A B 的元素的个数为2. 故选:B 18.A 【解析】 【分析】由直线垂直得到a 的值,从而求出答案. 【详解】由12l l ⊥得:()2130a a --=,则1a =-或32a =,故1a =-是12l l ⊥的充分不必要条件,即A 选项正确. 故选:A 19.A 【解析】 【分析】解一元二次不等式求集合A ,解对数不等式求集合B ,再应用集合的交运算求M ∩N . 【详解】因为{}23|230|12M x x x x x ⎧⎫=--<=-<<⎨⎬⎩⎭,{}{}ln(21)01N x x x x =-=, 所以M N =(1,32).故选:A 20.C 【解析】 【分析】用定义法,分充分性和必要性两种情况分别求解. 【详解】 由40S >,得1514011a a a a q q q--=>--,因为1q >,所以510a a ->,即51a a >.故必要性满足; 1514411a a a a q S q q--==--.因为1q >,51a a >,所以40S >.故充分性满足. 所以“51a a >”是“40S >”的充要条件. 故选:C 21.B 【解析】 【分析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B. 22.D 【解析】 【分析】计算{}U 2,3,5,6M =,{}U1,4,5,6P =,再计算交集得到答案.【详解】{}U2,3,5,6M =,{}U 1,4,5,6P =,()(){}U U 5,6M P ⋂=.故选:D. 23.C【解析】 【分析】根据解一元二次不等式的方法、解分式不等式的方法,结合集合交集、补集的定义进行求解即可. 【详解】因为{}220[0,2]A x x x =-≤=,[]5,4U =-,所以()U [5,0)(2,4]A =-⋃,又因为[)202,0x B x x +⎧⎫=≤=-⎨⎬⎩⎭, 所以()U A B ⋂=[)2,0-, 故选:C 24.B 【解析】 【分析】解不等式求出{}05A x x =≤≤,从而得到不等式组,求出k 的值,进而得到A B 中的元素,求出答案. 【详解】由250x x -≤得:05x ≤≤,所以{}05A x x =≤≤,又{}21,B x x k k Z ==-∈,令0215k ≤-≤,解得:132k ≤≤,k Z ∈,当1k =时,1x =,当2k =时,3x =,当3k =时,5x =,故A B 中元素的个数为3. 故选:B 25.C 【解析】 【分析】逐一取a 的值为1,2,3进行验算可得. 【详解】当1a =时,由2410x x -+=,得2=x {22N =+,不满足题意;当2a =时,由2420x x -+=,得2x ={22N =+,不满足题意;当3a =时,由2430x x -+=,得1x =或3x =,即{1,3}N =,满足题意.26.B【解析】【分析】先化简两个不等式,再去判断二者间的逻辑关系即可解决.【详解】由22x ≠可得1x ≠;由21x ≠可得1x ≠±则由22x ≠不能得到21x ≠,但由21x ≠ 可得22x ≠故“22x ≠是”21x ≠的必要不充分条件.故选:B27.D【解析】【分析】通过解方程进行求解即可.【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =,所以{}1,0,1A =-,故选:D28.D【解析】【分析】先求出集合N ,再求两集合的交集【详解】由326x ≤,得33log 3log 26x ≤,即3log 26x ≤,所以{}3Z|log 26N x x =∈≤,因为{}N |4M x x =∈<所以MN ={}0,1,2,故选:D【解析】【分析】利用必要条件和充分条件的定义判断.【详解】因为x ∈R ,2cos 1x >, 所以1cos 2x >, 解得2233k x k ππππ-+<<+,所以x ∈R ,则“2cos 1x >”是“03x π≤<”的必要不充分条件,故选:B30.B【解析】【分析】 先画出不等式组所表示的平面区域,根据存在性和任意性的定义,结合复合命题的真假性质进行判断即可.【详解】不等式组表示的平面区域D 如图中阴影部分(包含边界)所示.根据不等式组表示的平面区域结合图形可知,命题p 为真命题,命题q 也为真命题,因此选项B 为真命题; 因此p ⌝为假命题,命题q ⌝也为假命题,所以选项ACD 为假命题,故选:B31.A【解析】【分析】先判断命题p ,命题q 的真假,再利用复合命题判断.【详解】 当0,2x y π==时,sin()sin sin x y x y +=+成立所以命题p 为真命题,则p ⌝是假命题;因为x ∀,y R ∈,所以sin 1,sin 1x y ≤,则sin sin 1x y ⋅,故命题q 为真命题,则q ⌝是假命题;所以p q ∧是真命题,p q ⌝∧是假命题, ()p q ∧⌝是假命题,()p q ⌝∨是假命题, 故选:A32.C【解析】【分析】依据集合元素互异性排除选项AB ;代入验证法去判断选项CD ,即可求得实数n 的值.【详解】依据集合元素互异性可知,0,1n n ≠≠-,排除选项AB ;当1n =时,{}1,0,1A =-,{}{},,110B x x a b a A b A ==⋅∈∈=-,,, 满足A B A =.选项C 判断正确;当2n =时,{}1,0,2A =-,{}{},,2,014B x x a b a A b A ==⋅∈∈=-,,, {}0A B A ⋂=≠.选项D 判断错误.故选:C33.C【解析】【分析】解一元二次不等式得集合B ,然后由并集定义计算.【详解】由题意{|12}B x x =-<<,所以{|12}A B x x ⋃=-≤≤.故选:C .34.B【解析】【分析】根据二次根式的定义求得集合A ,然后由交集定义计算.【详解】由已知{|0}A y y =≥,所以{0,1}A B =.故选:B .35.C【解析】【分析】由题设可得{2,2}M =-,结合集合与集合、元素与集合的关系判断各选项的正误即可.【详解】由题设,{2,2}M =-,而N 为自然数集,则2N -∉,2N ∈且2,2M -∈,所以,{}2M ≠⊂,故A 、B 、D 错误,C 正确. 故选:C36.C【解析】【分析】根据集合补集的定义即可求解.【详解】 解:因为{}{}12,N 0,1,2A x x x =-≤≤∈=,{}1B =,所以{}0,2A B =,故选:C.37.C【解析】【分析】根据直线与抛物线的位置关系判断命题p 的真假,利用等轴双曲线的渐近线判断命题q 的真假,再根据含逻辑联结词命题真假的判断方法即可求解.【详解】若直线与抛物线的对称轴平行,则直线与抛物线只有一个交点,但是不算相切,故p 是假命题.因为等轴双曲线的实轴与虚轴相等,所以渐近线的斜率为±1,故q 为假命题.故p 且q 为假命题,p 或q 为假命题,()p ⌝或q 为真命题,p 且()q ⌝为假命题. 故选:C.38.C【解析】【分析】全称量词命题的否定为存在量词命题.【详解】全称量词命题的否定的方法是,全称改存在,否定结论.故命题p 的否定为n N ∃∈,33n n ≤.故选:C39.C【解析】【分析】根据全称量词命题的否定是特称量词命题即可求解.【详解】“所有可以被5整除的整数,末位数字都是5”的否定是:存在可以被5整除的整数,末位数字不是5.故选:C.40.D【解析】【分析】由集合S 的描述确定其点元素,并判断该点元素与集合T 的关系,应用并运算求S T .【详解】依题意,(){}S =,而()T ∈,所以S T T ⋃=.故选:D.41.B【解析】【分析】根据必要不充分条件的定义,前面推不出后面,后面推出前面,即可得到答案;【详解】若A B =∅,则A ,B 没有公共元素,A ,B 不一定是空集;若A =∅或B =∅,则A B =∅.故“A B =∅”是“A =∅或B =∅”的必要不充分条件.故选:B42.C【解析】【分析】直接求出U A .【详解】 因为集合{14}{0,1,2,3}U x x =∈-<<=N∣,集合{0,1}A =,所以{2,3}U A =. 故选:C.43.A【解析】【分析】根据一元二次不等式的解法求集合M ,运用集合间的运算直接求解.【详解】{}{}2|5+40|14M x x x x x =-<=<<,所以{}2,3M N =,故选:A .44.A【解析】【分析】根据命题,p q 的真假,可判断,p q ⌝⌝ 的真假,再根据 “或且非”命题真假的判断方法,可得答案.【详解】设sin ,0,1cos 0y x x x y x '=->=-≥ ,故sin ,0y x x x =->为增函数,则sin 0sin00x x ->-=,故命题:(0,)p x ∀∈+∞,sin 0x x ->为真命题,则p ⌝为假命题,因为2221a +≥> ,故命题:R q a ∀∈,()22()log a f x x +=在定义域上是增函数为真命题,q ⌝为假命题,所以p q ∧为真命题,p q ⌝∧为假命题,p q ∧⌝为假命题,p q ∨为真命题,则()p q ⌝∨为假命题,故选:A45.C【解析】【分析】根据B A ⊆3=m =,根据集合元素的互异性求得答案.【详解】由B A ⊆3=m =,3=时,9m = ,符合题意;m =时,0m =或1m =,但1m = 时,{}1,1B =不合题意,故m 的值为0或9,故选:C46.A【解析】【分析】直接利用并集的定义求解.【详解】解:因为集合{}0,1,2,3A =,{}2B x x =∈>Z ,所以A B ⋃=N .故选:A47.B【解析】【分析】判断命题p 、q 的真假,利用复合命题的真假可得出合适的选项.【详解】对于命题p ,取0x =,53y π=,则sin 0sin x y =>=x y <,p 为假命题, 对于命题q ,R a ∀∈,222a +≥,则函数()()22log a f x x +=在定义域内为增函数,q 为真命题.所以,p q ∧、p q ∧⌝、()p q ⌝∨均为假命题,p q ⌝∧为真命题.故选:B.48.C【解析】【分析】根据充分,必要条件的定义判断即可.【详解】对于p ,如果x =1.5,则q 不能成立,如果11x -≤≤ ,则x 必然在[]1,2-- 区间内,因此p 为q 的必要不充分条件;故选:C.49.B【解析】【分析】根据集合交并补的运算规则运算即可.【详解】U A 就是整数中去掉0,1剩下的那些数,∈ (){}1,2U A B ⋂=-.故选:B.50.B【解析】【分析】由条件推结论可判断充分性,由结论推条件可判断必要性.由3x <不能推出13x ,例如2x =-,但13x 必有3x <,所以p :3x <是q :13x 的必要不充分条件.故选:B.51.B【解析】【分析】由sin cos αα=得ππ4k α=+,再根据必要条件,充分条件的定义判断即可. 【详解】解:当sin cos αα=时,ππ4k α=+,k ∈Z , 反之,当π2π4k α=+,k ∈Z 时,sin cos αα=, 所以“sin cos αα=”是“π2π4k α=+,k ∈Z ”的必要不充分条件. 故选:B52.D【解析】【分析】按照有关定义以及数学期望和方差的计算公式即可.【详解】对于A ,已知随机变量14,3X B ⎛⎫ ⎪⎝⎭,则()14433E X =⨯=,故A 错误; 对于B ,根据互斥事件和对立事件的定义,“A 与B 是互斥事件”并不能推出“A 与B 互为对立事件”,相反“A 与B 互为对立事件”必能推出“A 与B 是互斥事件”,故B 错误;对于C ,根据方差的计算公式,()()234D X D X -=,故C 错误;对于D ,根据正态分布的对称性,随机变量()24,X N σ,()60.85P X ≤=, 所以()20.15P X ≤=,所以()240.35P X <≤=,故选:D.53.B【解析】【分析】推导出命题p 是真命题,命题q 是假命题,从而p q ∧是假命题,p q ∨是真命题,p q ⌝∧是假命题,p q ⌝∨是假命题.【详解】因为命题:1p Q ∈是真命题, 因为函数()f x=的定义域为()1,+∞,所以命题:q 函数()f x =的定义域是[)1,+∞是假命题,所以在A 中,p q ∧是假命题,故A 错误;在B 中,p q ∨是真命题,故B 正确;在C 中,p q ⌝∧是假命题,故C 错误;在D 中,p q ⌝∨是假命题,故D 错误.故选:B .54.A【解析】【分析】根据给定条件,判断互逆关系的两个命题真假,再结合充分条件、必要条件的定义判断作答.【详解】因1,x y =224x y +≥成立,即“224x y +≥”不能推出“2x ≥且2y ≥”, 而当2x ≥且2y ≥时,22222284x y +≥+=≥,即“2x ≥且2y ≥”能推出“224x y +≥”, 所以“224x y +≥”是“2x ≥且2y ≥”的必要不充分条件.故选:A55.B【解析】【分析】利用充分条件、必要条件的定义结合向量相等与其模相等的意义直接判断作答.【详解】 当a b =时,因向量a ,b 的方向不一定相同,则a 与b 不一定相等,当a b =时,必有a b =, 所以“a b =”是“a b =”的必要不充分条件.故选:B56.A【解析】【分析】由交集的运算直接求解即可.【详解】因为()0,B =+∞,所以{}1,4A B ⋂=.故选:A57.A【解析】【分析】列举出满足条件的非空集合A ,可得结果.【详解】由题意可知,满足条件的非空集合A 有:{}4、{}5、{}4,5,共3个.故选:A.58.A【解析】【分析】结合三角函数的性质,利用充分性与必要性的定义,可得出答案.【详解】A 是△ABC 的三个内角,()0,πA ∴∈当sin A <时,由()0,πA ∈,可得π03A <<或2ππ3A <<,所以“3A π<”是“sin A <”的充分不必要条件. 故选:A59.A【解析】【分析】直接利用交集的定义求解.【详解】解:因为集合{}4,5,6,8A =,{}3,5,7,8B =,所以A B ={}5,8.故选:A60.C【解析】【分析】根据相似三角形的性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.61.A【解析】【分析】先根据对数的单调性求出集合B ,再求交集.【详解】由2log 2x <可得,04x <<,所以{}04B x x =<<又{}1012A =-,,,,{}12A B ⋂=,62.D【解析】【分析】根据给定条件,举例判断面面位置关系的命题,再结合充分条件、必要条件的定义判断作答.【详解】长方体1111ABCD A B C D -中,平面ABCD ,平面11ABB A 分别视为平面α,β,直线CD ,11A B 分别为直线l ,m ,显然有l //m ,而α与β相交,即l //m 不能推出//αβ;长方体1111ABCD A B C D -中,平面ABCD ,平面1111D C B A 分别视为平面α,β,直线CD ,11A D 分别为直线l ,m ,显然有//αβ,而l 与m 是异面直线,即//αβ不能推出l //m ,所以“l //m ”是“//αβ”的既不充分也不必要条件.故选:D63.D【解析】【分析】先化简全集,再根据集合的运算求解即可.【详解】2{|760}{1,2,3,4,5,6}U x N x x =∈-+≤=,则{2,5,6}U A =,所以(){2,4,5,6}U A B ⋃=.故选:D64.C【解析】分别化简集合A ,B ,再取交集即可.【详解】()(){}[]4304,3A x x x =+-≤=-, 由()20.50.5l 5og 12log 0-->-=x .,又函数0.5log y x =在定义域上单调递减, 得210.5410x x -⎧-<=⎨->⎩,解得:14x <<,即()(]1,51,3B A B =⇒⋂=, 故选:C.65.D【解析】【分析】由全称命题的否定可得出结论.【详解】命题p 为全称命题,该命题的否定为:p x ⌝∃∈R ,ln 10x x -+≥,故选:D.66.C【解析】【分析】求出函数ln y x =的定义域可得集合B ,再利用交集、补集的定义计算作答.【详解】因集合{R|2}A y y =∈>,则R (,2]A =-∞,函数ln y x =有意义,有0x >,则(0,)B =+∞,所以R ()(0,2]A B ⋂=.故选:C67.C【解析】【分析】先求解集合Q 中的不等式,结合集合的交集、补集运算,即得解【详解】由题意,2{|4}{|2Q x R x x x =∈≥=≥或2}x故{|22}R Q x x =-<<则(){|12}[1,2)R P Q x x =≤<=故选:C68.C【解析】【分析】根据绝对值的意义解出集合M ,根据指数函数的性质解出集合N ,结合集合之间的关系即可得出结果.【详解】 由20y x =-≤,得M={y |y ≤0}, 由1()07x y =>,得N ={y |y >0},所以{}0R N y y =≤, 所以R M N =故选:C .69.B【解析】【分析】先判定命题p 和q 的真假,再结合复合命题的真假判定方法,即可求解.【详解】当2,x k k Z π=∈,可得cos 1x =,所以命题“:p x R ∀∈,cos 1x <”为假命题,则p ⌝为真命题;当1x =时,可得|ln |0x =,所以命题“:q x R +∃∈,|ln |0x ≤”为真命题,q ⌝为假命题, 所以命题“p q ∧”,“p q ∧⌝”,“()p q ⌝∨”为假命题,“p q ⌝∧”为真命题.故选:B.70.D【解析】【分析】利用线面平行垂直的判定定理及性质定理判断即可.【详解】由题,若m α∥,则m 与平面β,可以平行,相交或者m 在平面内,故充分性不满足; 若m β⊥,则m 可以平行α,也可包含于α,故必要性不满足.故选:D71.B【解析】【分析】解不等式确定集合A ,然后由集合交集的定义计算.【详解】由已知{|01}A x x =<<,所以1{|1}2A B x x =<<. 故选:B .72.A【解析】【分析】分别求出集合A ,B ,根据集合的交集和补集运算得出答案.【详解】由201x x +≤-,则()()210x x +⋅-≤解得:21x .[)202,11x A x x ⎧⎫+∴=≤=-⎨⎬-⎩⎭,{}()2201,2B x x x =--<=-, R C A ={2x x <-或}1x ≥,()R C A B ⋂=[)1,2.故选:A.73.C【解析】【分析】根据集合补集的定义即可求解.【详解】解:因为{}{}12,0,1,2A x x x N =-≤≤∈=,{}1B =,所以{}0,2A B =,故选:C.74.A【解析】【分析】根据集合M 的描述,判断集合N 中元素与集合M 的关系,再由集合的交运算求M N ⋂【详解】由题设,1,3,5M ∈,2,4M ∉,所以{1,3,5}MN =.故选:A75.B【解析】【分析】根据函数的奇偶性与单调性判断命题的充分必要性.【详解】由函数()3f x x x =+,则()()3f x x x f x -=--=-, 则函数()f x 为奇函数,且在R 上单调递增,又()()120f a f a ++>,得()()()122f a f a f a -+>=-,故12a a +>-,解得13a >-, 故1a >-是()()120f a f a ++>的必要不充分条件,故选:B.76.B【解析】【分析】先求出集合A ,再求两集的交集【详解】 由2x <,得22x -<<,所以{}22A x x =-<<,因为{}2,1,0,1,2B =--,所以A B ={}1,0,1-,故选:B77.B【解析】【分析】先表示出圆心和半径,利用圆心到直线的距离等于半径,结合充分必要条件的判断即可求解.【详解】()2211x y -+=,圆心()1,0,半径为1,由直线430x y m ++=与圆2220x y x +-=相切得1=,解得1m =或9-,故“直线430x y m ++=与圆2220x y x +-=相切”是“1m =”的必要不充分条件.故选:B.78.B【解析】【分析】求出2263x x +的解集,看和2263x x +的推出关系,即得答案.【详解】由2263x x +,得97x -,不能推出||7x ,由||7x ,得77x -,能推出97x -,故“2263x x +”是“||7x ”的必要不充分条件,故选:B79.A【解析】【分析】先写出集合B ,再按照交集运算.{}16B x x =≤≤,则A B ={}135,,.故选:A.80.D【解析】【分析】求得(){}1,0M =-,证明函数()ln 2y x =+过点()1,0-,可得M N ⊆,即可求出答案.【详解】解:()(){}(){}22,101,0M x y x y =++==-, 因为当1x =-时,()ln 2ln10x +==,所以函数()ln 2y x =+过点()1,0-,所以M N ⊆,所以M N N ⋃=.故选:D.81.A【解析】【分析】根据不等式的解法求得集合,A B ,再结合集合交集的运算,即可求解.【详解】 由集合{}12102A x x x x ⎧⎫=->=>⎨⎬⎩⎭, 又由不等式23180x x --<,即(3)(6)0x x +-<,解得36x -<<,即{}|36B x x =-<<, 所以11|6,622A B x x ⎧⎫⎛⎫⋂=<<=⎨⎬ ⎪⎩⎭⎝⎭. 故选:A.82.C【解析】利用集合的并集和补集运算求解.【详解】因为集合{1,1}R =-,{4,5}Q =,所以{}1,1,4,5R Q ⋃=-,因为全集{1,0,1,3,4,5,6}U =-,所以()U R Q ⋃={0,3,6},故选:C83.B【解析】【分析】由绝对值不等式及一元二次不等式的解法求出集合A 和B ,然后根据交集的定义即可求解.【详解】解:由题意,集合{}{}|44,3,2,1,0,1,2,3A x x x Z =-<<∈=---,{}{24|2B y y y y =>=<-或}2y >, 所以{}3,3A B ⋂=-,故选:B.84.AB【解析】【分析】先解出不等式260x x --<,再按照充分不必要条件求解.【详解】由260x x --<得23x -<<,因此,若“260x x --<”是“4a x <<”的充分不必要条件,则2a ≤-.故选:AB.85.AC【解析】【分析】直接推导可判断A ;写出否命题取值验证可判断B ;特值法可判断C ;根据存在量词命题的否定可判断D.【详解】对于A 选项,11x x =-⇒=,所以不是充分条件;又111x x x ≠⇒≠±⇒≠,所以是必要不充分条件,A 选项正确;对于B 选项,“若6x y +≥,则x ,y 中至少有一个大于3”的否命题为“若6x y +<,则x ,y 都不大于3”.取4,1x y ==,显然为假命题,故B 选项错误;对于C 选项,取01x =-可知C 选项正确;命题“0x ∃<,220x x --<”的否定是“0x ∀<,220x x --≥”,故D 不正确,故选:AC.86.AC【解析】【分析】根据特称命题的否定是全称命题可求解.【详解】 由x a a -≥,可得x a a -≥或x a a -≤-可得2x a ≥或0x ≤.故命题“0x ∃>,x a a -<”的否定是“0x ∀>,x a a -≥”或“0x ∀>,2x a ≥或0x ≤”. 故选:AC87.BC【解析】【分析】先解出不等式恒成立对应的m 的范围,再按照充分不必要条件的定义进行判断.【详解】若关于x 的不等式210mx mx -+>对x R ∀∈恒成立,则 ()2040m m m >⎧⎪⎨--<⎪⎩或0m =,解得04m ≤<, 所以A 选项为充要条件,D 选项为必要不充分条件,B 、C 选项为充分不必要条件. 故选:BC.88.CD。
2024年高考数学真题分类汇编01:集合与常用逻辑用语
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
二、填空题ห้องสมุดไป่ตู้
10.(2024·上海)设全集U 1, 2,3, 4,5 ,集合 A 2, 4 ,则 A
.
1.A
参考答案:
【分析】化简集合 A ,由交集的概念即可得解.
【解析】因为 A x | 3 5 x 3 5 , B 3, 1, 0, 2,3 ,且注意到1 3 5 2 ,
【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件. 【解析】根据立方的性质和指数函数的性质, a3 b3 和 3a 3b 都当且仅当 a b ,所以二者 互为充要条件. 故选:C.
10. 1, 3, 5
【分析】根据补集的定义可求 A .
【解析】由题设有 A 1,3,5 ,
b
或
a
b
”的(
)条件.
A.必要而不充分条件
B.充分而不必要条件
C.充分且必要条件
D.既不充分也不必要条件
8.(2024·天津)集合 A 1, 2,3, 4 , B 2,3, 4,5 ,则 A B ( )
A.1, 2,3, 4
B.2,3, 4
C.2, 4
D. 1
9.(2024·天津)设 a,b R ,则“ a3 b3 ”是“ 3a 3b ”的( )
【解析】因为 A 1, 2,3, 4,5,9, B x x A ,所以 B 1, 4,9,16, 25,81 ,
则 A B 1, 4,9 , ðA A B 2, 3, 5
故选:D
5.C
【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.
【解析】对 A,当 a b 时,则 a b 0 ,
集合与常用逻辑用语(含答案)
集合与常用逻辑用语一.选择题(共9小题)1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=()A.{0}B.{0,1}C.{1,2}D.{0,2}2.集合P={﹣1,0,1},Q={y|y=cos x,x∈R},则P∩Q=()A.P B.Q C.{﹣1,1}D.[0,1]3.设集合A={x|1≤x≤2},B={x|x≥a}.若A⊆B,则a的范围是()A.a<1B.a≤1C.a<2D.a≤24.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.85.设全集为R,集合A={x|﹣1<x<1},B={x|x≥1},则∁R(A∪B)等于()A.{x|0≤0<1}B.{x|x≥1}C.{x|x≤﹣1}D.{x|x>﹣1}6.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.7.已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}8.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A ∩B的元素个数为()A.mn B.m+n C.n﹣m D.m﹣n9.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18D.27二.填空题(共5小题)10.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有个元素.11.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B=.12.已知集合A={x|y=,x∈Z},B={y|y=2x﹣1,x∈A},则A∩B=.13.设全集I={2,3,a2+2a﹣3},A={2,|a+1|},∁I A={5},M={x|x=log2|a|},则集合M 的所有子集是.14.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=.三.解答题(共6小题)15.一个无重复数字的五位数,如果满足万位和百位上的数字都比千位上的数字小,百位和个位上的数字都比十位上的数字小,则这个五位数称为“倒W型数”,问:一共有多少个倒W型数?16.已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)已知函数f(x)=﹣x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2﹣4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;(Ⅱ)是否存在实数k,使函数f(x)=cos kx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.17.已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁U B)={1,3,5,7},求集合B.18.已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.19.对于集合M、N,定义M⊖N={x|x∈M且x∉N},M⨁N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},B={y|y=﹣x+1,x>1},求A⨁B.20.记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.。