学案1 任意角和弧度制

合集下载

《任意角和弧度制》 导学案

《任意角和弧度制》 导学案

《任意角和弧度制》导学案一、学习目标1、理解任意角的概念,包括正角、负角和零角。

2、掌握象限角的概念及终边相同角的表示方法。

3、理解弧度制的定义,能进行角度与弧度的换算。

4、掌握弧度制下的弧长公式和扇形面积公式。

二、知识梳理(一)任意角1、角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

2、正角、负角和零角按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们称它形成了一个零角。

3、象限角使角的顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边在第几象限,就说这个角是第几象限角。

如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。

(二)终边相同的角所有与角α终边相同的角(包括角α在内),均可表示为:k·360°+α,k∈Z 。

(三)弧度制1、弧度制的定义长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。

2、角度与弧度的换算180°=π rad ,1°=π / 180 rad ,1 rad =( 180 /π )°(四)弧长公式和扇形面积公式1、弧长公式:l =|α|r ,其中α为圆心角的弧度数,r 为半径。

2、扇形面积公式:S = 1 / 2 lr = 1 / 2 |α|r²三、重点难点(一)重点1、任意角的概念和象限角的判断。

2、终边相同角的表示。

3、弧度制与角度制的换算。

4、弧长公式和扇形面积公式的应用。

(二)难点1、对任意角概念的理解,尤其是负角和零角。

2、终边相同角的准确表示。

3、弧度制概念的理解及弧度与角度的换算。

四、典型例题例 1:已知角α =-120°,判断它是第几象限角。

解:因为-120°= 240° 360°,而 240°是第三象限角,所以-120°是第三象限角。

1 任意角和弧度制 一等奖创新教学设计

1 任意角和弧度制 一等奖创新教学设计

1 任意角和弧度制一等奖创新教学设计【新教材】5.1.1任意角教学设计(人教A版)学生在初中学习了~,但是现实生活中随处可见超出~范围的角.例如体操中有“前空翻转体”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到~范围内的角.但是现实生活中随处可见超出~范围的角.例如体操中有“前空翻转体”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1 (1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β。

高中数学教案《任意角和弧度制》

高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。

2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。

二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。

●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。

三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。

●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。

●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。

2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。

●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。

●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。

3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。

●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。

●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。

4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案第一篇:1.1 任意角和弧度制教学设计教案教学准备1.教学目标1、知识与技能(1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物.2.教学重点/难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.3.教学用具多媒体4.标签任意角教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角(any angle),包括正角、负角和零角.为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与轴的非负半轴重合。

任意角和弧度制教案

任意角和弧度制教案

任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。

2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。

3. 掌握任意角的三角函数值的计算方法。

教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。

2. 学生准备:纸和铅笔。

教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。

提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。

Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。

提醒学生注意正角、负角和零角的特点。

2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。

Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。

2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。

3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。

Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。

2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。

Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。

2. 学生个别或小组合作完成拓展应用题。

Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。

2. 学生将所学知识进行整理和归纳,完成课堂笔记。

Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。

2. 学生完成作业,以便巩固所学知识。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。

任意角与弧度制教案

1、1任意角和弧度制一、教材说明:本节任意角和弧度制选自必修四第一章第一节二、三维目标(一)知识与技能(1)了解正、负角与零角的相关定义;(2)根据图形写出角及根据终边写出角的集合;(3)了解弧度制;(二)过程与方法(1)培养学生数型转化的思想;(2)训练学生思维活跃性,能够举一反三;(3)培养学生思维的抽象与具体转化的过程;(三)情感态度与价值观(1)增强学生观察生活中事物的规律能力;(2)在老师的引导下建立数学模型,把数学运用到生活中去;三、教学重难点(一)重点(1)根据图形写出任意角度数;(2)根据已知图形终边位置写出该终边所表示的角的集合;(二)难点根据终边写角的集合(三)教学设计(1)情境设计(2)教学过程(3)给出相关定义(4)举出例题,深化正负角定义(5)提出要点(6)提出关于终边相同,写出所有角所在集合(7)通过练习(教师引导,并作为主体练习),能够独立进行习题练习(8)学生自主练习、教师个别指导、师生互动(9)习题讲解(10)归纳总结(11)引出下堂课知识点:弧度制(12)布置作业四、教学过程(一)创设情境(1)墙上挂钟,在某段时间内,指针转过角度;(2)当手表不准时,我们旋转指针使之准时,这是指针转过的角度是多少?方向如何?(二)揭示课题(1)1、1任意角和弧度制(2)1、1、1任意角(三)复习旧知识顺时针、逆时针(四)给出例题(1)当指针快速顺时针由“12”调至“6”,指针转过多少度?(2)指针由“6”又调回到“12”是,转过角度如何?方向又怎样呢?(五)给出正角、负角定义(1)正角:逆时针方向旋转形成的角叫做正角;(2)负角:顺时针方向旋转形成的角叫做负角;(六)注意要点如果一条射线没有做任何旋转,则称它为零角。

(七)复习旧知识(1)0°-180°内所有角(2)周角(3)平角的整数倍所有角(八)新知识(1)任意角的表示方法;(2)判断当角的始变何种变相同时,角度是否相同。

任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册

第五章三角函数5.1.2 弧度制(1 课时)【教学内容】弧度与角度的互化;特殊角的弧度制;弧长公式、扇形面积公式.【教学目标】(说明:不要写成三维目标的形式,点列,可以从知识技能、过程方法、数学核心素养等角度写目标)1.理解弧度制的定义,体会引入弧度制的必要性.(数学抽象)2.能进行弧度与角度的互化,熟悉特殊角的弧度制.(逻辑推理、数学运算)3.掌握弧度制中扇形的弧长和面积公式,体会弧度制下公式形式的简洁性,会应用公式解决简单的问题.(数学运算、数学模型)【教学重难点】教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明.教学难点:能灵活运用弧长公式、扇形面积公式解决问题.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。

2.1 的角是如何定义的?【答案】规定:圆周1/360 的圆心角称作1 角.这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80 厘米,也可以说长0.8 米,显然两种结果出现了不同的数值. 在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为60的圆心角,半径r 1,2,3 时,(1)分别计算相对应的弧长l ;(2)分别计算对应弧长与半径之比.思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1 弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是 rad. 约定: 正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为 0.思考 1:圆的半径为 r,弧长分别为 2r 、πr,则它们所对圆心角的弧度 数是多少?【答案】2rad, πrad.思考 2:如果半径为 r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?l【答案】|α| =r2. 角度与弧度的换算思考 3:一个周角以度为单位度量是多少度, 以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º, 2π. 360︒= 2πrad,180︒ = πrad思考 4:根据上述关系,1°等于多少弧度, 1 rad 等于多少度? 【答案】1︒ =π180︒≈ 0.01745rad 1rad = 180)︒≈ 57.30︒(π三、典型例题例 1. 把下列各角的度数化为弧度。

任意角的概念与弧度制教案

任意角的概念与弧度制教案一、任意角的概念:1.任意角的定义:在坐标平面上,如果将终边与正半轴之间的交点记作点A,即A=(1,0),以正向旋转方向将终边与正半轴旋转到位时所转过的角叫做任意角。

任意角由初始边和终边两部分构成。

2.任意角的位置:任意角不限于0到360度之间,可以是任意大小的角度。

旋转方向可以是正向(逆时针)或反向(顺时针)。

3.任意角的度数:任意角的度数即为终边与正半轴的夹角的度数,用角度符号°表示。

4.任意角的象限:根据终边在哪个象限上,可以将任意角分为一、二、三、四象限。

二、弧度制的概念:1.弧度的定义:将半径等于1的圆的周长分成等份,每份叫做一个弧度。

如果圆上的一段弧的长度等于半径的长度,则该弧对应的角叫做一弧度。

2.弧度与度数的关系:360°对应的弧度为2π,即一周对应2π弧度。

所以,任意角对应的弧度数等于该角度数乘以π/180。

3.弧度制的优势:在三角函数的计算中,弧度制比度数制更为方便和精确,有利于进行各种数学计算。

三、教学步骤:教学目标:学生了解任意角的概念与弧度制的定义,掌握任意角的度数与弧度的转化关系。

教学步骤:Step 1:导入新知识通过出示一个角的图片,提问学生这个角是什么角,是否为任意角。

引导学生思考任意角的含义与特点。

Step 2:任意角的概念解释与举例教师对任意角的概念进行解释,并用实际生活中的例子来说明。

比如:针对绕场地跑的运动员,可以将终点的方向与正北方向之间的夹角视为任意角。

Step 3:弧度制的引入教师让学生回忆以前学过的圆的知识,引出弧度的概念。

通过实际的展示,向学生展示单位圆上的一个弧度与该弧度对应的角。

Step 4:弧度与度数的转化通过一个表格或示例,教师向学生解释弧度与度数之间的转化关系。

提醒学生要掌握好π、角度、弧度之间的换算。

Step 5:练习与巩固提供一些练习题,让学生进行弧度与度数之间的互相转化,巩固所学知识。

Step 6:拓展应用教师提出一些与弧度制相关的实际问题,让学生运用所学知识解决问题。

任意角的概念与弧度制教案

任意角的概念与弧度制教案一、概念解释任意角是指角的顶点可以位于坐标系中的任意位置,而不仅仅局限于角的顶点位于原点或坐标轴上。

在平面直角坐标系中,如果将角的顶点放在原点上,且不在坐标轴上,则该角为任意角。

在数学中,角的度量方式有两种,分别是度度量和弧度度量。

本教案将重点介绍弧度制的概念与应用。

二、弧度制的定义弧度制是一种用弧长来度量角的单位制度。

弧度制中,角的度量用弧长与半径相等的弧所对应的弧度数表示。

三、弧度制与度度量的转换1. 弧度制转度度量:角度(度) = 弧度数× (180°/π)2. 度度量转弧度制:弧度数 = 角度(度) × (π/180°)四、弧度制的优点1. 精确性:弧度制可以更精确地表示小角度,保证计算结果的准确性。

2. 便利性:在三角函数的计算中,弧度制更便于推导与计算,使得计算过程更加简洁。

3. 单位统一:由于弧度制是用弧长来度量角度的单位制度,使得角度和长度的单位得到了统一。

五、任意角的弧度表示在任意角中,以顺时针为正方向,角的弧度表示为正角度的弧度数。

六、弧度制在三角函数中的应用在三角函数中,弧度制是最常用的单位制度。

以下是几个常用三角函数值对应的弧度制表示:1. 正弦函数:sin(30°) = sin(π/6) = 0.52. 余弦函数:cos(45°) = cos(π/4) = 0.7073. 正切函数:tan(60°) = tan(π/3) = √3七、弧度制的练习与应用1. 练习一:求解以下各角的弧度制表示:a) 45°b) 60°c) 90°2. 练习二:根据题意求解下列三角函数的值(保留两位小数):a) sin(π/4)b) cos(π/3)c) tan(π/6)3. 应用一:计算角度为45°的正弦值解答:sin(45°) = sin(π/4) = 0.7074. 应用二:计算角度为60°的余弦值解答:cos(60°) = cos(π/3) = 0.5八、总结通过本教案的学习,我们了解了任意角的概念以及其中的弧度制度量方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若一个扇形的周长与面积的数值相等, 若一个扇形的周长与面积的数值相等,则该扇形所在圆的 半径不可能等于 A.5 B.2 C.3 ( D.4 )
【解析】 解析】
1.[2011年高考课标全国卷]已知角 的顶点与原点重合, [ 年高考课标全国卷] 的顶点与原点重合, 年高考课标全国卷 已知角θ的顶点与原点重合 始边与x轴的正半轴重合,终边在直线 始边与 轴的正半轴重合,终边在直线y=2x上,则cos2θ= 轴的正半轴重合 上 ( )
【评析】扇形面积的公式是圆周长公式C=2πr和圆面积公 评析】扇形面积的公式是圆周长公式 和圆面积公 当用圆心角的弧度数α代替 式S=πr2,当用圆心角的弧度数 代替 时,即可得到一般弧 当用圆心角的弧度数 代替2π时 即可得到一般弧
1 长和扇形面积公式l=αr,S= αr2. 长和扇形面积公式 2
l r
(l是以角 是以角α 是以角
作为圆心角时所对圆弧的长,r为半径 作为圆心角时所对圆弧的长 为半径). 为半径 弧度”做单位来度量角的制度叫做弧度制. (3)用“弧度”做单位来度量角的制度叫做弧度制 ) 比值lr与所取的 的大小 比值 与所取的r的大小 与所取的 无关 ,仅与 仅与 角的大小 有关. 有关
设扇形的圆心角为α(0<α<2π),半径为 面积为 半径为r,面积为 【解析】解法一:设扇形的圆心角为 解析】解法一 设扇形的圆心角为 半径为 面积为S, 弧长为l,则有 弧长为 则有l=α r. 则有 由题意有α 由题意有 r+2r=4,得r= 得 1 4 2 8α 8α 8 ∴S= ( ) ⋅α = 2 = = = 1(cm2 ) 2 α+2 α + 4α + 4 4 + 4α + 4 4 2 α⋅ + 4 α α 4 4 当且仅当α= ,即α=2时取等号 此时 时取等号,此时 =1(cm). 当且仅当 即 时取等号 此时r=
若角θ的终边与 若角 的终边与
θ 角的终边相同的是______. 角的终边相同的是 3
6π π 的终边相同,则在 则在[ 的终边相同 则在[0,2π)内终边与 内终边与 7
2π 20 34 ຫໍສະໝຸດ π, π 7 21 21【解析】 解析】 6π (2)∵θ= 7π+2kπ(k∈Z), ∵ ∈ θ 2π 2π = + kπ(k∈Z). ∴ ∈ 3 7 3 2π 20 34 θ , π, π 依题意,依次令 依次令k=0,1,2得 = 依题意 依次令 得 3 7 21 21
位于第三象限, 【解析】(1)∵点P(sinθ·cosθ,2cosθ)位于第三象限 解析】 ∵ 位于第三象限 ∴sinθ·cosθ<0,2cosθ<0, 即
{
sinθ>0 cosθ<0,
π (2)∵2kπ+ <θ<2kπ+π(k∈Z), ∵ ∈ 2
∴-1<cosθ<0,
为第二象限角.即角 在第二象限. ∴θ为第二象限角 即角 在第二象限 为第二象限角 即角θ在第二象限
(3)与角 终边相同的角的集合 终边相同的角的集合: )与角α终边相同的角的集合 {β|β=k·360°+α,k∈Z} ° ∈ 4.弧度制 弧度制 弧度的角:叫 (1)1弧度的角 叫 长度等于半径长的圆弧所对的圆心角 ) 弧度的角 做1弧度的角 弧度的角. 弧度的角 .
(2)规定 正角的弧度数是一个 正数 ,负角的弧度数 )规定:正角的弧度数是一个 负角的弧度数 是一个 负数 ,零角的弧度数是 0 零角的弧度数是 .|α|=
考点2 考点2
弧长与扇形的面积
已知扇形的周长为4 已知扇形的周长为 cm,当它的半径和圆心角各取什么值 当它的半径和圆心角各取什么值 时,扇形面积最大 并求出这个最大面积 扇形面积最大?并求出这个最大面积 扇形面积最大 并求出这个最大面积. 【分析】利用扇形的弧长和面积公式,可以把扇形的面积表 分析】利用扇形的弧长和面积公式 可以把扇形的面积表 示成圆心角的三角函数,或表示成半径的函数 进而求解 示成圆心角的三角函数 或表示成半径的函数,进而求解 或表示成半径的函数 进而求解.
4 (cm), α+2
2+2 α 故当半径r=1 cm,圆心角为 弧度时 扇形面积最大 其最大值为 圆心角为2弧度时 扇形面积最大,其最大值为 故当半径 圆心角为 弧度时,扇形面积最大
1 cm2.
解法二:设扇形的圆心角为 半径为r,面积为 解法二 设扇形的圆心角为α(0<α<2π),半径为 面积为 则 设扇形的圆心角为 半径为 面积为S,则 扇形的弧长为rα,由题意有 扇形的弧长为 由题意有2r+rα=4 由题意有
弧度; (4)弧度与角度的换算 )弧度与角度的换算:360°= 2π 弧度 180° ° ° = π 弧度 弧度. (5)弧长公式 )弧长公式: S扇形=
1 lr 2
l =| a | r
1 a r2 2
,扇形的面积公式 扇形的面积公式: 扇形的面积公式 .
=
考点1 考点1
象限角、三角函数值符号的判断 象限角、
角的顶点在原点,始边在 轴的正半轴 (1)象限角 角的顶点在原点 始边在 x轴的正半轴 上, )象限角:角的顶点在原点 终边在第几象限,就说这个角是 角的 终边在第几象限 就说这个角是 (2)象限界角 若角的终边在 )象限界角:若角的终边在 不属于任何象限,它叫 不属于任何象限 它叫 象限界角 第几象限角 . 就说这个角 坐标轴 上,就说这个角 .
1 2 ∴S= αr = 2
α= ⇒
1 4 - 2r 2 × ×r =2r-r2=-(r-1)2+1, r 2
4 - 2r . r
有最大值1(cm2), ∴r=1(cm)时,S有最大值 时 有最大值 此时α= 此时
4 - 2r =2(弧度 弧度), 弧度 r
故当半径为1 圆心角为2弧度时 扇形面积最大,其最大值 故当半径为 cm,圆心角为 弧度时 扇形面积最大 其最大值 圆心角为 弧度时,扇形面积最大 为1 cm2.
4 A.5 3 B.5
C. 3
5
D. 4
5
2.[2010年高考全国卷Ⅰ]记cos(-80°)=k,那么 [ 年高考全国卷Ⅰ 年高考全国卷 ( ° 那么 tan100°= ° A.
1− k 2 − k
( )
1− k 2 − − B. k
C.
k 1 − k2
D. −
k 1− k2
1.区分象限角、范围角(如锐角、钝角)等概念. 1.区分象限角、范围角(如锐角、钝角)等概念. 区分象限角 2.理解弧度概念 正确利用π rad=180° 2.理解弧度概念,正确利用π rad=180°进行度与弧度 理解弧度概念, 的互化. 的互化.
4kπ+π<2θ<4kπ+2π,-1≤sin2θ<0. ∴sin(cosθ)<0,cos(sin2θ)>0,
sin(cosθ) sin(cosθ) <0,∴ ∴ ∴ cos(sin2θ) cos(sin2θ)
的符号是负号. 的符号是负号
【评析】 (1)熟记各个三角函数在每个象限内的符号是 评析】 熟记各个三角函数在每个象限内的符号是 关键. 关键 (2)判断三角函数值的符号就是要判断角所在的象 判断三角函数值的符号就是要判断角所在的象 限. (3)对于已知三角函数式的符号判断角所在象限 可 对于已知三角函数式的符号判断角所在象限,可 对于已知三角函数式的符号判断角所在象限 先根据三角函数式的符号确定三角函数值的符号,再判断 先根据三角函数式的符号确定三角函数值的符号 再判断 角所在象限. 角所在象限
(1)如果点 如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角 位于第三象限, 如果点 位于第三象限 试判断角θ 所在的象限; 所在的象限; (2)若θ是第二象限角 则 若 是第二象限角 是第二象限角,则
sin(cosθ) 的符号是什么? 的符号是什么 cos(sin2θ)
由点P所在的象限 知道sinθ·cosθ,2cosθ 【分析】 (1)由点 所在的象限 知道 分析】 由点 所在的象限,知道 的符号,从而可求 的符号. 的符号 从而可求sinθ与cosθ的符号 从而可求 与 的符号 (2)由θ是第二象限角 可求 由 是第二象限角 可求cosθ,sin2θ的范围 进而把 是第二象限角,可求 的范围,进而把 的范围 cosθ,sin2θ看作一个用弧度制的形式表示的角 并判断其所在 看作一个用弧度制的形式表示的角,并判断其所在 看作一个用弧度制的形式表示的角 并判断其所在u 的象限,从而 的符号可定. 的象限 从而sin(cosθ),cos(sin2θ)的符号可定 从而 的符号可定
学案1 学案1
任意角和弧度制
了解任意角的概念和弧度制的概念. 任意角和 (1)了解任意角的概念和弧度制的概念. 弧度制 (2)能进行弧度与角度的互化. 能进行弧度与角度的互化.
以选择题或填空题的形式考查任意角的三角函数
1 的定义、 角所处的象限等问题. 的定义、半角或 角所处的象限等问题 n
1.角 1.角 (1)角:角可以看成平面内 一条射线 绕着端点从一个 角 角可以看成平面内 位置 旋转 到另一个位置所成的 图形 .旋转开始时的 旋转开始时的 始边 ,旋转终止时的射线叫做角 射线叫做角α的 旋转终止时的射线叫做角α 射线叫做角 的 旋转终止时的射线叫做角 射线的端点叫做角α的 的 终边 ,射线的端点叫做角 的 顶点 . 射线的端点叫做角 零角 、 2.角的分类 角分 正角、 角的分类:角分 角的分类 (按角的旋转方向). 按角的旋转方向) 3.在直角坐标系内讨论角 在直角坐标系内讨论角 负角
相关文档
最新文档