二次函数的几何应用

合集下载

二次函数的应用(几何问题)

二次函数的应用(几何问题)

二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 【答案】 D 。

【考点】二次函数的图象和性质。

【分析】根据题意得:y =|ax 2+bx +c|的图象如右图,∵|ax 2+bx +c|=k(k≠0)有两个不相等的实数根, ∴k>3。

故选D 。

二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上. (Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.【答案】解:(Ⅰ)若a=1,b=4,c=10,此时抛物线的解析式为y=x 2+4x+10。

①∵y=x 2+4x+10=(x+2)2+6,∴抛物线的顶点坐标为P (-2,6)。

②∵点A (1,y A )、B (0,y B )、C (-1,y C )在抛物线y=x 2+4x+10上, ∴y A =15,y B =10,y C =7。

∴A B C y 15==5y y 107--。

(Ⅱ)由0<2a <b ,得0bx 12a<=--。

由题意,如图过点A 作AA 1⊥x 轴于点A 1, 则AA 1=y A ,OA 1=1。

连接BC ,过点C 作CD⊥y 轴于点D , 则BD=y B -y C ,CD=1。

过点A 作AF∥BC,交抛物线于点E (x 1,y E ),交x 轴于点F (x 2,0)。

则∠FAA 1=∠CBD。

∴Rt△AFA 1∽Rt△BCD。

∴11AA FA BD CD=,即221x yA1x yB yC 1-==--。

几何画板在二次函数y=ax2 ( a ≠0)中的应用

几何画板在二次函数y=ax2 ( a ≠0)中的应用

几何画板在二次函数y=ax2 ( a ≠0)中的应用几何画板是一种工具,它能够帮助我们更直观地理解数学概念和图形关系。

在数学教学中,几何画板的应用十分广泛,而在二次函数y=ax² ( a ≠0)中,几何画板能够帮助学生更好地理解二次函数的图像、性质和变化规律。

本文将就几何画板在二次函数中的应用进行探讨。

一、几何画板的基本原理几何画板是一种绘图工具,它由一块坚固的底板和一根可以移动的直线组成。

直线的移动会在底板上留下痕迹,通过这些痕迹可以得到各种图形。

几何画板的基本原理就是利用直线的移动和痕迹留下的规律来研究各种图形的性质和变化规律。

二、二次函数y=ax² ( a ≠0)的基本性质二次函数y=ax² (a ≠0)是常见的一种函数形式,它的图像是一个抛物线。

二次函数的图像形状、开口方向和顶点位置等性质都与参数a有关。

具体来说,当a>0时,二次函数的图像开口向上,顶点坐标为(0,0);当a<0时,二次函数的图像开口向下,顶点坐标同样为(0,0)。

三、几何画板在二次函数图像的绘制中的应用利用几何画板可以很方便地绘制二次函数的图像。

我们需要在底板上建立坐标系,然后利用直线和点的规律来绘制函数的图像。

具体操作步骤如下:1.绘制坐标系:在底板上绘制x轴和y轴,并标出刻度。

2.确定顶点坐标:对于二次函数y=ax² (a ≠0),其顶点坐标为(0,0)。

3.确定对称轴:二次函数的对称轴为x轴。

4.绘制图像:利用几何画板的移动直线来绘制二次函数的图像。

具体方法是,以顶点为中心,以对称轴为轴线,在底板上移动直线,得到二次函数的图像。

通过利用几何画板来绘制二次函数的图像,可以帮助学生更直观地理解二次函数的性质和变化规律。

通过手动绘制图像,也能够让学生更深入地理解函数的定义和图像的形成规律。

除了帮助绘制二次函数的图像外,几何画板还可以用来探究二次函数图像的性质和变化规律。

九年级数学下册《二次函数在几何方面的应用》优秀教学案例

九年级数学下册《二次函数在几何方面的应用》优秀教学案例
二、教学目标
(一)知识与技能
1.理解二次函数的基本概念,掌握二次函数的图像特征及其性质,能准确描述其开口方向、顶点、对称轴等关键信息。
2.学会运用二次函数解决几何问题,如求抛物线与直线的交点、距离、面积等,并能将其应用于解决实际问题。
3.培养学生运用数形结合思想,通过绘制图像,直观判断二次函数与几何图形的关系,提高解决问题的准确性和效率。
4.数形结合方法,提高解题效率
本案例重视数形结合方法的运用,引导学生通过观察二次函数的图像特征,直观判断几何问题的解。这种方法有助于提高学生解决问题的效率,培养他们的几何直观和空间想象能力。
5.反思与评价,促进自我提升
案例中设置了反思与评价环节,让学生在学习过程中不断总结经验,发现自身不足,从而实现自我提升。同时,多维度评价机制也有助于学生全面了解自己的学习成果,激发他们持续学习的动力。
(二)问题导向
在教学过程中,我将采用问题导向的教学策略,引导学生围绕核心问题进行探讨。设计具有启发性和挑战性的问题,鼓励学生运用所学知识,通过分析、综合、推理等思维过程解决问题。针对二次函数在几何方面的应用,可以提出如下问题:“如何求抛物线与直线的交点?”“抛物线的顶点在几何问题中有何作用?”等。问题导向的教学策略有助于培养学生主动思考、独立解决问题的能力。
3.小结反馈:收集学生的作业,了解他们在学习过程中的困惑和问题,为下一节课的教学提供参考。
五、案例亮点
1.生活情境融入,激发学习兴趣
本教学案例将生活中的实际情境融入课堂,如建筑、体育等领域中的抛物线现象,使学生在轻松愉快的氛围中感受二次函数与几何图形的结合。这种贴近生活的教学方式,有助于激发学生的学习兴趣,提高他们的学习积极性。
4.引导学生认识到数学与现实生活的紧密联系,体会数学在解决实际问题中的价值,培养他们用数学的眼光看待世界的意识。

二次函数的几何应用教案道客巴巴

二次函数的几何应用教案道客巴巴

二次函数的几何应用教案道客巴巴
二次函数是数学中非常重要的一个概念,它在几何中有着广泛
的应用。

下面我将从几何图形的性质、实际问题的建模等方面来详
细解释二次函数的几何应用。

首先,二次函数在几何中常常与抛物线相关联。

抛物线是二次
函数的图像,它的几何特征包括顶点、焦点、直径、对称轴等。


过学习二次函数,我们可以深入理解抛物线的性质,比如开口方向、开口大小、顶点坐标等。

这些性质在解决与抛物线相关的几何问题
时非常有用,比如确定抛物线的焦点和直径、求解抛物线与直线的
交点等。

其次,二次函数还可以用来建立实际问题的数学模型。

例如,
抛物线的形状可以用来描述抛射物的运动轨迹,这在物理学和工程
学中有着广泛的应用。

通过二次函数建立的模型,我们可以计算抛
射物的最大高度、飞行时间、落地点等信息,这对于设计弹道导弹、射击运动员的训练等具有重要意义。

此外,二次函数还可以用来解决与面积和体积相关的几何问题。

比如,通过二次函数的图像,我们可以求解封闭图形的面积,或者
利用二次函数建立立体图形的体积模型。

这些都是二次函数在几何中的重要应用之一。

总之,二次函数在几何中有着广泛的应用,它不仅可以帮助我们理解抛物线的性质,还可以用来解决实际问题并建立数学模型。

通过深入学习二次函数的几何应用,我们可以更好地理解数学与现实世界的联系,提高数学建模和解决实际问题的能力。

希望这些内容能够对你有所帮助。

1.4二次函数的应用(第1课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4二次函数的应用(第1课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4 二次函数的应用第1课时 几何图形的面积问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会分析实际问题中的二次函数关系;2.学会用二次函数表示几何图形中的关系,并用来求实际问题中的最大值与最小值;导入新课问题1:从地面竖直向上抛出一小球,小球的高度 h (单位:m )与小球的运动时间 t (单位:s )之间的关系式是 h= 30t - 5t 2(0≤t ≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?t/sh/mO1234562040h= 30t - 5t2解决思路:通过图象可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t 取顶点的横坐标时,这个函数有最大值.思考:如何求二次函数的顶点坐标呢?知识点一 二次函数的实际应用——几何图形面积问题由于抛物线 y = ax 2+ bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2+ bx + c有最小(大)值思考:如何求出二次函数 y = ax 2+ bx + c 的最小(大)值?二次函数的顶点式可以很直观地看出最大值或最小值当 时小球运动的时间是 3s 时,小球最高.小球运动中的最大高度是 45 m.t/sh/m O 1234562040h= 30t - 5t2我们来求一下问题1:例用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?1.矩形面积公式是什么?2.如何用l表示另一边?3.面积S的函数关系式是什么?l30-lS=l(30-l),即S=-l2+30l (0<l<30).S=l(30-l),即S=-l2+30l (0<l<30).因此,当时,S有最大值,也就是说,当l是15m时,场地的面积S最大.归纳总结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值;3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.典例精析【例1】某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则当能建成的饲养室总占地面积最大时,中间隔开的墙长是( )米.A.4B.5C.6D.8【详解】解:设中间隔开的墙长为x m,能建成的饲养室总占地的面积为Sm2,根据题意得,S=x×(28+2-3x)=-3(x-5)2+75,-3<0,有最大值,∴当x=5时,S取得最大值,故选:B.【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.练一练1.如图,某跑道的周长为400m 且两端为半圆形,要使矩形内部操场的面积最大,直线跑道AB 段的长应为.【详解】解:设矩形直线跑道AB=xcm ,矩形面积为ycm 2,由题意得: y=400−2ᵆᵰ·ᵆ=−2ᵰ(ᵆ−100)2+20000ᵰ∵−2ᵰ<0,∴当x=100时,y 最大,即直线跑道长应为100m .故答案为:100m2.如图,一块矩形区域ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为18米(篱笆的厚度忽略不计),求当矩形ABCD 的面积最大时AB 的长.【详解】解:设AB=x 米,矩形的面积设为y (平方米),则AB+EF+CD=3x ,∴AD=BC=18−3ᵆ2.∴y=x·18−3ᵆ2=−32ᵆ2+9ᵆ.由于二次项系数小于0,所以y 有最大值,∴当AB=x=-ᵄ2ᵄ=3时,函数y 取得最大值.∴当AB=3米时,矩形ABCD 的面积最大.1.如图,要围一个矩形菜园ABCD,共中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m.有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD的面积为192m2;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )A.0B.1C.2D.3【详解】设AB的长为xm,矩形ABCD的面积为ym2,则BC的长为(40-2x)m,由题意得y=x(40-2x)=-2x2+40x=-2(x-10)2+200,其中0<40-2x≤26,即7≤x<20,①AB的长不可以为6m,原说法错误;③菜园ABCD面积的最大值为200m2,原说法正确;②当y=-2(x-10)2+200=192时,解得x=8或x=12,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,说法正确;综上,正确结论的个数是2个,故选:C.2.把一根长4a的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A.ᵄ2B.ᵄ2�C.ᵄ22D.ᵄ243.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m ,门宽为2m .这个矩形花圃的最大面积是.【详解】解:设花圃的长为x,面积为y,则y 关于x 的函数表达式为:y=12(38+2−��ᵆ)ᵆ=−12ᵆ2+20ᵆ=−12(x-20)2+200又∵38+2-x>0,x≥22≤x<404.如图,小明想用长16米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是平方米.【详解】解:设AB=x米,矩形ABCD的面积为S,则BC=(16-2x)米,∴S=x(16-2x)=2x2+16x=-2(x-4)2+32即矩形ABCD的最大面积为32平方米故答案为:32.5.用一段长为24m 的篱笆围成一个一边靠墙的矩形养鸡场,若墙长10m ,则这个养鸡场最大面积为 m 2.【详解】设养鸡场长为x 米,则宽为12(24−��ᵆ)米,面积为S 平方米,根据题意得:S=x×12(24−ᵆ)=−12ᵆ2+12ᵆ,(0<x≤10),∵二次函数图象对称轴为:直线x=12,开口向下,∴ 当0<x≤10时,S 随x 的增大而增大,∴当x=10时,S 取得最大值为70.故答案是:70.6.如图所示,矩形花圃ABCD的一边利用足够长的墙,另三边用总长为32米的篱笆围成.设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值?并求出最大值.【详解】(1)∵AB边长为xm,四边形为矩形,且剩余三边长总和为32m,∴BC边长为(32-2x)m,∴S=AB·BC=x(32-2x)=-2x2+32x;(2)函数化为顶点式,即得S=-2(x-8)2+128,可知x=8时,S有最大值128m2.【点睛】此题考查了二次函数的实际应用,根据简单等量关系解决问题,二次函数化为顶点式即可得到函数最值,正确理解题意列得函数解析式是解题的关键.7.如图,嘉嘉欲借助院子里的一面长15m的墙,想用长为40m的网绳围成一个矩形ABCD给奶奶养鸡,怎样使矩形ABCD的面积最大呢?同学淇淇帮她解决了这个问题.淇淇的思路是:设BC的边长为xcm,矩形ABCD的面积为Sm2,不考虑其他因素,请帮他们回答下列问题:(1)求S与x的函数关系式,直接写出x的取值范围;(2)x为何值时,矩形ABCD的面积最大?【详解】(1)解:S=x(40−��ᵆ2)=-12ᵆ2+20ᵆ,ᵆ的取值范围为0< ᵆ�≤15;(2)解:∵S=-12ᵆ2+20ᵆ ,-12<0,∴当x=-20−1=20时,S 有最大值,当x <20时,S 随x 的增大而增大,而0<x≤15,∴x=15时,S 有最大值,即矩形ABCD 的面积最大.课堂小结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.谢谢~。

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。

2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。

3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。

二次函数的解析几何性质及其应用

二次函数的解析几何性质及其应用

二次函数的解析几何性质及其应用二次函数是数学中常见的一种函数形式,其解析几何性质和应用广泛而深入。

本文将从几何性质和应用两个方面进行阐述。

一、二次函数的解析几何性质1. 函数图像的特征二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数且a≠0。

对于二次函数的图像,其形状为抛物线,具体形状取决于a的正负和大小。

当a>0时,抛物线开口朝上,图像在y轴上方开口;当a<0时,抛物线开口朝下,图像在y轴下方开口。

b和c分别决定了抛物线在x轴方向的平移和y轴方向的平移。

2. 对称性二次函数的图像具有关于直线x = -b/2a的对称性。

这意味着,如果点(x1, y1)在图像上,那么点(x2, y2) = (2(-b/2a)-x1, y1)也在图像上。

这个性质可以通过函数的导数推导得出。

3. 零点和顶点二次函数的零点即为方程f(x) = 0的解,也就是抛物线与x轴的交点。

根据二次函数的解的公式,可以求得零点的坐标。

而二次函数的顶点则是抛物线的最高点(当a<0时)或最低点(当a>0时),其坐标为(-b/2a, f(-b/2a))。

二、二次函数的应用1. 物理学中的抛物线运动抛物线运动是物体在重力作用下的运动轨迹。

由于重力加速度的存在,物体在垂直方向上的运动满足二次函数的形式。

通过分析物体的抛物线轨迹,可以计算出其运动的高度、时间、速度等重要参数。

2. 金融学中的成本和收益分析在金融学中,二次函数常被用于成本和收益的分析。

例如,某公司的生产成本可以表示为二次函数,通过求解该函数的最小值点,可以确定最低成本的生产量。

同样地,某产品的销售收益也可以表示为二次函数,通过求解该函数的最大值点,可以确定最大收益的销售量。

3. 工程学中的曲线设计在工程学中,二次函数常被用于曲线的设计。

例如,公路的水平曲线和立交桥的拱形设计都可以通过二次函数来描述。

通过调整二次函数的参数,可以使得曲线满足工程要求,达到良好的设计效果。

二次函数在几何问题中的应用解析

二次函数在几何问题中的应用解析

二次函数在几何问题中的应用解析二次函数是一种常见的数学函数形式,它在几何问题中扮演了重要的角色。

本文将探讨二次函数在几何问题中的应用,并对其解析进行分析。

1. 抛物线的性质抛物线是二次函数的图像,其标准形式为y = ax² + bx + c。

在几何中,抛物线具有以下性质:- 对称轴:抛物线的对称轴是一个垂直于x轴的直线,过抛物线的顶点。

对称轴的方程可以通过求抛物线的顶点坐标得到。

- 顶点:抛物线的顶点是曲线的最高点或最低点,可以通过求导数等方法求得。

- 开口方向:抛物线的开口方向由二次项的系数决定。

若a>0,则抛物线开口向上;若a<0,则抛物线开口向下。

- 零点:抛物线与x轴的交点称为零点,可以通过解方程求得。

2. 抛物线在几何中的应用抛物线在几何问题中的应用广泛,以下是其中几个典型的应用示例。

2.1 求解最值问题抛物线的顶点即为其最值点,可通过二次函数的最值性质求解几何问题。

例如,在确定水平距离为d的情况下,求抛物线y = ax² + bx + c的最大值或最小值。

我们可以通过求导数找到使得导数为0的x坐标,再代入函数得到对应的y坐标。

2.2 确定几何形状抛物线的开口方向可以用来确定几何形状。

若抛物线开口向上,则形状类似一个U;若开口向下,则形状类似一个倒置的U。

这在建模物体的运动轨迹、桥梁设计等问题中有广泛的应用。

2.3 优化问题二次函数可以被用于解决优化问题。

例如,当我们需要绘制一个围起来面积最大的矩形时,可以通过分析矩形的边长与面积的关系,建立二次函数模型,并通过求解最值问题得到最大面积。

3. 示例分析假设有一块长为L的铁板,要制作一个没有顶盖的长方体盒子,使得盒子的体积最大。

设长方体的底边宽度为x,高度为h,由此可以得到体积函数V(x) = x( L - 2x )h。

我们可以通过建立函数模型并求解最值问题来解决这个几何问题。

对于函数V(x),我们首先计算其导数V'(x),然后令导数为0,解得x = L/4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的几何应用
1.(2011•安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是()
A、B、C、D、
2.(2011山东日照)正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM=时,四边形ABCN的面积最大.
3.(2011江苏淮安)如图,已知二次函数y= -x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P,使得△P AB是以AB为底的等腰三角形?若存在,求出点P的坐标;若
不存在,请说明理由.
4.(2011江苏连云港)如图,抛物线212
y x x a =
-+与x 轴交于A ,B 两点,与y 轴交于点C ,其顶点在直线y =-2x 上. (1)求a 的值; (2)求A,B 两点的坐标;
(3)以AC ,CB 为一组邻边作□ABCD ,则点D 关于x 轴的对称点D´是否在该抛物线上?请说明理由.
5. (2011•江苏宿迁)如图,在边长为2的正方形ABCD 中,P 为AB 的中点,Q 为边CD 上一动点,设DQ=t (0≤t≤2),线段PQ 的垂直平分线分别交边AD 、BC 于点M 、N ,过Q 作QE ⊥AB 于点E ,过M 作MF ⊥BC 于点F .
(1)当t≠1时,求证:△PEQ ≌△NFM ;
(2)顺次连接P 、M 、Q 、N ,设四边形PMQN 的面积为S ,求出S 与自变量t 之间的函数关系式,并求S 的最小值.
6.(2011湖北潜江)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(—3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:a=,b=,顶点C的坐标为;
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
7.(2011浙江嘉兴)已知直线y=kx+3(k<0)分别交x轴.y轴于A.B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C.Q两点的坐标;
②若以Q.C.A为顶点的三角形与△AOB相似,求t的值.
(2)当
3
4
k=-时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?。

相关文档
最新文档