化工原理 沉降
化工原理-沉降-选择题(含答案解析)

1、含尘气体中的尘粒称为( )。
A. 连续相;B. 分散相;C. 非均相。
答案:B2、自由沉降的意思是_______。
A 、颗粒在沉降过程中受到的流体阻力可忽略不计B 、颗粒开始的降落速度为零,没有附加一个初始速度C 、颗粒在降落的方向上只受重力作用,没有离心力等的作用D 、颗粒间不发生碰撞或接触的情况下的沉降过程答案: D3、在长为L ,高为H 的降尘室中,颗粒的沉降速度为u T m/s ,气体通过降尘室的水平流速为u m/s ,则颗粒能在降尘室内分离的条件是:____。
A 、 L/u <H/uTB 、 L/uT <H/uC 、 L/uT ≥H/uD 、L/u ≥H/uT答案: D4、欲提高降尘宝的生产能力,主要的措施是 。
A. 提高降尘宝的高度;B. 延长沉降时间;C. 增大沉降面积答案:C5为使离心机有较大的分离因数和保证转鼓有关足够的机械强度,应采用 的转鼓。
A. 高转速、大直径;B. 高转速、小直径;C. 低转速、大直径;D. 低转速,小直径;答案:B6、有一含尘气流,尘粒的平均直径在20~70μm ,现要达到较好的除尘效果,可采A. 降尘室;B. 旋风分离器;C. 湿法除尘;D. 袋滤器答案:b7、旋风分离器的临界粒径是指能完全分离出来的 粒径。
A. 最小;B. 最大;C. 平均;答案:A8、长3m 、宽2.4m 、高2m 的降尘室与锅炉烟气排出口相接。
操作条件下,锅炉烟气量为m 35.2,气体密度为3720.0m kg ,黏度为s Pa •⨯-5106.2,灰尘可看作球型颗粒,密度为32200m kg 。
计算:(1)则能被完全分离出去的颗粒的临界直径= μm 。
A 、86.8B 、91.8C 、72.3D 、69.1答案:A9、长3m 、宽2.4m 、高2m 的降尘室与锅炉烟气排出口相接。
操作条件下,锅炉烟气量为s m 35.2,气体密度为3720.0m kg ,黏度为s Pa •⨯-5106.2,灰尘可看作球型颗粒,密度为32200m kg 。
化工原理第三章沉降与过滤PPT

利用真空泵降低过滤介质两侧 的压力差进行过滤,适用于易 产生泡沫或悬浮液中含有大量
气体的场合。
过滤设备与操作
板框压滤机
由滤板和滤框组成,适 用于各种颗粒分离,但
操作较繁琐。
转筒真空过滤机
叶滤机
袋式过滤器
结构简单,操作方便, 但只适用于颗粒较大的
分离。
适用于精细颗粒的分离, 但设备成本较高。
过滤原理
利用颗粒大小、形状、密度等物 理性质的差异,使不同颗粒在过 滤介质两侧形成不同的速度或动 量,从而实现分离。
过滤操作的分类
恒压过滤
在恒定压力下进行过滤,适用 于颗粒粒度较小、悬浮液粘度
较大的情况。
变压过滤
在改变压力下进行过滤,适用 于颗粒粒度较大、悬浮液粘度 较小的情况。
热过滤
在加热条件下进行过滤,适用 于悬浮液中含有热敏性物质的 情况。
设备
沉降槽、沉降池、离心机等。
操作
将悬浮液引入沉降设备中,在重力作用下使固体颗粒下沉,上清液从上部排出, 底部沉积的固体经过排出装置排出。操作过程中需控制适当的温度、流量和停留 时间等参数,以保证分离效果。
02
过滤
过滤的定义与原理
过滤定义
通过多孔介质使固体颗粒截留, 从而使液体与固体分离的操作。
实验步骤 1. 准备实验装置,包括过滤器、压力计、流量计等。
2. 将过滤介质放入过滤器中。
过滤实验操作
3. 将待测流体引入过滤器,并施加一定的压力。 5. 收集过滤后的流体样本,测量其中颗粒的浓度。
4. 记录不同时刻的流量和压差数据。
注意事项:确保过滤器密封性好,避免流体泄漏;保持 恒定的流体流量和压力,以获得准确的实验数据。
化工原理 沉降

含尘气入
气体出
• 混合气切向入
──向下做螺旋旋
外 旋
转运动,颗粒在合
流 力作用下向下旋转
的同时,沿壁面做
沉降运动
尘粒出
含尘气入
气体出
尘粒出
内 • 气体向下达锥筒底
旋 流
部附近,转而向上旋
转上升,由中心排气
外
旋 流
管排出──形成外旋
流、内旋流(气芯)
• 外旋流是主要除尘
区,只要颗粒在排出
──终端速度即等速阶段速度── 沉降速度ut
颗粒的沉降速度
球形颗粒
du
d
0
即
du
d
P P
g
3 4dP P
u 2
0
u
4 gd
P
P
t
3
——通式
d
u
Pt
•层流区(Stokes区) ——颗粒较小时
Re<2,
u
gd 2
P
P
——斯托克斯公式
ζ =24/Re, t
18
•过渡区(Allen区) :
r 2 u2
g gr
rω2——离心加速度 g——重力加速度
u=rω : 流体和颗粒的切向速度
α :是反映离心分离设备性能的重要指标。
分离: 气-固非均相物系——旋风分离器 固体悬浮液——沉降或离心机
旋风分离器 演示 旋风分离器是利用离心沉降原理从气流中分离颗粒的 设备。
结构与操作原理(标准旋风分离器)
2<Re<500, ζ =18.5/Re 0.6
•湍流区(Newton区) —— 颗粒较大时
500<Re<×105, ζ ≈0.44
化工原理第三章 沉降

2 d p ( p ) g
1.86 10 Pa s
5
18
(40 106 )2 9.81 ( 2600 1.165) 18 1.86 10 5
0.12m s
校核:
Re dut 0.3 2
(正确)
6.非球形颗粒的沉降速度
同样条件下 因此
1 3
1 则:Re k 18
令
Rep 1
则
k 2.62
层流区:
k 2.6 2 采用斯托克斯公式
过渡区:
湍流区:
2.62 k 60.1
60.1 k 2364
采用阿伦公式
采用牛顿公式
试差法: 假设 流型 选择 公式
验算
计算
ut
计算
Re t
例:求直径40μm球形颗粒在30℃大气中的自由沉降 速度。已知ρ颗粒为2600kg/m3,大气压为0.1MPa。 解: 查30℃、0.1MPa空气: 1.165kg m3 设为层流,则:
ζ是流体相对于颗粒运动时的雷诺数的函数,
(Re) (d pu / )
层流区 过渡区 湍流区
10 4 Re 2
24 Re
2 Re 500
500 Re 2 10
5
10 0.5 Re 0.44
第二节 重力沉降
目的:流体与固体颗粒分离
上部易形成涡流 ——倾斜式、 旁路 尘粒易带走 ——扩散式
螺旋面进口:结构复杂,设计制造不方便。
蜗壳形进口:结构简单,减小阻力。
轴向进口:常用于多管式旋风分离器。
常用型式
标准型、CLT/A型、CLP型、扩散式等。
化工原理_3 沉降与过滤资料

• 层流
rm——平均旋转半径
2018/10/23
23
沉降速度: ur
d p 2 ( p ) ui2 18 rm
18 brm b 2 沉降时间: r 2 ur d p ( p )ui
2 rm n n——旋转圈数 停留时间: ui
沉降分离条件:
2018/10/23
2
令
则
2 Δp K rv
dV KA2 d 2(V Ve )
——过滤基本方程
2018/10/23
39
三、恒压过滤
(一)滤液体积与过滤时间的关系 K为常数
dV KA2 d 2(V Ve )
V
0
(V Ve )dV
0
K 2 A d 2
V 2 2VVe KA2
3. 螺旋式离心机
2018/10/23
28
第四节
一、悬浮液的过滤
过
滤
滤 浆 滤 饼 过滤介质
滤 液
推动力:压力差,离心力,重力 阻
2018/10/23
力:滤饼、过滤介质阻力
29
(一)两种过滤方式 1. 滤饼过滤
2018/10/23
30
2. 深层过滤
2018/10/23
31
(二)过滤介质
类别:
r
24
d pc 临界颗粒直径:
讨论: ( 1) b dpc
b 3 nui ( p )
D 旋风分离器越大,分离效果越不好 所以生产能力较大时,一般采用多个小旋风分 离器并联。
( 2) ui
dc
分离效果好
流动阻力大
2018/10/23
化工原理11沉降分离原理及设备

PPT文档演模板
化工原理11沉降分离原理及设备
•第三章、非均相混合物 分离及固体流态化
•3.1 沉降分离原理及设备 •3.1.1 颗粒相对于流体的运动
PPT文档演模板
化工原理11沉降分离原理及设备
•一、颗粒的特性
•1. 球形颗粒:球形颗粒的尺寸由直径d确定。
体 积 表面 积 比表面 积
PPT文档演模板
•二、重力沉降设备
• 位于降尘室最高点的颗粒沉降到室底所需的时间为
•气体通过降尘室的时间为
•降尘室 高
•沉降速 度
•降尘室 长
欲使颗粒被分离出来,则
•气流水平通 过降尘室速
度
PPT文档演模板
或
化工原理11沉降分离原理及设备
•二、重力沉降设备
根据降尘室的生产能力,气体在降尘室内的水平 通过速度为
•降尘室生 产能力
PPT文档演模板
化工原理11沉降分离原理及设备
•概述
机械分离方法,即利用非均相混合物中两 相的物理性质(如密度、颗粒形状、尺寸等) 的差异,使两相之间发生相对运动而使其分离。
机械分离方法
沉降 过滤
PPT文档演模板
化工原理11沉降分离原理及设备
•概述
•非均相混和物分离的应用: •(1)收集分散物质。 •(2)净化分散介质。 •(3)环境保护。
•三、 阻力系数(曳力系数)
•滞流区 •过渡区 •湍流区
•表面摩擦阻力 •形体阻力
PPT文档演模板
化工原理11沉降分离原理及设备
•四、 影响沉降速度的因素
•自由沉降
• 沉降过程中,任一颗粒的沉降不因其它颗 粒的存在而受到干扰 •干扰沉降
• 如果分散相的体积分率较高,颗粒间有明 显的相互作用,容器壁面对颗粒沉降的影响不可 忽略,这时的沉降称为干扰沉降或受阻沉降。
化工原理第三章离心沉降

d
3 P
ut2 r
阻
力=
d
2 P
u
2 r
42
7/1/2019
当三力达到平衡时,则:
6
d
3 P
P
ut2 r
6
d
3 P
ut2 r
d
2 P
4
ur2
2
0
【定义】颗粒在径向上相对于流体的运动速度 ur 便
是此位置上的离心沉降速度。可推得:
径向速度
7/1/2019
ur
4dP P ut2
3 r
切向速度
——离心沉降速度基本计算式
2、离心沉降速度与重力沉降
3
ur
4dP P ut2
3 r
【表达式】重力沉降速度公式中的重力加速度改为 离心加速度;
【数值】重力沉降速度为颗粒运动的绝对速度,基 本上为定值;离心沉降速度为绝对速度在径向上的 分量,随颗粒在离心力场中的位置(r)而变。
往往很大)
7/1/2019
旋风分离器的技术规格
规格型号
CZT-3.9 CZT-5.1 CZT-5.9 CZT-6.7 CZT-7.8 CZT-9.0
7/1/2019
进口风速 m/s
11-15 11-15 11-15 11-15 11-15 11-15
风量 m3/h
790-1080 1340-1820 1800-2450 2320-3170 3170-4320 4200-5700
清液或含有微细颗粒的液体则从顶部的中心管排出称为溢送至配碱岗位回收液送盐水工序效蒸发器电解液电解液大罐加料泵螺旋式预热器效蒸发器效蒸发器效蒸发器旋液分离器中间槽段蒸发器冷却器澄清槽高位槽离心机加料槽烧碱生产蒸发流程图20161262016126结构特点是直径小而圆锥部分长
化工原理中的沉降与过滤

化工原理中的沉降与过滤引言在化工工艺中,沉降和过滤是常用的固液分离方法。
沉降是指根据固液颗粒的重力作用,通过静置使固体颗粒沉降到底部,而将悬浮液体分离出来。
过滤则是通过利用滤介质的孔隙或表面,将悬浮液体中的固体颗粒留下,而使液体通过,从而达到分离固液的目的。
本文将从理论和实际应用两个方面,对化工原理中的沉降与过滤进行介绍。
沉降原理沉降是基于固体颗粒的重力作用,通过静置使固体颗粒沉降到底部,从而实现固液分离的过程。
沉降速度取决于固体颗粒与液体的密度差和粒径大小。
根据Stokes定律,沉降速度与颗粒直径的平方成正比,与液体的粘度成反比。
沉降速度可由下式计算:v = (2/9) * (ρp - ρl) * g * (d^2) / μ其中,v为沉降速度,ρp为颗粒的密度,ρl为液体的密度,g为重力加速度,d为颗粒的直径,μ为液体的动力粘度。
过滤原理过滤是通过滤介质的孔隙或表面,将悬浮液体中的固体颗粒留下,而使液体通过,从而实现固液分离的过程。
滤介质常用的有滤纸、滤筒、滤板等,其孔隙大小决定了能够透过的颗粒大小。
根据Darcy定律,过滤速度与滤介质的孔隙直径的平方成正比,与液体的粘度成反比。
过滤速度可由下式计算:Q = (π/4) * (d^2) * (ΔP/μ) * A其中,Q为过滤速度,d为滤介质的孔隙直径,ΔP为过滤压差,μ为液体的动力粘度,A为过滤面积。
实际应用沉降的应用沉降在化工过程中被广泛应用,常见的应用场景包括:1.污水处理:污水中悬浮的固体颗粒通过沉降实现固液分离,从而达到净化水质的目的。
2.矿石提取:矿石中的有用矿物颗粒通过沉降分离出来,然后进行后续的加工和提取。
3.食品加工:在食品饮料生产中,一些颗粒物质需要通过沉降分离,以获得纯净的液体产品。
4.生物工程:在细胞培养和发酵工艺中,需要将细胞或发酵产物与培养基进行分离。
沉降是一种常用的分离方法。
5.药物制剂:在药物合成和制剂工艺中,沉降用于分离和提取所需的纯净物质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① Stokes区(Rep<2) 表面曳力占主导地位,不发生边界层分离,曳力与速度成
正比,服从一次方定律。
② Allen区(2 < Rep<500) 开始发生边界层分离,颗粒后部形成旋涡——尾流→尾流
区压强低→形体曳力增大
③ Newton区(500 < Rep<2×105) 形体曳力占主导地位,表面曳力可以忽略。曳力∝u2 ,曳
d
P
4dP P
◆开始瞬间,u 0 , du 最大,颗粒作加速运动。
d
5.2.2 静止流体中颗粒的自由沉降
d
P
4dP P
重力,浮力一定,u
,
FD
,
du
d
,当 du
d
0时u=ut
ut称为颗粒的沉降速度或终端速度。 对小颗粒,沉降的加速段很短,加速阶段所经历的距
dP (P )g
1) ut与dp有关,dp愈大,ut则愈大
2)斯托克斯区与阿仑区中,ut还与流体粘度有关。
对一定系统来说,ut = f (ρp, ρ,μ,dp)
T↑,气体μ↑,阻力↑ ,除沉不利
T↑,液体μ↓,阻力 ↓,除沉有利
液体粘度约为气体粘度的50倍,故颗粒在液体中的沉 降速度比在气体中的小很多。
ut
dP2(P )g 18
ut
4dP (P )g 3 24
ut
dP2(P )g 18
d put
5.2.2 静止流体中颗粒的自由沉降
2 Re P 500
ut
0.781
d
P
1.6 ( P 0.4
0.6
)
g
0.714
500 Re P 2 10 5
讨论:
ut 1.74
Fg
mg
6
dP3P g
FD
AP
1 2
u 2
4
dP2
1 2
u 2
u
Fb
6
dP3
g
阻力 FD 浮力 Fb
重力 Fg
5.2.2 静止流体中颗粒的自由沉降
根据牛顿第二定律得:
F Fg Fb FD ma
即:
6
dP3P g
6
dP3 g
4
dP2
1 2
u2
6
d
3 P
P
du
d
du ( P )g 3 u2
➢ 球形颗粒 ( 1) 的曲线在不同的雷诺数范围内可用公
式表示如下R:e P 2 ,Stokes定律区:
24
Re P
2 Re P 500 ,Allen定律区: 500 Re P 2 10 5 ,Newton定律区:
18.5
Re P 0.6
0.44
5.2.1 流体对固体颗粒的绕流
(2)曳力(阻力)系数
FD =f (dp ,u, , )
对球形颗粒,用量纲分析并整理后可得:
AP
FD 1
2
u2
d
pu
若令:Re P
d p u
(Re P )
FD
AP
1 2
u 2
ξ——无因次曳力系数
Ap——流动方向上颗粒的投影面积
5.2.1 流体对固体颗粒的绕流
5.2.1 流体对固体颗粒的绕流
5.1 概述
许多化工生产过程与流固两相的相对运动密切 相关:
◆ 两相物系的沉降:包括重力沉降和离心沉降; ◆ 固体物料的干燥、矿粉焙烧等物理化学过程; ◆ 固体颗粒的流动输送。 流固两相物系内的相对运动规律是上述过程计
算的基础,其研究应从流体对颗粒运动的阻力 入手。
5.2 颗粒的沉降运动
5.2.1 流体对固体颗粒的绕流 5.2.2 静止流体中颗粒的自由沉降
粒;⑤ 液滴或气泡的运动。
5.2.2 静止流体中颗粒的自由沉降
沉降速度的求法小结: 求沉降速度通常采用试差法。 ① 假设流体流动类型; ② 计算沉降速度; ③ 计算Rep,验证与假设是否相符;
④ 如果不相符,则转①。如果相符,OK !
FD f (d p ,u, , )
黏性流体对球体的低速绕流(也称爬流)时FD的理论 式:
FD 3d pu ———斯托克斯(Stokes)定律
◆当流速较高时,Stokes定律不成立。因此,对一般流 动条件下的球形颗粒及其其他形状的颗粒,FD的数值尚 需通过实验解决。
5.2.1 流体对固体颗粒的绕流
力系数与Rep无关。 ④ Rep>2×105 曳力系数骤然下降,层流边界层→湍流边界层分离点后移,
尾流区收缩,形体曳力突然下降,近似取ζ=0.1。
5.2.2 静止流体中颗粒的自由沉降
(1)沉降的加速阶段
问题:将一个表面光滑的球形颗粒置于静止的流体中, 若颗粒在重力的作用下沿重力方向作沉降运动,此时颗 粒受到哪些力的作用呢?
离也很小。因此,对小颗粒沉降的加速阶段可以忽略, 而近似认为颗粒始终以ut下降。
5.2.2 静止流体中颗粒的自由沉降
(3)颗粒的沉降速度
对球形颗粒,当 du 0 时
d
du ( P )g 3 u2
d
P
4dP P
Re P 2
ut
4dP (P )g 3
24 24 ReP d put
5.2.2 静止流体中颗粒的自由沉降
3)当流体做水平运动时:
4)当流体以一定的速度向上运动时: 当u>ut时,颗粒向上运动 当u<ut时,颗粒向下运动 当u=ut时,颗粒悬浮在流体中
5.2.2 静止流体中颗粒的自由沉降
(4)其他因素对沉降速度的影响
1)公式成立假定条件: ①颗粒为球形; ②颗粒沉降时彼此相距较远,互不干扰; ③容器壁对沉降的阻滞作用可以忽略; ④ 颗粒直径不能小到受流体分子运动的影响。 2)对实际颗粒需要考虑下列因素: ①干扰沉降;②端效应;③分子运动;④非球形颗
5.2.1 流体对固体颗粒的绕流
流体与固体颗粒之间的相对运动可分为以下三种情况:
①颗粒静止,流体对其做绕流;
②流体静止,颗粒作沉降运动;
③颗粒与流体都运动,但保持一定的相对运动。
FD
u
流体绕过颗粒的流动
5.2.1 流体对固体颗粒的绕流
(1)两种曳力—表 面曳力和形体曳力
5.2.1 流体对固体颗粒的绕流
第5章 颗粒的沉降和流态化
5.1 概述 5.2 颗粒的沉降运动 5.3 沉降分离设备 5.4 固体流态化技术 5.5 气力输送(自学)
5.1 概述
本章考察流固两相物系中固体颗粒与流体间 的相对运动。
在流固两相物系中,不论作为连续相的流体 处于静止还是作某种运动,只要固体颗粒的 密度大于流体的密度,那么在重力场中,固 体颗粒将在重力方向上与流体做相对运动, 在离心力场中,则与流体作离心力方向上的 相对运动。