上海市浦东新区普通高中2024学年全国高三模拟考(一)全国卷数学试题
上海高中2024年高三第一次模拟考试(数学试题含解析)

上海高中2024年高三第一次模拟考试(数学试题含解析)请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( )A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆ 2.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 3.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞B .(][),22,-∞-⋃+∞C .(][),12,-∞-⋃+∞D .[]2,2- 4.已知15455,log log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >>5.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( )A .23-B .23C .3D .-36.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:参加用户比 40% 40% 10% 10%脱贫率 95% 95% 90% 90%那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )A .2728倍B .4735倍C .4835倍D .75倍 7.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( )A .1(,0)2-B .1(2,)2-C .(1,1)-D .1(,1)28.函数()3221f x x ax =-+在()0,∞+内有且只有一个零点,则a 的值为( )A .3B .-3C .2D .-2 9.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)10.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .12 11.下列与函数y x=定义域和单调性都相同的函数是( ) A .2log 2x y = B .21log 2x y ⎛⎫= ⎪⎝⎭ C .21log y x = D .14y x =12.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ).A .122B .112C .102D .92二、填空题:本题共4小题,每小题5分,共20分。
2024年全国普通高中九省联考仿真模拟数学试题(三)

2024年高考仿真模拟数学试题(三)试卷+答案本套试卷根据九省联考题型命制,题型为8+3+3+5模式,适合黑龙江、吉林、安徽、江西、甘肃、河南、新疆、广西、贵州等省份考生模拟练习.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.非空集合A具有如下性质:①若x,y∈A,则;②若x,y∈A,则x+y∈A下列判断中,正确的有()A.﹣1∉A B.C.若x,y∈A,则xy∈A D.若x,y∈A,则x﹣y∈A三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的六位数,每个数字至少出现一次. (1)求满足条件的对接码的个数;(2)若对接密码中数字1出现的次数为X ,求X 的分布列和数学期望.16.(15分)已知函数()()ln 1f x x a x =−−. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.2024年高考仿真模拟数学试题(三)试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.非空集合A具有如下性质:①若x,y∈A,则;②若x,y∈A,则x+y∈A下列判断中,正确的有()A.﹣1∉A B.C.若x,y∈A,则xy∈A D.若x,y∈A,则x﹣y∈A答案ABC解析:对于A,假设﹣1∈A,则令x=y=﹣1,则=1∈A,x+y=﹣2∈A,令x=﹣1,y=1,则=﹣1∈A,x+y=0∈A,令x=1,y=0,不存在,即y≠0,矛盾,∴﹣1∉A,故A对;对于B,由题,1∈A,则1+1=2∈A,2+1=3∈A,…,2022∈A,2023∈A,∴∈A,故B对;对于C,∵1∈A,x∈A,∴∈A,∵y∈A,∈A,∴=xy∈A,故C对;对于D,∵1∈A,2∈A,若x=2,y=1,则x﹣y=1∈A,故D错误.故选ABC.的部分图三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的)连接当5k ≥时,可得()111k k ii a a a i k −+−=≤≤−, (∗) ②设32i k ≤≤−,则112k i k k a a a a a −−+>+=,所以{}1k i n a a a −+∉, 由111213320k k k k k k k a a a a a a a a a −−−−−−=−<−<<−<−= , 又由12320k k a a a a −−≤<<<< ,可得111122133133,,k k k k k k k k a a a a a a a a a a a a −−−−−−−−−=−=<−=−= , 所以1(13)k k ii a a a i k −−−=≤≤−, 因为5k ≥,由以上可知:111k k a a a −−−=且122k k a a a −−−=, 所以111k k a a a −−−=且122k k a a a −−−=,所以1(11)k k ii a a a i k −−−=≤≤−,(∗∗) 由(∗)知,()111k k ii a a a i k −+−=≤≤− 两式相减,可得()1111k k i i a a a a i k −+−=−≤≤−, 所以当5k ≥时,数列{}n a 为等差数列. ……………17分.。
2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(一)数学(文)试题一、单选题1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =U ( ) A .{|22}x x -<< B .{|24}x x -≤≤ C .{|22}x x -≤≤ D .{|24}x x -<≤【答案】B【解析】直接利用并集的定义计算即可. 【详解】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B 【点睛】本题考查集合的并集运算,考查学生的基本计算能力,是一道基础题.2.已知a 是实数,()11a a i -++是纯虚数,则复数z a i =+的模等于( )A .2B CD .1【答案】C【解析】()11a a i -++是纯虚数可得1a =,则1z i =+,再根据模的计算的公式计算即可. 【详解】()11a a i -++是纯虚数,则实部为0,虚部不为0,即1a =,所以1z i =+,||z =故选:C 【点睛】本题考查复数模的计算,涉及到复数的相关概念,是一道容易题.3.某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+,则宣传费用为3万元时销售额a 为( ) A .36.5 B .30C .33D .27【答案】D【解析】由题表先计算出x ,将其代入线性回归方程即可. 【详解】 由已知,1(4235) 3.54x =+++=, 由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D 【点睛】本题考查线性回归方程的简单应用,回归方程一定过样本点的中心(,)x y ,考查学生的基本计算能力,是一道容易题.4.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A .3 B .7C .7-D .3-【答案】C【解析】由3456a a a ++=,可得42,a =结合7 11a =,可得公差d ,再由413a a d =+可得1a . 【详解】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C 【点睛】本题考查等差数列的性质及等差数列基本量的计算,考查学生的运算能力,是一道容易题.5.已知抛物线24y x =的准线与圆2260x y x m +--=相切,则实数m 的值为( ) A .8 B .7 C .6 D .5【答案】B【解析】由题可得准线方程为1x =-,再利用圆心到直线的距离等于半径计算即可得到答案. 【详解】由已知,抛物线的准线方程为1x =-,圆2260x y x m +--=的标准方程为22(3)9x y m -+=+,由1x =-与圆相切,所以圆心到直线的距离()314d =--==, 解得7m =. 故选:B 【点睛】本题主要考查抛物线的定义,涉及到直线与圆的位置关系,考查学生的运算求解能力,是一道容易题.6.已知平面向量a r ,b r满足a =r ,||3b =r ,(2)a a b ⊥-r r r ,则23a b -r r ( )A .BC .4D .5【答案】A【解析】由(2)0a a b ⋅-=r r r,可得2a b ⋅=r r,将其代入|23|a b -==r r .【详解】由题意可得||2a ==r ,且(2)0a a b ⋅-=r r r,即220a a b -⋅=r r r,所以420a b -⋅=r r, 所以2a b ⋅=r r.由平面向量模的计算公式可得|23|a b -==r r==故选:A 【点睛】本题考查利用数量积计算向量的模,考查学生的数学运算能力,是一道容易题. 7.已知定义在R 上的函数()y f x =,对于任意的R x ∈,总有()()123f x f x -++=成立,则函数()y f x =的图象( ) A .关于点()1,2对称 B .关于点33,22⎛⎫⎪⎝⎭对称 C .关于点()3,3对称 D .关于点()1,3对称【答案】B【解析】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,再结合()()123f x f x -++=简单推导即可得到. 【详解】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,则(2)(1(21))3(221)f a x f x a f x a -=--+=-+-+3(32)2()f a x b f x =--+=-,所以有23,320b a =-=,解得33,22a b ==.所以函数()y x =的图象关于点33,22⎛⎫⎪⎝⎭对称. 故选:B 【点睛】本题考查函数图象的对称性,考查学生的逻辑推理能力,当然也可以作一个示意图得到,是一道中档题.8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生【答案】C【解析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.函数||4x e y x=的图象可能是( )A .B .C .D .【答案】C【解析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D. 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题.10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .163πB .3π C .29π D .169π【答案】D【解析】由三视图可知该几何体为底面是圆心角为23π的扇形,高是4的圆锥体,再利用圆锥体积公式计算即可. 【详解】从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为23απ=的扇形,高是4的圆锥体, 容易算得底面面积2112442233S r παπ==⨯⨯=,所以其体积111644339V ππ=⨯⨯⨯=. 故选:D 【点睛】本题考查三视图还原几何体以及几何体体积的计算,考查学生的空间想象能力、数学运算能力,是一道中档题.11.已知函数()sin 3(0)f x x x ωωω=+>的图象上存在()()12,0,,0A x B x 两点,||AB 的最小值为2π,再将函数()y f x =的图象向左平移3π个单位长度,所得图象对应的函数为()g x ,则()g x =( ) A .2sin 2x - B .2sin2xC .2cos 26x π⎛⎫-⎪⎝⎭D .2sin 26x π⎛⎫- ⎪⎝⎭【答案】A【解析】()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由min ||2AB π=可得T π=,2ω=,再由平移变换及诱导公式可得()g x 的解析式.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为||AB 的最小值为12222T ππω=⨯=,解得2ω=. 因为函数()y f x =的图象向左平移3π个单位长度, 所得图象对应的函数为()g x , 所以()2sin 22sin(2)2sin 233g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A 【点睛】本题考查三角函数图象的变换,涉及到辅助角公式、诱导公式的应用,考查学生的逻辑推理能力,是一道中档题.12.如图所示,在棱锥P ABCD -中,底面ABCD 是正方形,边长为2,22PD PA PC ===,.在这个四棱锥中放入一个球,则球的最大半径为( )A .2B 21C .2D 21【答案】D【解析】由题意,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,设它们的高均为R ,求出四棱锥的表面积S 以及四棱锥的体积P ABCD V -,利用公式13P ABCD V S -=⨯R ⨯,计算即可. 【详解】由已知,22PD AD PA ===,,所以222PD AD PA +=,所以PD AD ⊥,同理PD CD ⊥,又CD AD D =I ,所以PD ⊥平面ABCD ,PD AB ⊥,又AB AD ⊥,PD AD D ⋂=,所以AB ⊥平面PAD ,所以PA AB ⊥,设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD,SA SB SC SP、、、,则把此四棱锥分为五个棱锥,它们的高均为R.四棱锥的体积211222 3323P ABCD ABCDVS PD-⨯=⨯⨯=⨯=W,四棱锥的表面积S22112222222242222PAD PAB ABCDS S S=++=⨯⨯+⨯⨯⨯+=+ V V W,因为13P ABCDV S-=⨯R⨯,所以3222142221P ABCDVRS-====-++.故选:D【点睛】本题考查几何体内切球的问题,考查学生空间想象能力、转化与化归的能力,是一道有一定难度的压轴选择题.二、填空题13.设实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,则34z x y=-的最大值是__________.【答案】4【解析】作出可行域,344zy x=-,易知截距越小,z越大,【详解】根据实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,画出可行域,如图,平移直线34y x=即可得到目标函数的最大值.344z y x =-,易知截距越小,z 越大,平移直线34y x =,可知当目标函数经过点A 时取得最大值,由11y y x =-⎧⎨=--⎩,解得()0,1A -,所以max 304(1) 4.z =⨯-⨯-=故答案为:4 【点睛】本题考查简单的线性规划及应用,考查学生数形结合的思想,是一道容易题.14.曲线()e 43xf x x =+-在点()(0,)0f 处的切线方程为__________.【答案】52y x =-【解析】直接利用导数的几何意义计算即可. 【详解】因为()02f =-,'()4xf x e =+,所以'0(0)45f e =+=,所以切线方程为()25y --=()0x -,即5 2.y x =- 故答案为:52y x =- 【点睛】本题考查导数的几何意义,考查学生的基本计算能力,是一道容易题.15.已知数列{}n a 满足:11a =,12nn n a a +=+,则数列{}n a 的前n 项和n S =__________.【答案】122n n +--【解析】利用累加法可得数列{}n a 的通项公式,再利用分组求和法求和即可. 【详解】由已知,12nn n a a +-=,当2n ≥时,()()()211213211212222112n n n n n n a a a a a a a a ---=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+==--,又11a =满足上式,所以21nn a =-,()212122222212n n n n S n n n +-=++⋅⋅⋅+-=-=---.故答案为:122n n +-- 【点睛】本题考查累加法求数列的通项以及分组求和法求数列的和,考查学生的运算求解能力,是一道中档题.16.已知双曲线22221x y a b-=(0b a >>)的左、右焦点分别是1F 、2F ,P 为双曲线左支上任意一点,当1222PF PF 最大值为14a时,该双曲线的离心率的取值范围是__________.【答案】【解析】112222111224|24|2PF PF a PF PF aPF a PF ==+++,1PF c a ≥-,分2c a a -≤,2a c a ≥-两种情况讨论,要注意题目中隐含的条件b a >.【详解】由已知,11222111224|24|2PF PF a PF PF aPF a PF ==+++,因为1PF c a ≥-,当2c a a -≤时,21121444a a PF a PF ≤=++,当且仅当12PF a =时,1222PF PF 取最大值14a, 由2a c a ≥-,所以3e ≤;当2c a a ->时,1222PF PF 的最大值小于14a,所以不合题意.因为b a >,所以22211b e a=->,所以2e >,所以2 3.e <≤故答案为:(2,3] 【点睛】本题考查双曲线的离心率的取值范围问题,涉及到双曲线的概念与性质及基本不等式,考查学生的逻辑推理能力,是一道有一定难度的题.三、解答题17.某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组 频数[)75,80 2 [)80,85 6[)85,90 16[)90,9514[)95,1002高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;(2)在抽取的学生中,从成绩为[]95,100的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率. 【答案】(1)0.85;(2)715【解析】(1)利用1减去[)75,80的概率即可得到答案;(2)高一年级成绩为[]95,100的有4人,记为1234, , , A A A A ,高二年级成绩为[]95,100的有2名,记为12,B B ,然后利用列举法即可.【详解】(1)高一年级知识竞赛的达标率为10.0350.85-⨯=.(2)高一年级成绩为[]95,100的有0.025404⨯⨯=(名),记为1234, , , A A A A , 高二年级成绩为[]95,100的有2名,记为12,B B .选取2名学生的所有可能为121314111223242122343132414212, , , , , , , , , , , , , , A A A A A A A B A B A A A A A B A B A A A B A B A B A B B B ,共15种;其中2名学生来自于同一年级的有12131423243412,,,,,,A A A A A A A A A A A A B B ,共7种. 所以这2名学生来自于同一年级的概率为715. 【点睛】本题考查统计与古典概率的计算,涉及到频率分布直方图和频数分布表,考查学生简单的数学运算,是一道容易题.18.在ABC V 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b =. (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值【答案】(1)4;(2)【解析】(1)由已知,易得3B π=,由正弦定理可得34c a =,再由角B 的余弦定理即可得到答案;(2)正弦定理得sin sin sin a c b A C B ===,所以,a A c C ==,sin )a c A C +=+,再利用两角和的正弦公式以辅助角公式可得6a c A π⎛⎫+=+⎪⎝⎭,即可得到最大值.【详解】(1)因为2B A C =+, 又A B C π++=,得3B π=.又3sin 4sin C A =,由正弦定理得34c a =,即34a c =, 由余弦定理2222cosb ac ac B =+-,得22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =或4c =-(舍).(2)由正弦定理得sin sin sin a c b A C B ===,,a A c C ∴==,sin )a c A C ∴+=+sin()]A A B =++1sin sin sin sin cos322A A A A A π⎡⎤⎤⎛⎫=++=++⎢⎥ ⎪⎥⎝⎭⎦⎣⎦6A π⎛⎫=+ ⎪⎝⎭,由203A π<<,得5666A πππ<+=,当62A ππ+=,即3A π=时,max ()a c +=.【点睛】本题考查正余弦定理解三角形,涉及到两角和的正弦公式及辅助角公式的应用,考查学生的数学运算求解能力,是一道容易题. 19.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到'AOD △的位置,使得平面'AOD ⊥平面ABCO ,M 为线段'BD 的中点(如图2).(Ⅰ)求证:'OD BC ⊥; (Ⅱ)求证:CM ∥平面'AOD ; (Ⅲ)当四棱锥'D ABCO -的体积为32时,求a 的值. 【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ) 2a =.【解析】(Ⅰ)证明OD '⊥AO . 推出OD '⊥平面ABCO . 然后证明OD '⊥BC .(Ⅱ)取P 为线段AD '的中点,连接OP ,PM ;证明四边形OCMP 为平行四边形,然后证明CM ∥平面AOD ';(Ⅲ)说明OD '是四棱锥D '﹣ABCO 的高.通过体积公式求解即可. 【详解】(Ⅰ)证明:因为在菱形ABCD 中,3ADC π∠=,O 为线段CD 的中点,所以'OD AO ⊥. 因为平面'AOD ⊥平面ABCO 平面'AOD I 平面ABCO AO =,'OD ⊂平面'AOD ,所以'OD ⊥平面ABCO . 因为BC ⊂平面ABCO ,所以'OD BC ⊥. (Ⅱ)证明:如图,取P 为线段'AD 的中点,连接OP,PM ; 因为在'ABD ∆中,P ,M 分别是线段'AD ,'BD 的中点, 所以//PM AB ,12PM AB =. 因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,//AB DC , 所以122a OC CD ==. 所以OC //AB ,12OC AB =. 所以//PM OC ,PM OC =.所以四边形OCMP 为平行四边形, 所以//CM OP ,因为CM ⊄平面'AOD ,OP ⊂平面'AOD ,所以//CM 平面'AOD ;(Ⅲ)由(Ⅰ)知'OD ⊥平面ABCO .所以'OD 是四棱锥'D ABCO -的高,又S=23332228a a a a ⎛⎫+ ⎪⎝⎭= ,'2a OD = 因为3133'3162a V S OD =⨯⨯==, 所以2a =. 【点睛】本题考查线面平行与垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作与x 轴垂直的直线,与椭圆的交点到x 轴的距离为32. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线'l 与椭圆C 交于A B 、两点(A B 、不在x 轴上),若OE OA OB =+u u u r u u u r u u u r,求四边形AOBE 面积S 的最大值.【答案】(1)22143x y +=;(2)3. 【解析】(1)由12c a =,232b a =结合222a bc =+解方程组即可;(2)设':1l x ty =+,联立直线'l 与椭圆的方程得到根与系数的关系,因为OE OA OB =+u u u r u u u r u u u r,可得四边形AOBE为平行四边形,12122||2AOB S S OF y y =⨯-==△将根与系数的关系代入化简即可解决. 【详解】 (1)由已知得12c a =, Q 直线经过右焦点,2222231,||2c y b y a b a ∴+===, 又222a b c =+Q,2,1a b c ∴===,故所求椭圆C 的方程为22143x y +=.(2)Q 过()1,0F 的直线与椭圆C 交于A B 、两点(A B 、不在x 轴上), ∴设':1l x ty =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩,得22(34)690t y ty ++-=,设()()1122,,,A x y B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,OE OA OB =+u u u r u u u r u u u rQ ,∴四边形AOBE 为平行四边形,122122||234AOBS OF y y t S =∴⨯-===+△1m =≥, 得2621313m S m m m==++,由对勾函数的单调性易得当1m =,即0t =时,max 32S =. 【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆的方程、椭圆中面积的最值问题,考查学生的逻辑推理能力,是一道中档题.21.设函数()2a 2xf x x alnx (a 0)x -=-+>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为()g a ,证明:()g a 1<.【答案】(I )()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(II )详见解析. 【解析】(I )对函数()f x 求导,解导函数所对应的不等式即可求出结果; (II )由(I )先得到()g a ,要证()1g a <,即证明1ln 1a a a a--<,即证明2111ln a a a--<, 构造函数()211ln 1h a a a a=++-,用导数的方法求函数()h a 的最小值即可. 【详解】(Ⅰ)显然()f x 的定义域为()0,+∞.()()()()222242332222221x x a x x a x a x x f x a x x x x x+----++=-⋅='-+=. ∵220x +>,0x >,∴若()0,x a ∈,0x a -<,此时()0f x '<,()f x 在()0,a 上单调递减; 若(),x a ∈+∞,0x a ->,此时()0f x '>,()f x 在(),a +∞上单调递增; 综上所述:()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)由(Ⅰ)知:()()min 1ln f x f a a a a a==--, 即:()1ln g a a a a a=--. 要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<, 令()211ln 1h a a a a =++-,则只需证明()211ln 10h a a a a=++->,∵()()()22333211122a a a a h a a a a a a'-+--=--==,且0a >, ∴当()0,2a ∈,20a -<,此时()0h a '<,()h a 在()0,2上单调递减; 当()2,a ∈+∞,20a ->,此时()0h a '>,()h a 在()2,+∞上单调递增, ∴()()min 1112ln21ln20244h a h ==++-=->.∴()211ln 10h a a a a=++->.∴()1g a <. 【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,用导数的方法研究函数的单调性,最值等,属于常考题型.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:cos 4sin (0)C a a ρθθ=>,直线的参数方程为21x ty t=-+⎧⎨=-+⎩,(t 为参数).直线l 与曲线C 交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程.(2)设()2,1P --,若||,||,||PM MN PN 成等比数列,求a 和的||MN 值.【答案】(1)22cos 4sin (0)a a ρθρθ=>,10x y -+=;(2)10.【解析】(1)利用直角坐标、极坐标、参数方程互化公式即可解决;(2)将直线参数方程标准化,联立抛物线方程得到根与系数的关系,再利用直线参数方程的几何意义即可解决. 【详解】(1)曲线2:cos 4sin (0)C a a ρθθ=>,两边同时乘以ρ,可得22cos 4sin (0)a a ρθρθ=>,化简得24(0)x ay a =>;直线l 的参数方程为21x ty t =-+⎧⎨=-+⎩(t 为参数),消去参数t ,可得1x y -=-,即10x y -+=.(2)直线l 的参数方程21x ty t=-+⎧⎨=-+⎩(t 为参数)化为标准式为21x y ⎧=-⎪⎪⎨='+'⎪-⎪⎩('t 为参数),代入24(0)x ay a =>并整理得'2'1)8(1)0t a t a -+++=, 设M N ,两点对应的参数为''12, t t ,由韦达定理可得''121)t t a +=+,''128(1)0t t a ⋅=+>, 由题意得2||||||MN PM PN =⋅,即2''''1212t t t t -=⋅, 可得()2''''''1212124t t t t t t +-⋅=⋅, 即232(1)40(1)a a +=+,0a >,解得1,4a =所以2''121||81104MN t t ⎛⎫=⋅=+= ⎪⎝⎭,||MN =【点睛】本题考查极坐标与参数方程的应用,涉及到极坐标方程、普通方程、参数方程的互化,以及直线参数方程的几何意义求距离的问题,是一道容易题. 23.已知函数()|||2|f x x a x =-++. (1)当1a =时,求不等式()3f x ≤的解集; (2)()00,50x f x ∃∈-≥R ,求实数a 的取值范围. 【答案】(1){|21}x x-#;(2)[7,3]-【解析】(1)当1a =时,()|1||2|f x x x =-++,分2x -≤,21x -<<,1x ≥三种情况讨论即可;(2)()00,50x f x ∃∈-≥R ,则()min 5f x ≥,只需找到()f x 的最小值解不等式即可. 【详解】(1)当1a =时,()|1||2|f x x x =-++,①当2x -≤时,()21f x x =-- ,令()3f x ≤,即213x --≤,解得2x ≥-,所以2x =-, ②当21x -<<时,()3f x =,显然()3f x ≤成立,21x ∴-<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤,所以1x =. 综上所述,不等式的解集为{|21}x x-#.(2)0()|||2||()(2)||2|,f x x a x x a x a x =-++--+=+∃∈R Q …,有()050f x -…成立,∴要使()05f x ≥有解,只需|2|5a +≤,解得73a ≤≤-, ∴实数a 的取值范围为[7,3]-.【点睛】本题考查解绝对值不等式以及不等式能成立问题,考查学生的基本计算能力,是一道容易题.。
高三数学-2024年全国普通高中九省联考仿真模拟数学试题(一)(解析版)

2024年高考仿真模拟数试题(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ()A.4B.5C.6D.7【答案】C 【解析】【分析】根据百分位数的定义求解即可.【详解】这组数据为:1,1,,4,5,5,6,7a ,但a 大小不定,因为80.756⨯=,所以这组数据的75%分位数为从小到大的顺序的第6个数和第7个数的平均数,经检验,只有6a =符合.故选:C .2.已知椭圆E :()222210x y a b a b+=>>的长轴长是短轴长的3倍,则E 的离心率为()A.3B.223C.33D.233【答案】B 【解析】【分析】根据题意可得26a b =,再根据离心率公式即可得解.【详解】由题意,26a b =,所以13b a =,则离心率3c e a ====.故选:B .3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =()A.150B.120C.75D.68【答案】D 【解析】【分析】由等差数列的性质及求和公式计算即可得解.【详解】由等差数列的性质可知78910911205a a a a a a ++++==,所以94a =,()1171791717682a a S a +===,故选:D.4.已知空间中,l 、m 、n 是互不相同直线,α、β是不重合的平面,则下列命题为真命题的是()A.若//αβ,l ⊂α,n β⊂,则//l nB.若//l α,//l β,则//αβC.若//m β,//n β,m α⊂,n ⊂α,则//αβD.若l α⊥,//l β,则αβ⊥【答案】D 【解析】【分析】对A 、B 、C 选项,可通过找反例排除,对D 选项,可结合线面平行的性质及面面垂直的判定定理得到.【详解】对A 选项:若//αβ,l ⊂α,n β⊂,则l 可能与n 平行或异面,故A 错误;对B 选项:若//l α,//l β,则α与β可能平行或相交,故B 错误;对C 选项:若//m β,//n β,m α⊂,n ⊂α,可能//m n ,此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p ,又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选:D.5.7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有()种站排方式.A.672 B.864 C.936 D.1056【答案】D 【解析】【分析】分甲站在每一排的两端和甲不站在每一排的两端这两种情况解答即可.【详解】当甲站在每一排的两端时,有4种站法,此时乙的位置确定,剩下的人随便排,有554A 480=种站排方式;当甲不站在每一排的两端时,有3种站法,此时乙和甲相邻有两个位置可选,丙和甲不相邻有四个位置可选,剩下的人随便站,有1142443C C A 576=种站排方式;故总共有4805761056+=种站排方式.故选:D .6.在平面直角坐标系xOy 中,已知()1,0A ,()0,3B ,动点P 满足OP xOA yOB =+,且1x y +=,则下列说法正确的是()A.P 的轨迹为圆B.P 到原点最短距离为1C.P 点轨迹是一个菱形D.点P 的轨迹所围成的图形面积为4【答案】C 【解析】【分析】由题意得3x ab y =⎧⎪⎨=⎪⎩,结合1x y +=可知33a b +=,画出图形可知P 点轨迹是一个菱形,故C错误A 正确;由点到直线的距离即可验证B ;转换成ABC 面积的两倍来求即可.【详解】设P 点坐标为(),a b ,则由已知条件OP xOA yOB =+ 可得3a x b y =⎧⎨=⎩,整理得3x a b y =⎧⎪⎨=⎪⎩.又因为1x y +=,所以P 点坐标对应轨迹方程为33a b +=.0a ≥,且0b ≥时,方程为33a b +=;0a ≥,且0b <时,方程为33b a =-;a<0,且0b ≥时,方程为33b a =+;a<0,且0b <时,方程为33a b +=-.P 点对应的轨迹如图所示:3AB CD k k ==-,且AB BC CD DA ====P 点的轨迹为菱形.A 错误,C 正确;原点到AB :330a b +-=1.10=<B 错误;轨迹图形是平行四边形,面积为122362⨯⨯⨯=,D 错误.故选:C .7.已知函数()3sin 44sin 436f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,设()00,,()x x f x f x ∀∈∃∈≤R R ,则02tan 43x π⎛⎫-⎪⎝⎭等于()A.43-B.34-C.34D.43【答案】B 【解析】【分析】根据诱导公式得到()f x 最大值,即得到关于0x 的关系式,代入02tan 43x π⎛⎫-⎪⎝⎭利用诱导公式即可.【详解】()3sin 44sin 43sin(4)4sin(4)36323f x x x x x πππππ⎛⎫⎛⎫=++-=++-++ ⎪ ⎪⎝⎭⎝⎭,()3sin(4)4cos(433f x x x ππ∴=+++,4()5sin(4)(tan 33f x x πϕϕ∴=++=,max 5()f x =∴,()00,,()x x f x f x ∀∈∃∈≤R R ,0234(Z)2k k x πππϕ+=+∈+∴,0213tan 4tan(2)32tan 4x k πππϕϕ⎛⎫∴-=-+-=-=- ⎪⎝⎭.故选:B.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,离心率为e ,直线(0)y kx k =≠分别与C 的左、右两支交于点M ,N .若1MF N 的面积为160MF N ∠=︒,则22e 3a +的最小值为()A.2B.3C.6D.7【答案】D 【解析】【分析】作出辅助线,121F NF MF N S S == 124NF NF ⋅=,利用双曲线定义和余弦定理求出21243b F N F N ⋅=,求出23b =,进而求出22223e 31317a a a +=++≥+=.【详解】连接22,NF MF ,有对称性可知:四边形12MF NF 为平行四边形,故2112,NF MF NF MF ==,12120FNF ∠=︒,121F NFMF N S S ==由面积公式得:121sin1202NF NF ⋅︒=124NF NF ⋅=,由双曲线定义可知:122F N F N a -=,在三角形12F NF 中,由余弦定理得:()222221212121212244cos12022F N F N F N F N cF N F N c F N F N F N F N-+⋅-+-︒==⋅⋅2121224122F N F N b F N F N ⋅-==-⋅,解得:21243b F N F N ⋅=,所以2443b =,解得:23b =,故22223e 31317a a a +=++≥+=,当且仅当2233a a=,即21a =时,等号成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()2sin sin 2f x x x=-,则下列结论正确的有()A.()f x 为奇函数B.()f x 是以π为周期的函数C.()f x 的图象关于直线π2x =对称 D.π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x的最大值为22-【答案】AD 【解析】【分析】对于A ,由正弦函数的奇偶性即可判断;对于B ,判断()()πf x f x +=是否成立即可;对于C ,判断ππ22f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭是否成立即可;对于D ,可得π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,由此即可得解.【详解】对于A ,()2sin sin 2f x x x =-的定义域为()π,2k x k ≠∈Z (关于原点对称),且()()()()22sin sin sin 2sin 2f x x x f x x x ⎛⎫-=--=--= ⎪-⎝⎭,对于B ,()()()()22πsin πsin sin 2sin 2πf x x x f x x x +=+-=--≠⎡⎤+⎣⎦,故B 错误;对于C ,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫+=+-=+⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭+ ⎪⎢⎥⎝⎭⎣⎦,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫-=--=-⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭- ⎪⎢⎥⎝⎭⎣⎦,但ππ22f x f x ⎛⎫⎛⎫+≠-⎪ ⎪⎝⎭⎝⎭,即()f x 的图象不关于直线π2x =对称,故C 错误;对于D ,π0,4x ⎛⎤∈ ⎥⎝⎦时,sin ,sin 2y x y x ==均单调递增,所以此时2sin 2y x=-也单调递增,所以π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,其最大值为π2242f ⎛⎫=- ⎪⎝⎭.故选:AD.10.已知复数1z ,2z ,则下列命题成立的有()A.若1212z z z z +=-,则120z z = B.11,Z nnz z n =∈C.若22120z z +=,则12=z z D.1212z z z z ⋅=⋅【答案】BCD 【解析】【分析】举例说明判断A ;利用复数的三角形式计算判断B ;利用复数的代数形式,结合模及共轭复数的意义计算判断CD.【详解】对于A ,当121i,1i =+=-z z 时,12122z z z z +==-,而1220z z =≠,A 错误;对于B ,令1(cos isin ),0,R z r r θθθ=+≥∈,则1(cos isin )n nz r n n θθ=+,于是1|||cos isin |nnnz r n n r θθ=+=,而1||z r =,即有1||nnz r =,因此11nnz z =成立,B 正确;设复数1i(,R)z a b a b =+∈,2i(,)z c d c d =+∈R ,对于C ,由22120z z +=,得2222()(22)i 0a b c d ab cd -+-++=,则22220220a b c d ab cd ⎧-+-=⎨+=⎩,2222120z z -=-=,因此12=z z ,C 正确;对于D ,21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=-++,则21()()i z ac bd a b z d c ⋅=--+,12(i)(i)()()i z z a b c d ac bd ad bc ⋅=--=--+,因此1212z z z z ⋅=⋅,D 正确.故选:BCD11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则()()f x f y ≠.则()A.()0f 的值为2B.()()4f x f x +-≥C.若()13f =,则()39f = D.若()410f =,则()24f -=【答案】ABC 【解析】【分析】对于A ,令0x y ==,结合“若x y ≠,则()()f x f y ≠”即可判断;对于B ,由基本不等式相关推理结合()2040f =>即可判断;对于C ,令1y =得,()()()1332f x f x f x +++=+,由此即可判断;对于D ,令()1xf x =+,即可判断.【详解】对于A ,令0x y ==,得()()23002f f =+⎡⎤⎣⎦,解得()01f =或()02f =,若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,但这与②若x y ≠,则()()f x f y ≠矛盾,所以只能()02f =,故A 正确;对于B ,令y x =-,结合()02f =得,()()()()()()22f x f x f x f x f x f x ⎛⎫+-+-=⋅-≤ ⎪⎝⎭,解得()()4f x f x +-≥或()()0f x f x +-≤,又()02f =,所以()2040f =>,所以只能()()4f x f x +-≥,故B 正确;对于C ,若()13f =,令1y =得,()()()1332f x f x f x +++=+,所以()()121f x f x +=-,所以()()2161521f f =-=-=,所以()()21101932f f =-=-=,故C 正确;对于D ,取()1xf x =+,则()()11232xyx yx yf x f y +⎡⎤⎡⎤+++=+++⎢⎥⎢⎥⎣⋅=⎣+⎦⎦()()()f x y f x f y +++=且()1xf x =+单调递增,满足()410f =,但()423f -=,故D 错误.故选:ABC.【点睛】关键点睛:判断D 选项的关键是构造()1xf x =+,由此即可证伪.三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2,0,1M =-,{}1N x x a =-<,若M N ⋂的真子集的个数是1,则正实数a 的取值范围为______.【答案】()()0,11,3 【解析】【分析】分{}0M N = 和{}2M N = 讨论即可.【详解】{}1N x x a =-<,则11x a -<-<,解得11a x a -+<<+,若M N ⋂的真子集的个数是1,则M N ⋂中只含有一个元素,因为a 为正实数,则11a +>,11a -+>-,若{}0M N = ,则10120a a a -+<⎧⎪+≤⎨⎪>⎩,解得01a <<,若{}2M N = ,则012120a a a ≤-+<⎧⎪+>⎨⎪>⎩,解得13a <<,综上所述,a 的取值范围为()()0,11,3 .故答案为:()()0,11,3 .13.已知正四棱台1111ABCD A B C D -的上、下底面边长分别为4、6,则正四棱台1111ABCD A B C D -的体积为______,外接球的半径为______.【答案】①.3②.【解析】【分析】利用棱台的体积公式计算即可得第一空,根据棱台与球的特征结合勾股定理计算即可得第二空.【详解】根据题意易知该棱台的上、下底面积分别为:2212416,636S S ====,所以正四棱台1111ABCD A B C D -的体积为()12176233V S S =++=;连接AC ,BD 交于点2O ,连接11A C ,11B D 交于点1O,如图所示:当外接球的球心O 在线段12O O 延长线上,设1OO h =,外接球半径为R,则(222O O h =-,因为12=O O ,上、下底面边长分别为4、6,则111112==D O B D 212DO BD ==,所以(22222112R D O h DO h h R =+=+-⇒==当外接球的球心O 在线段21O O 延长线上,显然不合题意;当球心O 在线段12O O 之间时,则)222O O h =,同上可得,h =故答案为:3.14.若sin 0αβγ+-=+-的最大值为______.【答案】【解析】≤=消去α、β求最大值即可,再应用三角函数的单调性即可得.【详解】由题意得:0sin 1αβγ≤+=≤,0α≥,0β≥,则()22αβαβαβαβ=+++++=+,当且仅当αβ=时等号成立,+≤=≤,则有0sin 10cos 1γγ≤≤⎧⎨≤≤⎩,则π2π2π2k k γ≤≤+,Z k ∈,有sin γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,单调递增,cos γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递减,π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递增,则当π2π2k γ=+时,即sin 1γ=、cos 0γ=时,,+-的最大值为..【点睛】本题关键在于如何将多变量求最值问题中的多变量消去,结合基本不等式与题目条件可将α、β消去,再结合三角函数的值域与单调性即可求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.函数()e 2xf x ax a =--.(1)讨论函数的极值;(2)当0a >时,求函数()f x 的零点个数.【答案】(1)答案见解析(2)答案见解析【解析】【分析】(1)求导后,分别在0a ≤和0a >的情况下得到()f x '正负,进而得到()f x 单调性,由极值定义可求得结果;(2)由(1)可知()f x 单调性,分别讨论极小值大于零、等于零和小于零的情况,结合零点存在定理可得结论.【小问1详解】由题意得:()e 2xf x a '=-;当20a ≤,即0a ≤时,()0f x ¢>恒成立,()f x \在R 上单调递增,无极值;当20a >,即0a >时,令()0f x '=,解得:ln 2x a =,∴当(),ln 2x a ∈-∞时,()0f x '<;当()ln 2,x a ∈+∞时,()0f x ¢>;()f x \在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增,()f x \的极小值为()ln 22ln 2f a a a a =-,无极大值;综上所述:当0a ≤时,()f x 无极值;当0a >时,()f x 极小值为2ln 2a a a -,无极大值.【小问2详解】由(1)知:当0a >时,()f x 在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增;当02a <<时,()ln 22ln 20f a a a a =->,()0f x ∴>恒成立,()f x 无零点;当a =时,()ln 22ln 20f a a a a =-=,()f x 有唯一零点ln 2x a =;当2a >时,()ln 22ln 20f a a a a =-<,又()010f a =->,当x 趋近于正无穷大时,()f x 也趋近于正无穷大,()f x \在()0,ln 2a 和()ln 2,a +∞上各存在一个零点,即()f x 有两个零点;综上所述:当e 02a <<时,()f x 无零点;当2a =时,()f x 有且仅有一个零点;当e 2a >时,()f x 有两个不同的零点.16.已知n 把相同的椅子围成一个圆环;两个人分别从中随机选择一把椅子坐下.(1)当12n =时,设两个人座位之间空了X 把椅子(以相隔位子少的情况计数),求X 的分布列及数学期望;(2)若另有m 把相同的椅子也围成一个圆环,两个人从上述两个圆环中等可能选择一个,并从中选择一把椅子坐下,若两人选择相邻座位的概率为114,求整数(),3,3m n m n >>的所有可能取值.【答案】(1)分布列见解析,数学期望为2511(2)9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩【解析】【分析】(1)根据题意得到随机变量X 可以取0,1,2,3,4,5,并计算出相应的概率,列出分布列,利于期望公式计算即可;(2)利于概率求得两人选择相邻座位的概率,建立方程后依据条件可求得整数解即可.【小问1详解】由题意,得随机变量X 可以取0,1,2,3,4,5,其中()()21212220,1,2,3,4A 11P X i i ⨯====,()21212115A 11P X ⨯===,所以随机变量X 的分布列为:X012345P 211211************故()2222212501234511111111111111E X =⨯+⨯+⨯+⨯+⨯+⨯=.【小问2详解】记“两人选择n 把相同的椅子围成的圆环”为事件A ,“两人选择m 把相同的椅子围成的圆环”为事件B ,“两人选择相邻座位”为事件C .因为两个人从上述两个圆环中等可能选择一个,所以()()1111,2244P A P B =⨯==,()()()()()()()P C P AC P BC P A P C A P B P C B =+=+()()12121114141211n m n n m m n m ⨯⨯⎛⎫=⨯+⨯=+ ⎪----⎝⎭.因为()114P C =,所以111117n m +=--.化简,得4988n m =+-.因为*3,3,m n n >>∈N ,所以498m ∈-Z ,且4958m >--.所以81,7,49m -=,即9,15,57m =,此时9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩所以,m n 的所有可能取值为9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩17.如图,在多面体ABCDEF 中,底面ABCD 为平行四边形,//EF 平面AB CD -,EAB 为等边三角形,22,60BC CE AB EF ABC ===∠=︒.(1)求证:平面EAB ⊥平面ABCD ;(2)求平面ECD 与平面FCD 夹角的余弦值.【答案】(1)证明见解析(2)31010【解析】【分析】(1)根据面面垂直的判定定理证明即可;(2)建立空间直角坐标系,利用向量的方法即可求得平面平面ECD 与平面FCD 的夹角的余弦值.【小问1详解】不妨设1AB =,则2BC CE ==,在平行四边形ABCD 中,2BC = ,1AB =,60ABC ∠=︒,连接AC ,由余弦定理得22212211cos 603AC =+-⨯⨯⨯︒=,即3AC =,222AC AB BC += ,AC AB ∴⊥.又 222AC AE CE +=,AC AE ∴⊥,AB AE A = ,AC ⊥平面EAB ,又 AC ⊂平面ABCD .∴平面EAB ⊥平面ABCD .【小问2详解】取AB 中点G ,连接EG ,EA EB = ,EG AB ∴⊥,由(1)易知EG ⊥平面ABCD ,且32EG =.如图,以A 为原点,分别以射线,AB AC 所在直线为,x y 轴,竖直向上为z 轴,建立空间直角坐标系A xyz -,则1,0,22E ⎛⎫ ⎪ ⎪⎝⎭,0,,22F ⎛⎫ ⎪ ⎪⎝⎭,()C,()D -,()12,B -,(11,C -,()1,0,0CD =- ,330,,22FC ⎛⎫=- ⎪ ⎪⎝⎭,1322EC ⎛⎫=-- ⎪ ⎪⎝⎭ ,设平面FCD 的法向量为(),,n x y z = ,则00n CD n FC ⎧⋅=⎪⎨⋅=⎪⎩ ,得0022x y z -=⎧-=⎩,令1y =,得()0,1,1n = ,设平面ECD 的法向量为()111,,m x y z = ,则00m CD m EC ⎧⋅=⎪⎨⋅=⎪⎩ ,得1111013022x x z -=⎧⎪⎨-+-=⎪⎩,令11y =,得()0,1,2m =,310cos ,10m n m n m n ⋅===⋅ ,所以平面ECD 与平面FCD 夹角的余弦值31010.18.已知抛物线C :22y px =(05p <<)上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程;(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若12344S S S S =,求直线AB 的方程.【答案】(1)22y x=(2)10x -=【解析】【分析】(1)结合抛物线定义即可.(2)设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程联立得12y y +,12y y .将每条直线表达出来,1S 、2S 、3S 、4S 表达出来,再由12344S S S S =得出m 即可.【小问1详解】设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.【小问2详解】如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y==,∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==.又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,∴12342242S S S S m =+=,得m =,∴直线AB的方程为1x =+即10x ±-=.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。
2024届上海市浦东新区高三二模数学试题及答案

上海市浦东新区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合 0,1,2A ,集合23xB x ,则A B.2.若复数12z i (i 是虚数单位),则z z z .3.已知等差数列 n a 满足1612a a ,47a ,则3a.4.23x5.6.已知y7.比为6现从该年级所有选择体育类选修课的同学中任取一8.已知圆9.已知f 10.沿着上底面圆周运动半周时,11.为双曲线上一点,若122F MF ,3OM b,则双曲线的离心率为.12.正三棱锥S ABC 中,底面边长2AB ,侧棱3AS ,向量a 、b满足 a a AC a AB ,b b AC b AS,则a b 的最大值为.第10题图第15题图二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.“1a ”是“直线220ax y 与直线 110x a y 平行”的().A 充分非必要条件;.B 必要非充分条件;.C 充要条件;.D 既非充分又非必要条件.14.已知a R ,则下列结论不恒成立的是().A 114a a ;.B 12a a;.C 123a a ;.D 1sin 02sin a a.15.通过随机抽样,我们绘制了如图所示的某种商品每千克价格(单位:百元)与该商品消费者年需求量(单位:千克)的散点图.若去掉图中右下方的点A 后,下列说法正确的是().A “每千克价格”与“年需求量”这两个变量由负相关变为正相关;.B “每千克价格”与“年需求量”这两个变量的线性相关程度不变;.C “每千克价格”与“年需求量”这两个变量的线性相关系数变大;.D “每千克价格”与“年需求量”这两个变量的线性相关系数变小.16.设 10110mm m m f x a x a xa x a (0m a ,10m ,m Z ),记1n n f x f x (1,2,,1n m ),令有穷数列n b 为 n f x 零点的个数(1,2,,1n m ),则有以下两个结论:①存在 0f x ,使得n b 为常数列;②存在 0f x ,使得n b 为公差不为零的等差数列.那么().A ①正确,②错误;.B ①错误,②正确;.C ①②都正确;.D ①②都错误.第18题图三、解答题(本大题共有5题,满分78分)【解答下列各题必须写出必要的步骤】17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数 y f x ,其中 sin f x x .(1)求42f x在 0,x 上的解;(2)已知2g x x f x f x f x,若关于x 的方程 12g x m 在0,2x时有解,求实数m 的取值范围.18.在四棱其中//AD BC ,2AD BC (1)(2)某商店随机抽取了当天100名客户的消费金额,并分组如下: 0,200, 200,400, 400,600,…,1000,2000(单位:元),得到如图所示的频率分布直方图.(1)800元;(2)人中随机抽取2人(3)次当天消费金额可已知椭圆22:12x C y ,点1F 、2F 分别为椭圆的左、右焦点.(1)若椭圆上点P 满足212PF F F ,求1PF 的值;(2)点A 为椭圆的右顶点,定点 ,0T t 在x 轴上,若点S 为椭圆上一动点,当ST 取得最小值时点S 恰与点A 重合,求实数t 的取值范围;(3)已知m 为常数,过点2F 且法向量为 1,m 的直线l 交椭圆于M 、N 两点,若椭圆C 上存在点R满足OR OM ON(,R ),求 的最大值.已知函数 y f x 及其导函数 'y f x 的定义域均为D .设0x D ,曲线 y f x 在点00,x f x 处的切线交x 轴于点 1,0x .当1n 时,设曲线 y f x 在点,n n x f x 处的切线交x 轴于点 1,0n x .依此类推,称得到的数列 n x 为函数 y f x 关于0x 的“N 数列”.(1)若 ln f x x , n x 是函数 y f x 关于01x e的“N 数列”,求1x 的值;(2)若 24f x x , n x 是函数 y f x 关于03x 的“N 数列”,记32log 2n n n x a x ,证明: n a 是等比数列,并求出其公比;(3)若 2xf x a x,则对任意给定的非零实数a ,是否存在00x ,使得函数 y f x 关于0x 的“N 数列” n x 为周期数列?若存在,求出所有满足条件的0x ;若不存在,请说明理由.上海市浦东新区2024届高三二模数学试卷-简答1答案一、填空题1.{2}.2.42 i .3.5. 4.270.5.0.3.6.425.7.0.18.8. .9. 1,2.10.2.11.2.12.4.二、选择题13.C 14.B 15.D 16.C三、解答题从而有ππ2π+43x k或π2π2π+43x k ,Z k 解得7π2π+12x k 或11π2π+12x k ,Z k 又 0,πx ,所以7π12x或11π12x .因此π4f x在 0,πx 上的解为7π12、11π12.2cos sin x x x1cos 2sin 222xx2π1sin 262x故1()2g x m在π0,2x时有解等价于πsin 26m x在π0,2x时有解.所以,EC ∥平面PAB .3(2)取AD 中点H ,过P 作 PG AB ,垂足为G ,连接GH由题,PA PD ,H 为AD 的中点,所以PH AD .又平面 PAD 底面ABCD ,平面PAD 平面ABCD AD ,且 PH 平面PAD ,因而PH 平面ABCD ,故PH AB ,PH GH .又PG AB ,故AB 平面PGH .得AB GH .又 PG AB ,所 PGH 就是二面角 P AB D 的平面角.经计算,在△PAD中,PH 在△ABH 中,3BH AB ,2AH,故122ABH S 又11322ABH S AB GH GH,得AB因而,在△PGH 中,3tan 2PH PGH GH所以二面角 P AB D 的大小3arctan 2.(法二)(1)取AD 中点O ,因为PA PD ,O 为AD 中点,所以PO AD .又平面 PAD 底面ABCD ,平面PAD 平面ABCD AD , PO 平面PAD ,所以PO ABCD 平面.取BC 中点M ,显然,OM OD .如图,以点O 为坐标原点,分别以射线OM 、OD 、OP 为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系.由题意得, E、 C,故 EC.又 P 、 0,2,0A、1,0B ,故 AP,AB.设平面PAB 的法向量 ,, n u v w,则有20v v 不妨取1u,则v 2 ,即1,n.经计算得0 n EC ,故 n EC.又EC 在平面PAB 外,所以EC ∥平面PAB .(2)由题(1)知,平面PAB的法向量11, n ,平面ABCD 的法向量 200,1 ,n,从而121212cos ,13n n n n n n,因此,二面角 P AB D的大小为.19.【解析】因为850840.7 ,所以应选择第二种促销方案.20.【解析】(1)由题得,2(1,0)F ,设点(1,)P P y ,代入椭圆方程,得212Py ,因而22PF.由12PF PF12PF .(2)设动点(,)S x y ,则22222222()212122x x ST x t y x tx t tx t 221(2)12x t t 由题,ST 取得最小值时点S 恰与点A 重合,即函数221(2)12y x t t在x 处取得最小值,又[x,因而2t2t.因此,实数t 的取值范围为[,)2.(3)设11(,)M x y ,22(,)N x y ,(,)R x y 由OR OM ON ,得1212x x x y y y ,又点R 在椭圆上,代入得221212()2()2x x y y ,化简得22222211221212(2)(2)2(2)2x y x y x x y y ,又点M 、N 在椭圆上,得221212222(2)2x x y y (*).由题,可设直线:(1)0l x my .联列直线与椭圆方程,得22122x my x y ,得22(2)210m y my .故12222m y y m,12212y y m 因而22121212122221222(1)(1)2(2)1222m m x x y y my my y y m m m m m .代入(*)式,得222222422m m ,因而22221222m m ,(等号当且仅当 时成立)即224m (等号当且仅当 时成立).所以, 的最大值为224m .21.【解析】(1)曲线ln y x 在点 00,ln x x 处的切线斜率为01x ,又1ln 1e故曲线ln y x 在点1,1e 处的切线方程为11y e x e,令0y ,得2x e.所以12x e.(2)由题, y f x 在n x 处的切线方程为n n n y f x f x x x 令0y ,可得 1n n n n f x x x f x ,即2142n n n x x x .故 21212222n n n n x x x x ,即12n n a a .又1136x,故13log 25a .因此 n a 是以3log 25为首项,2为公比的等比数列.(3)由题,222a x f x a x,故以0020,x x a x 为切点的切线方程为 200022200x a x y x x a x a x .令0y ,可得到301202x x x a.1当0a 时,函数 2xf x a x的大致图像如图所示:因为300202x x x a等价于20x a ,因此,当20x a 时,数列 n x 严格增;同理,当20x a 时,数列 n x 严格减.所以不存在0x 使得 n x 是周期数列.②当0a 时,函数 2xf x a x的大致图像如图所示:令10x x ,可得300202x x x a ,即20=3ax .依此类推,显然可得21x x ,…,-1n n x x .所以,当0x 时,数列 n x 为周期数列,且周期2T .下证唯一性:当203ax 时,322000000222000222<x x x x x x x a x a a x ;因此,数列 n x 严格减;当203ax 时, 202200222,12,x a x a x a ,所以320000220022>--x x x x x a x a ,因此数列 n x 严格增.综上,当0a 时,不存在0x ,使得 n x 为周期数列;当0a时,当且仅当03x a 时,函数 y f x 关于0x 的“N 数列” n x 为周期数列,且周期2T .。
2024学年上海市普通高中高三1月教学质量检测试题数学试题

2024学年上海市普通高中高三1月教学质量检测试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等比数列{}n a 满足21a =,616a =,等差数列{}n b 中54b a =,n S 为数列{}n b 的前n 项和,则9S =( ) A .36B .72C .36-D .36±2.已知复数21iz i=+,则z =( )A .1i +B .1i -CD .23.已知斜率为2-的直线与双曲线()2222:10,0x y C a b a b-=>>交于,A B 两点,若()00,M x y 为线段AB 中点且4OM k =-(O 为坐标原点),则双曲线C 的离心率为( )A B .3CD 4.已知三棱锥P ABC -中,O 为AB 的中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,则有下列四个结论:①若O 为ABC 的外心,则2PC =;②ABC 若为等边三角形,则⊥AP BC ;③当90ACB ∠=︒时,PC 与平面PAB 所成的角的范围为0,4π⎛⎤⎥⎝⎦;④当4PC =时,M 为平面PBC 内一动点,若OM ∥平面PAC ,则M 在PBC内轨迹的长度为1.其中正确的个数是( ). A .1B .1C .3D .45.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A .413B .21313C .926D .313266.已知函数()sin(2019)cos(2019)44f x x x ππ=++-的最大值为M ,若存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则M m n ⋅-的最小值为( )A .2019πB .22019π C .42019πD .4038π7.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .8.已知函数()cos 2321f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 9.若2nx x ⎛⎝的二项式展开式中二项式系数的和为32,则正整数n 的值为( )A .7B .6C .5D .410.记n S 为数列{}n a 的前n 项和数列{}n a 对任意的*,p q ∈N 满足13p q p q a a a +=++.若37a =-,则当n S 取最小值时,n 等于( ) A .6B .7C .8D .911.若点(2,k)到直线5x-12y+6=0的距离是4,则k 的值是( ) A .1B .-3C .1或53D .-3或17312.已知函数2()ln(1)f x x x-=+-,则函数(1)=-y f x 的图象大致为( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
上海市2024届浦东新区高考一模数学

考生注意:1、本试卷共21道试题,满分150分,答题时间120上海市2024届浦东新区高考一模数学分钟;2、请在答题纸上规定的地方解答,否则一律不予评分 .一、填空题(本大题满分54分)本大题共有12题.考生应在答题纸相应编号的空格内直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1.已知全集,=U 12,3,4}{,集合=A 1,3}{,则=A ____________. 2.若复数+=z 12i5(其中i 表示虚数单位),则=z Im ____________. 3.已知事件A 与事件B 互斥,且=P A 0.3)(,=P B 0.4)(,则)P A B =(________.4.已知直线l 的倾斜角为3π,请写出直线l 的一个法向量____________. 5.已知S n 是等差数列a n }{的前n 项和,若=−a n n 23,则满足=S m 24的正整数m 的值为____________. 6.已知向量(3,4)a =,向量(1,0)b =,则向量a 在向量b 上的投影为____________. 7.已知圆锥的母线与底面所成的角为3π,体积为π3,则圆锥的底面半径为___________. 8.在100件产品中有90件一等品、10件二等品,从中随机抽取3件产品,则恰好含1件二等品的概率为____________(结果精确到0.01).9.小明为了解自己每天花在体育锻炼上的时间(单位:min ),连续记录了7天的数据并绘制成如图所示的茎叶图,则这组数据的第60百分位数是____________.10.如图,已知函数=+ωϕy A x sin()(>><<ωϕA 20,0,0π)的图像与y 轴的交点为 0,1)(,并已知其在y 轴右侧的第一个最高点和第一个最低点的坐标分别为x ,20)(和+π−x 2,20)(.记=y f x )(,则⎝⎭⎪=⎛⎫f 3π____________. 11.已知曲线C :1 =≤y x x 412)(,曲线C :2−+−=≥x x y x 2280622)(,若△ABC 的顶点的A 坐标为1,0)(,顶点B C ,分别在曲线C 1和C 2上运动,则△ABC 周长的最小值为____________. 12.已知数列a n }{满足=a a 1,且对任意正整数x n ,关于的实系数方程++−=x a a n n 2(2)02都有两个相等的实根.若=a 02024,则满足条件的不同实数a 的个数为____________个.二、选择题(本大题满分18分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,13-14题每题选对得4分,15-16题每题选对得5分,否则一律得零分.13.如果>>a b 0,则下列不等式中一定成立的是( ).A >B .>a b 22C .<a ab 2D .>a b 3314.某组样本数据由10个互不相同的数组成,去掉其中的最小数和最大数后,得到一组新的样本数据,则下列选项一定成立的是( ). A .两组样本数据的平均数相同 B .两组样本数据的方差相同 C .两组样本数据的中位数相同D .两组样本数据的极差相同15.已知棱长均为1的正n 棱柱有n 2个顶点,从中任取两个顶点作为向量a 的起点与终点,设底面的一条棱为AB .若集合}A x x a AB ==⋅n |{,则当A n 中的元素个数最少时,n 的值为( ). A .3B .4C .6D .816.对于函数=y f x ()和=y g x (),及区间D ,若存在实数、k b ,使得≥+≥f x kx b g x )()(对任意∈x D 恒成立,则称=y f x ()在区间D 上“优于”=y g x ().有以下两个结论:①=f x x log 2)(在区间=D [1,2]上优于=−+g x x x ()212;②当≤−m 2时,=f x x ()3在区间=−D [1,1]上优于=+g x m x ()e .那么( ). A .①、②均正确 B .①正确,②错误 C .①错误,②正确D .①、②均错误三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数=y f x )(,其中=∈+x kf k xx )R 2(4)(. (1)是否存在实数k ,使函数=y f x )(是奇函数?若存在,请写出证明. (2)当=k 1时,若关于x 的不等式≥f x a )(恒成立,求实数a 的取值范围.18.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.如图,在四棱锥−P ABCD 中,DP ⊥底面ABCD ,AB CD //,∠=ADC 90,=DP 3,=CD 2,==AB AD 1,点F 为PD 中点.(1)求证:直线AF //平面PBC ; (2)求点D 到平面PBC 的距离.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某街道规划建一座口袋公园.如图所示,公园由扇形AOC 区域和三角形COD 区域组成.其中、、A O D 三点共线,扇形半径OA 为30米.规划口袋公园建成后,扇形AOC 区域将作为花草展示区,三角形COD 区域作为亲水平台区,两个区域的所有边界修建休闲步道.(1)若∠=AOC 3π,=OD OA 2,求休闲步道总长(精确到米); (2)若∠=ODC 6π,在前期民意调查时发现,绝大部分街道居民对亲水平台区更感兴趣.请你根据民意调查情况,从该区域面积最大或周长最长的视角出发,选择其中一个方案,设计三角形COD 的形状.20.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知双曲线C :−=x y 3122的左、右焦点分别为F 1、F 2,P 为双曲线右支上一点.(1)求双曲线C 的离心率;(2)设过点P 和F 2的直线l 与双曲线C 的右支有另一交点为Q ,求OP OQ ⋅的取值范围;(3)过点P 分别作双曲线C 两条渐近线的垂线,垂足分别为M 、N 两点,是否存在点P ,使得+=PM PN P 的坐标,若不存在,请说明理由.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设=y f x )(是定义在R 上的函数,若存在区间a b ,][和∈x a b (,)0,使得=y f x )(在a x [,]0上严格减,在x b [,]0上严格增,则称=y f x )(为“含谷函数”,x 0为“谷点”,a b ,][称为=y f x )(的一个“含谷区间”.(1)判断下列函数中,哪些是含谷函数?若是,请指出谷点;若不是,请说明理由:①=y x 2,②=+y x x cos ;(2)已知实数>m 0,=−−−y x x m x 2ln 12)(是含谷函数,且2,4][是它的一个含谷区间,求m 的取值范围;(3)设∈p q ,R ,=−+++−−h x x px qx p q x 432432)()(.设函数=y h x )(是含谷函数,a b ,][是它的一个含谷区间,并记−b a 的最大值为L p q ,)(.若≤h h 12)()(,且≤h 10)(,求L p q ,)(的最小值.参考答案一、填空题1. 2,4}{2. −23. 0.74. )( 5. 6 6.(3,0) 7. 8.10782679. 5810. 11. 13 12. +212022二、选择题13. D 14. C 15. B 16. B三、解答题 17.(1)−1 (2)≤a 2 18.(1)略(219.(1)约231米(2)∠=πAOC 32时,面积最大为+π300++π12020 20.(1)2 (2)−∞−,5]((3)不存在,+≥PM PN 21.(1)①是;②不是 (2)(2,18)(3)4。
2023-2024学年上海市高考数学模拟试题(一模)含解析

2023-2024学年上海市高考数学模拟试题(一模)一、填空题(1-4每题4分,5-6每题5分,共26分)1.已知集合{}21,RA y y x x ==-∈,{B x y ==,则A B = ______.【正确答案】⎡-⎣【分析】先求函数21,R y x x =-∈的值域,即可化简集合A,再求函数y =的定义域,即可化简集合B ,最后由集合的交集运算即可得到答案.【详解】因为{}21,R A y y x x ==-∈,所以A 为函数21,R y x x =-∈的值域,因为211y x =-≥-,所以{}1A y y =≥-.因为{B x y ==,所以B为函数y =的定义域,由220x -≥得22x ≤,即x ≤≤,所以{B x x =≤≤,所以{}{1A B y y x x ⎡⋂=≥-⋂≤≤=-⎣.故⎡-⎣2.若复数z 满足32iiz -=(其中i 是虚数单位),则||z =______.【分析】化简复数z ,再求出z ,进而求出||z .【详解】∵32i (32i)i 23i23i i i i 1z --+====--⨯-,∴23i z =-+,∴||z ==3.已知向量()3,6a = ,()3,4b =- ,则a 在b方向上的数量投影为______.【正确答案】3-【分析】根据题意,结合向量的投影公式,即可求解.【详解】因为向量()3,6a =,()3,4b =- ,所以a 在b方向上的数量投影为336415cos ,35a b a a b b⨯+⨯-⋅-====-.故答案为.3-4.若函数2()lg(2)f x ax x a =-+的定义域为R ,则实数a 的取值范围为__________.【正确答案】(1,)+∞【分析】由题意,函数2()lg(2)f x ax x a =-+的定义域为R ,转化为不等式220ax x a -+>在R 上恒成立,利用一元二次函数的性质,即可求解.【详解】由题意,函数2()lg(2)f x ax x a =-+的定义域为R ,即不等式220ax x a -+>在R 上恒成立,当0a =时,不等式等价与20x ->,不符合题意;则满足2)22(40a a ->⎧⎨∆=-<⎩,解得1a >,即实数a 的取值范围是(1,)+∞.本题主要考查了对数函数的性质,以及一元二次函数的图象与性质的应用,其中解答中把函数的定义域为R ,转化为不等式220ax x a -+>在R 上恒成立,利用一元二次函数的性质求解是解答的关键,着重考查了转化思想,以及分析问题和解答问题的能力.5.等差数列{}n a 中,18153120a a a ++=,则9102a a -的值是______.【正确答案】24【分析】先由等差数列的通项公式化简18153120a a a ++=得到1724a d +=,再由等差数列的通项公式把9102a a -化为17a d +即可求出答案.【详解】设等差数列{}n a 的首项为1a ,公差为d ,则()1815111173312014535d a a a a a a a d d ++=++++=+=,所以1724a d +=.所以()()9101112224897d a a a a a d d -=++-=+=.故246.过抛物线24x y =的焦点且倾斜角为3π4的直线被抛物线截得的弦长为______.【正确答案】8【分析】写出直线方程,联立抛物线的方程,运用定义和焦点弦长公式,计算即可得到.【详解】抛物线24x y =的焦点为()0,1F ,准线方程为1y =-,直线l 的倾斜角为3π4,设直线l 与抛物线交于,M N 两点,则直线l 的方程为1y x =-+,代入24x y =得2610y y -+=,则1(M x ,1)y ,2(N x ,2)y ,126y y +=,则1228MN MF NF y y =+=++=,故8二、单项选择题(每题5分,共50分)7.设:x a α>,1:0x xβ->,若α是β的充分条件,则实数a 的取值范围是()A.()0,+∞ B.(],1-∞ C.[)1,+∞ D.(],0-∞【正确答案】C【分析】解分式不等式10x x->得β,由α是β的充分条件等价于β包含α,根据包含关系列不等式求解即可【详解】()1010x x x x->⇔->,解得1x >或0x <,由α是β的充分条件,则有1a ≥.故选:C8.函数()(1f x x =+)A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【正确答案】C【分析】求出()f x 的定义域不关于原点对称,即可判断()f x 为非奇非偶函数.【详解】函数()(1f x x =+的定义域为101x x -≥+,则()()110111x x x x ⎧+-≥⇒-<≤⎨≠-⎩,由于定义域不关于原点对称,故()f x 为非奇非偶函数.故选:C .9.已知事件A 与事件B 是互斥事件,则()A.)(0P A B ⋂= B.)()()(P A B P A P B ⋂=C.)()(1P A P B =- D.)(1P A B ⋃=【正确答案】D【分析】根据互斥事件、对立事件、必然事件的概念可得答案.【详解】因为事件A 与事件B 是互斥事件,则A B 、不一定是互斥事件,所以()P A B ⋂不一定为0,故选项A 错误;因为事件A 与事件B 是互斥事件,所以A B ⋂=∅,则()0P A B ⋂=,而()()P A P B 不一定为0,故选项B 错误;因为事件A 与事件B 是互斥事件,不一定是对立事件,故选项C 错误;因为事件A 与事件B 是互斥事件,A B ⋃是必然事件,所以()1P A B ⋃=,故选项D 正确.故选:D.10.甲,乙两个小组各10名学生的数学测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A ;“抽出的学生的数学测试成绩不低于85分”记为事件B ,则()|P A B 的值是()A.59B.49C.29D.19【正确答案】A【分析】利用条件概率公式求解即可得()P A B到答案.【详解】由题意知,()101202P A ==,()920P B =()P AB 表示20人随机抽取一人,既是甲组又是数学测试成绩不低于85分的概率,()51204P AB ==,根据条件概率的计算公式得()()()1549920P AB P A B P B ===.故选:A11.如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且1MD NB ==,点G 为MC 的中点.则下列结论中不.正确的是()A.MC AN⊥ B.平面//DCM 平面ABN C.直线GB 与AM 是异面直线 D.直线GB 与平面AMD 无公共点【正确答案】D【分析】根据给定条件,证明//AN DG 判断A ;利用线面、面面平行的判定推理判断B ;取DM 中点O ,证得四边形ABGO 是梯形判断CD 作答.【详解】因为MD ⊥平面ABCD ,NB ⊥平面ABCD ,则//MD NB ,取,,AB CD AN 的中点,,F E H ,连接,,,EF EG FH GH ,如图,点G 为MC的中点,则//////EG MD NB FH ,且1122EG MD NB FH ===,于是四边形EFHG 是平行四边形,//,GH EF GH EF =,在正方形ABCD 中,//,EF AD EF AD =,则//,GH AD GH AD =,因此四边形ADGH 为平行四边形,//AN DG ,而1MD CD ==,点G 为MC 的中点,有DG MC ⊥,所以MC AN ⊥,A 正确;因为//MD NB ,MD ⊂平面DCM ,NB ⊄平面DCM ,则//NB 平面DCM ,又//AB CD ,CD ⊂平面DCM ,AB ⊄平面DCM ,则//AB 平面DCM ,而,,NB AB B NB AB =⊂ 平面ABN ,所以平面//DCM 平面ABN ,B 正确;取DM 中点O ,连接,GO AO ,则有11////,22GO CD AB GO CD AB ==,即四边形ABGO 为梯形,因此直线,AO BG 必相交,而AO ⊂平面AMD ,于是直线GB 与平面AMD 有公共点,D 错误;显然点A ∈平面ABGO ,点M ∉平面ABGO ,直线BG ⊂平面ABGO ,点A ∉直线BG ,所以直线GB 与AM 是异面直线,C 正确.故选:D结论点睛:经过平面内一点和外一点的直线,与平面内不经过该点的直线是异面直线.12.数列{}n a 的前n 项和1nn S a =-,*n ∈N ,关于数列{}n a 有以下命题:①{}n a 一定是等比数列,但不可能是等差数列;②{}n a 一定是等差数列,但不可能是等比数列;③{}n a 可能是等比数列,也可能是等差数列;④{}n a 可能既不是等差数列,也不是等比数列;⑤{}n a 可能既是等差数列,又是等比数列;其中正确命题的个数是()A.1B.2C.3D.4【正确答案】B【分析】分0a =,1a =,0a ≠且1a ≠三种情况讨论,由11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a ,根据等差、等比数列的通项公式的特征可作出判断.【详解】当0a =时,1n S =-,则111a S ==-,当2n ≥时,10n n n a S S -=-=,即1,10,2n n a n -=⎧=⎨≥⎩,此时,数列{}n a 既不是等差数列,也不是等比数列;当1a =时,0n S =,则110a S ==,当2n ≥时,10n n n a S S -=-=,则()0n a n N *=∈,此时,数列{}n a 为等差数列,但不是等比数列;当0a ≠且1a ≠时,111a S a ==-,当2n ≥时,()()()111111nn n n n n a S S a aa a ---=-=---=-,则()21a a a =-,()()1111n n n n a a a a a a a+--∴==-且()2111a a a a a a -==-,则数列{}n a 是以a 为公比的等比数列.由以上分析知,正确的说法为③④.故选:B.本题考查数列通项n a 与n S 的关系及等差、等比数列的通项公式,准确把握等差、等比数列的通项公式特征是解决问题的关键.13.已知参数方程3342x t ty t ⎧=-⎪⎨=⎪⎩[]1,1t ∈-,则下列曲线方程符合该方程的是()A.B.C.D.【正确答案】B【分析】利用特殊值法即可选出答案.【详解】令20y t ==得1,0,1t =-,将其分别代入334x t t =-得1,0,1x =-,所以该方程所表示的曲线恒过点()()()1,0,0,0,1,0-,显然只有B 项满足.故选:B.14.设函数()sin 6f x x π⎛⎫=- ⎪⎝⎭,若对于任意5,62ππα⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为A.π6B.π2C.7π6D.π【正确答案】B【分析】先求()3[,0]2f α∈-,再由存在唯一确定的β,使得()()3[0,]2f f βα=-∈,得2[,)633m πππ-∈,从而得解.【详解】当5,62ππα⎡⎤∈--⎢⎥⎣⎦时,有2,36ππαπ⎡⎤-∈--⎢⎥⎣⎦,所以()3[,0]2f α∈-.在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()3[0,]2f f βα=-∈.[]0,,[,]666m m πππββ∈-∈--,所以25[,),[,63326m m πππππ-∈∈.故选B.本题主要考查了三角函数的图像和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.15.若曲线||2y x =+与曲线22:144x y C λ+=恰有两个不同的交点,则实数λ的取值范围是()A.(1,)+∞B.(,1]-∞C.(](),11,-∞-⋃+∞ D.[1,0)(1,)-+∞U 【正确答案】C【分析】先分析出||2y x =+表示起点为()2,0A -的两条斜率分别为1和-1的射线.若曲线22:144x y C λ+=为椭圆,只需点()2,0A -落在椭圆内,列不等式求出λ的范围;若当曲线22:144x y C λ+=为双曲线时,只需把||2y x =+表示的射线与渐近线比较,列不等式求出λ的范围.【详解】如图示:||2y x =+表示起点为()2,0A -的两条斜率分别为1和-1的射线.当曲线22:144x y C λ+=为椭圆时,即0λ>,只需点()2,0A -落在椭圆内,即240144λ+<,解得:1λ>;当曲线22:144x y C λ+=为双曲线时,即0λ<,渐近线方程:y =要使曲线||2y x =+与曲线22:144x y C λ+=恰有两个不同的交点,1≤,解得.1λ≤-所以实数λ的取值范围是(],1(1,)-∞-+∞ 故选:C16.已知定义在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意x R ∈,()(2)f x f x =-;③当[0,1]x ∈时,3()2f x x =;④()(4)g x f x =.若过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则直线l 斜率k 的取值范围是()A.60,11⎛⎫⎪⎝⎭B.30,5⎛⎫ ⎪⎝⎭C.(0,1)D.330,8⎛⎫ ⎪⎝⎭【正确答案】A【分析】结合①②可知()f x 是周期为2的函数,再结合④可知()g x 是周期为12的函数,结合③作出()g x 在[0,2]上的图像,然后利用数形结合即可求解.【详解】因为函数()f x 的图象关于y 轴对称,所以()f x 为偶函数,即()()f x f x =-,又因为对于任意x R ∈,()(2)f x f x =-,所以()(2)()f x f x f x =-=-,从而()(2)f x f x =+,即()f x 是周期为2的函数,因为()(4)g x f x =,则()g x 图像是()f x 的图像的横坐标缩短为原来的14得到,故()g x 也是偶函数,且周期为11242⨯=,结合当[0,1]x ∈时,3()2f x x =,可作出()g x 在[0,2]的图像以及直线l 的图像,如下图所示:当74x =时,易知3()2g x =,即73(,)42A ,则直线MA 的斜率362711(1)4MAk -==--,过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则只需6011MA k k <<=,即直线l 斜率k 的取值范围是60,11⎛⎫ ⎪⎝⎭.故选:A.三、解答题(本题满分14分,第1小题满分4分,第2小题满分10分)17.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,椭圆的一个顶点与两个焦点构成的三角形面积为2.(1)求椭圆C 的方程;(2)已知直线()()10y k x k =->与椭圆C 交于A ,B 两点,且与x 轴,y 轴交于M ,N 两点.①若MB AN = ,求k 的值;②若点Q 的坐标为7,04⎛⎫⎪⎝⎭,求证:QA QB ⋅ 为定值.【正确答案】(1)22142x y +=(2)①22k =;②证明见解析【分析】(1)根据椭圆的离心率和三角形的面积即可求出224,2a b ==,则椭圆方程可得;(2)①根据根与系数的关系以及向量的数量积的运算即可求出;②根据根与系数的关系以及向量的数量积的运算即可求出.【小问1详解】22c e a ==,222a c ∴=,代入222a b c =+得b c =.又椭圆的一个顶点与两个焦点构成的三角形的面积为2,即1222b c ⨯=,即2bc =,以上各式联立解得224,2a b ==,则椭圆方程为22142x y +=.【小问2详解】①直线()1y k x =-与x 轴交点为()1,0M ,与y 轴交点为()0,N k -,联立()22241x y y k x ⎧+=⎪⎨=-⎪⎩消去y 得:()222124240k x k x k +-+-=,()()4222164122424160k k k k ∆=-+-=+>设()()1122,,,A x y B x y ,则2122412kx x k+=+()()22111,,,,MB x y AN x k y =-=--- 又212241,12k MB AN x x k =+==+ 由得:解得:2k =±.由0k >得22k =;②证明:由①知2122412k x x k +=+212224,12k x x k-=+)()()2112212127777,,114444QA QB x y x y x x k x x ⎛⎫⎛⎛⎫⎛⎫∴⋅=-⋅-=--+-- ⎪ ⎪⎪⎝⎭⎝⎝⎭⎝⎭ ()()22212127491416k x x k x x k ⎛⎫=++--+++⎪⎝⎭()2222222472449151124121616k k k k k k k -⎛⎫=++--++=- ⎪++⎝⎭,QA QB ∴⋅为定值.方法点睛:求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(卷二)一、填空题(每题5分,共20分)18.已知圆22:16C x y +=,直线:()(32)0l a b x b a y a -+--=(,a b 不同时为0),当,a b 变化时,圆C 被直线l 截得的弦长的最小值为___________.【正确答案】【分析】由题意知直线l 恒过定点(3,1),当圆心到直线距离取最大值时,此时圆C 被直线l 截得的弦长为最小值,即可求出答案.【详解】把直线:()(32)0l a b x b a y a -+--=化为(21)(3)0a x yb x y --+-+=2103301x y x x y y --==⎧⎧⇒⎨⎨-+==⎩⎩,恒过定点(3,1),当圆C 被直线l 截得的弦长的最小值时,圆心(0,0)到定点(3,1)的距离为,圆心到直线:()(32)0l a b x b a y a -+--=距离,此时直线弦长为最小值=.故答案为.19.若随机变量()3,XB p ,()22,YN σ,若()10.657P X ≥=,()02P Y p <<=,则()4P Y >=______.【正确答案】0.2【分析】解不等式1﹣(1﹣p )3=0.657得到p =0.3,再利用正态分布求解.【详解】解:∵P (X ≥1)=0.657,∴1﹣(1﹣p )3=0.657,即(1﹣p )3=0.343,解得p =0.3,∴P (0<Y <2)=p =0.3,∴P (Y >4)=12(02)2P Y -<<=120.30.22-⨯=.故0.2.20.已知在R 上的减函数()y f x =,若不等式()()2233f x x f y y -≤---成立,函数()1y f x =-的图象关于点()1,0中心对称,则当14x ≤≤时,yx的取值范围是______.【正确答案】12,4⎡⎤-⎢⎥⎣⎦【分析】由对称性得函数()f x 是奇函数,由奇函数的定义及单调性化简不等式为具体的不等式,变形为两个不等式组,在平面直角坐标系中作出这两个不等式组表示的平面区域在直线1x =和4x =之间的部分,yx表示这部分的点到原点连线的斜率,由图可得其取值范围.【详解】∵函数(1)=-y f x 的图象关于点(1,0)中心对称,∴函数()y f x =的图象关于原点对称,即()f x 是奇函数,不等式()()2233f x x f y y -≤---可化为()()2233f x x f y y -≤+,又()f x 是R 上的减函数,∴2233x x y y -≥+,即()(3)0x y x y +--≥030x y x y +≥⎧⎨--≥⎩或030x y x y +≤⎧⎨--≤⎩,作出这两个不等式组表示的平面区域在直线1x =和4x =之间的部分,如图阴影部分(含边界),yx表示阴影部分的点与原点连线的斜率,1x =与4x =分别代入30x y --=,可得(1,2)D -,(4,1)B ,2OD k =-,14OB k =,∴124y x -≤≤.故12,4⎡⎤-⎢⎥⎣⎦.21.设数列{}n a 的前n 项和为n S ,且2n S 是6和n a 的等差中项,若对任意的*n ∈N ,都有[]13,n nS s t S -∈,则t s -的最小值为________.【正确答案】94【分析】先根据和项与通项关系得{}n a 通项公式,再根据等比数列求和公式得n S ,再根据函数单调性得13n nS S -取值范围,即得t s ,取值范围,解得结果.【详解】因为2n S 是6和n a 的等差中项,所以46n n S a =+当2n ≥时,111114643n n n n n n n S a a a a a a ----=+∴=-∴=-当1n =时,11146=2S a a =+∴因此112[1()]13132([1()]132313n n n n n a S ---=⨯-∴==--+当n 为偶数时,3143[1()][,)2332n n S =-∈当n 为奇数时,313[1(](,2]232n n S =+∈因此343(,2][,)232n S ∈U 因为13n n S S -在343(,2][,232U 上单调递增,所以[]113232*********,,4662244n n S s t t s S ⎡⎤-∈⋃⊆∴-≥-=⎢⎥⎣⎦)(,故94本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.二、单项选择题(每题5分,共10分)22.在正四面体A BCD -中,点P 为BCD ∆所在平面上的动点,若AP 与AB 所成角为定值,0,4πθθ⎛⎫∈ ⎪⎝⎭,则动点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线【正确答案】B【分析】把条件转化为AB 与圆锥的轴重合,面BCD 与圆锥的相交轨迹即为点P 的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令AB 与圆锥的轴线重合,如图所示,则圆锥母线与AB 所成角为定值,所以面BCD 与圆锥的相交轨迹即为点P 的轨迹.根据题意,AB 不可能垂直于平面BCD ,即轨迹不可能为圆.面BCD 不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算AB 与平面BCD 所成角为θ=时,轨迹为抛物线,arctan θ≠时,轨迹为椭圆, 0,4πθ⎛⎫∈ ⎪⎝⎭,所以轨迹为椭圆.故选:B.本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.23.若P 在曲线22:14x C y +=上,若存在过P 的直线交曲线C 于A 点,交直线:4l x =于B 点,满足||||PA PB =或||||PA AB =,则称P 点为“H 点”,那么下列结论中正确的是()A.曲线C 上所有点都是H 点B.曲线C 上仅有有限多个点是H 点C.曲线C 上所有点都不是H 点D.曲线C 上有无穷多个点(但不是全部)是H 点【正确答案】D【分析】设出22P A x x -≤<≤,利用相似三角形求得P x 和A x 的关系,设出PA 的方程与椭圆方程联立求得A P x x 的表达式,利用判别式大于0求得k 和m 的不等式关系,最后联立①②③求得A x 的范围,进而通过1A x <时,242P A x x =-<-,故此时不存在H 点,进而求得H 点的横坐标取值范围,判断出题设的选项.【详解】解:由题意,P 、A 的位置关系对称,于是不妨设22,(P A x x -≤<≤此时)PA AB =.由相似三角形,244A P x x -=-即:24P A x x =-⋯①设:PA y kx m =+,与椭圆联立方程组,2214y kx mx y =+⎧⎪⎨+=⎪⎩消y 得22212104k x kmx m ⎛⎫+++-= ⎪⎝⎭解得22114A P m x x k -=⋯+②0∆> ,2241k m >-⋯③联立①②③,得2222114A A x x k-<+,而2202114k<<+,即222A A x x -<,即12A x ≤≤,而当1A x <时,242P A x x =-<-,故此时不存在H 点又因为P 的位置可以和A 互换(互换后即)PA PB =,所以H 点的横坐标取值为[2,0][1,2]-⋃.故选:D.本题主要考查了直线与圆锥曲线的关系问题.解题的关键是求得H 点的横坐标取值范围.属于较难题.三、多项选择题(每题6分,共12分)24.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到的半正多面体的表面积为3,则关于该半正多面体的下列说法中正确的是()A.与AB 所成的角是60°的棱共有8条B.AB 与平面BCD 所成的角为30°C.二面角A BC D --的余弦值为33-D.经过A ,B ,C ,D 四个顶点的球面面积为2π【正确答案】CD【分析】补全该半正多面体得到一正方体.对于A 选项,由正三角形可得60°角,再利用平行关系得结果;B 选项,利用正方体找出线面角为∠ABE=45°;C 选项,先作出二面角的补角∠AFE ,在△AEF 中,求出3cos 3EF AFE AF ∠==即可得结果;D 选项,由半正多面体的对称中心与相应的正方体的对称中心为同一点,构造三角形,求出球的半径,最后求得经过A ,B ,C ,D 四个顶点的球面面积.【详解】补全该半正多面体得到一正方体,设正方体的棱长为a .由题意,该半正多面体是由6个全等的正方形与8个全等的正三角形构成,由半正多面体的表面积为33+,可得223228633422a ⎛⎫⎫⨯⨯+⨯=+ ⎪⎪ ⎪⎪⎝⎭⎝⎭,解得a =1.对于A ,在与AB 相交的6条棱中,与AB 成60°角的棱有4条,这4条棱中,每一条都有3条平行的棱,故与AB 所成的角是60°的棱共有16条,故A 不正确;对于B ,因为AE ⊥平面BCD ,所以AB 与平面BCD 所成角为∠ABE =45°,故B 不正确;对于C ,取BC 中点F ,连接EF ,AF ,则有AF ⊥BC ,EF ⊥BC ,故二面角A -BC -D 的补角为∠AFE .二面角A -BC -D 的余弦值为-cos ∠AFE ,在Rt △AEF 中,1,,24AE EF AE EF ==⊥,∴AF =3cos 3EF AFE AF ∠==,cos 3AFE -∠=-,故C 正确;对于D ,由半正多面体的对称中心与相应的正方体的对称中心为同一点,即为正方体对角线的中点O ,点O 在平面ABE 的投影为投影点O 1,则有1111,22OO AO ==,∴22AO ==,故经过A ,B ,C ,D 四个顶点的球面的半径为面积为2422S ππ⎛⎫== ⎪ ⎪⎝⎭,故D 正确.故选:CD立体几何中补形是一种常用的方法:(1)一个不规则几何体是由规则几何体经过截取得到的,通常可以用补形,还原为规则几何体,如正方体,长方体等;(2)通常可以用来求①体积(距离),②与外接球(内切球)相关的问题.25.在棱长为1的正方体1111ABCD A B C D -中,已知点P 为侧面11BCC B 上的一动点,则下列结论正确的是()A.若点P 总保持1PA BD ⊥,则动点P 的轨迹是一条线段;B.若点P 到点A 的距离为3,则动点P 的轨迹是一段圆弧;C.若P 到直线AD 与直线1CC 的距离相等,则动点P 的轨迹是一段抛物线;D.若P 到直线BC 与直线11C D 的距离比为1:2,则动点P 的轨迹是一段双曲线.【正确答案】ABD【分析】由1BD ⊥平面1AB C 且平面1AB C 平面111BCC B B C =,即可判断A ;根据球的性质及与正方体的截面性质即可判断B ;作PE BC ⊥,EF AD ⊥,连接PF ,作1PQ CC ⊥.建立空间直角坐标系,由PF PQ =即可求得动点P 的轨迹方程,即可判断C ;根据题意,由距离比即可求得轨迹方程,进而判断D.【详解】对于A ,111,BD B C D A AB ⊥⊥,且1AC AB A ⋂=,所以1BD ⊥平面1AB C ,平面1AB C 平面111BCC B B C =,故动点P 的轨迹为线段1BC ,所以A 正确;对于B ,点P 的轨迹为以A 为球心、半径为233的球面与面11BCC B 的交线,即为一段圆弧,所以B 正确;对于C ,作PE BC ⊥,EF AD ⊥,连接PF ;作1PQ CC ⊥.由PF PQ =,在面11BCC B 内,以C 为原点、以直线CB 、CD 、1CC 为x ,y ,z轴建立平面直角坐标系,如下图所示:设(),0,P x z,则x =,化简得221x z -=,P 点轨迹所在曲线是一段双曲线,所以C 错误.对于D ,由题意可知点P 到点1C 的距离与点P 到直线BC 的距离之比为2:1,结合C 中所建立空间直角坐标系,可得121PC PE =,所以21241PC PE =,代入可得()222141x z z +-=,化简可得221314493z x ⎛⎫+ ⎪⎝⎭-=,故点P 的轨迹为双曲线,所以D 正确.综上可知,正确的为ABD.故选:ABD.本题考查了空间几何体中截面的形状判断,空间直角坐标系的综合应用,轨迹方程的求法,属于难题.四、解答题(本题满分18分(本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分)26.对于数列{}n a ,若存在正数k ,使得对任意*,m n ∈N ,m n ≠,都满足||||m n a a k m n -≤-,则称数列{}n a 符合“()L k 条件”.(1)试判断公差为2的等差数列{}n a 是否符合“(2)L 条件”?(2)若首项为1,公比为q 的正项等比数列{}n a 符合“1(2L 条件”.求q 的范围;(3)在(2)的条件下,记数列{}n a 的前n 项和为n S ,证明:存在正数0k ,使得数列{}n S 符合“0()L k 条件”.【正确答案】(1)符合(2)1[,1]2(3)证明见解析【分析】(1)将12(1)n a a n =+-代入||||m n a a k m n -≤-即可得证;(2)由“正项等比数列”分成1q =,1q >,01q <<三类,结合数列单调性进行分析求证;(3)1q =时,n S n =,01k ≥即可成立;当112q ≤<时,设m n <,则等价于证明0(1)()m n q q k q n m ---≤即可.【小问1详解】因为{}n a 是等差数列且公差为2,所以12(1)n a a n =+-,所以对任意m ,*n ∈N ,m n ≠,11|||[2(1)][2(1)]||2()|2m n a a a m a n m n m n -=+--+-=-≤-恒成立,所以数列{}n a 符合“(2)L 条件”.【小问2详解】因为0n a >,所以0q >.若1q =,则1||0||2m n a a m n -=≤-,数列{}n a 符合“1()2L 条件”;若1q >,因为数列{}n a 递增,不妨设m n <,则1()2n m a a n m ≤--,即1122n m a n a m -≤-,(*)设12n n b a n =-,由(*)式中的m ,n 任意性得数列{}n b 不递增,所以11111()(1)022n n n n n b b a a q q -++-=--=--≤,*n ∈N ,则当[2(1)]41log q n ->-时,11(1)02n q q --->,矛盾.若01q <<,则数列{}n a 单调递减,不妨设m n <,则1()2n m a a n m ≤--,即1122m n a m a n +≤+,(**)设12n n c a n =+,由(**)式中的m ,n 任意性得,数列{}n a 不递减,所以11111()(1)022n n n n n c c a a q q +++-=-+=-+≥,*n ∈N .因为01q <<时,11()(1)2n f n q q -=-+单调递增,所以1()(1)(1)02max f n f q ==-+≥,因为01q <<,所以112q ≤<.综上,公比q 的范围为1[,1]2.【小问3详解】由(2)得,11n n q S q-=-,112q ≤<,当1q =时,n S n =,要存在0k 使得0||||n m S S k n m -≤-,只要01k ≥即可.当112q ≤<时,要证数列{}n S 符合“0()L k 条件”,只要证存在00k >,使得011||11n mq q k n m q q---≤---,*n ∈N ,不妨设m n <,则只要证0(1)()m n q q k q n m ---≤,只要证00(1)(1)m m n n q k q q k q ≤+-+-.设0()(1)n n g n q k q =+-,由m ,n 的任意性,只要证00(1)()(1)(1)(1)()0n n g n g n q q k q q k q +-=-+-=--≥,只要证0n k q ≥,*n ∈N ,因为112q ≤<,所以存在0k q ≥,上式对*n ∈N 成立.所以,存在正数0k ,使得数列{}n S 符合“0()L k 条件”.思路点睛:对于数列中的恒成立或存在性问题,通常结合条件进行分类讨论,构造合适的函数模型,借助函数性质进行判断.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市浦东新区普通高中2024学年全国高三模拟考(一)全国卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-2.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( ) 发芽所需天数 1 2 3 4 5 6 7 8≥种子数 43 352 210 A .2B .3C .3.5D .43.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .324.若复数52z i=-(i 为虚数单位),则z =( ) A .2i +B .2i -C .12i +D .12i -5.已知向量11,,2a b m ⎛⎫==⎪⎝⎭,若()()a b a b +⊥-,则实数m 的值为( )A .12B .32C .12±D .32±6.已知随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.若21211p p <<<,则( ) A .()()12E E ξξ<,()()12D D ξξ< B .()()12E E ξξ<,()()12D D ξξ> C .()()12E E ξξ>,()()12D D ξξ<D .()()12E E ξξ>,()()12D D ξξ>7.公差不为零的等差数列{a n }中,a 1+a 2+a 5=13,且a 1、a 2、a 5成等比数列,则数列{a n }的公差等于( ) A .1B .2C .3D .48.数列{}n a 满足()*212n n n a a a n +++=∈N ,且1239a a a ++=,48a =,则5a =( )A .212B .9C .172D .79.将函数()cos2f x x =图象上所有点向左平移4π个单位长度后得到函数()g x 的图象,如果()g x 在区间[]0,a 上单调递减,那么实数a 的最大值为( ) A .8π B .4π C .2π D .34π 10.已知定义在R 上的奇函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()2xf x m =-,则()2019f =( ) A .1B .-1C .2D .-211.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21B .63C .13D .8412.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .12B .13C .41π- D .42π-二、填空题:本题共4小题,每小题5分,共20分。
13.设α、β为互不重合的平面,m ,n 是互不重合的直线,给出下列四个命题:①若m ∥n ,则m ∥α;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,m ⊂α,n ⊂β,则m ∥n ;④若α⊥β,α∩β=m ,n ⊂α,m ⊥n ,则n ⊥β; 其中正确命题的序号为_____.14.过圆22240x y x y ++-=的圆心且与直线230x y +=垂直的直线方程为__________.15.在平面直角坐标系xOy 中,双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,若过右焦点且与x 轴垂直的直线与两条渐近线围成的三角形面积为2c ,则双曲线的离心率为____________. 16.在△ABC 中,(AB AC λ-)⊥BC (λ>1),若角A 的最大值为6π,则实数λ的值是_______. 三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)选修4-5:不等式选讲 设函数. (1) 证明:;(2)若不等式的解集非空,求的取值范围.18.(12分)如图,在三棱柱ADF BCE -中,平面ABCD ⊥平面ABEF ,侧面ABCD 为平行四边形,侧面ABEF 为正方形,AC AB ⊥,24AC AB ==,M 为FD 的中点.(1)求证://FB 平面ACM ; (2)求二面角M AC F --的大小.19.(12分)已知函数()ln (,f x ax x b a b =+为实数)的图像在点()()1,1f 处的切线方程为1y x =-.(1)求实数,a b 的值及函数()f x 的单调区间; (2)设函数()()1f x g x x+=,证明()()1212()g x g x x x =<时, 122x x +>.20.(12分)已知函数()()()11ln 2f x ax a x a x=-+-+∈R .(1)讨论函数()f x 单调性;(2)当2a =-时,求证:()12xf x e x x<--. 21.(12分)等差数列{}()*N n a n ∈中,1a ,2a ,3a 分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.(1)请选择一个可能的{}123,,a a a 组合,并求数列{}n a 的通项公式;(2)记(1)中您选择的{}n a 的前n 项和为n S ,判断是否存在正整数k ,使得1a ,k a ,+2k S 成等比数列,若有,请求出k 的值;若没有,请说明理由.22.(10分)百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中x 表示通过自主招生获得降分资格的学生人数,y 表示被清华、北大等名校录取的学生人数)(1)通过画散点图发现x 与y 之间具有线性相关关系,求y 关于x 的线性回归方程;(保留两位有效数字) (2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数; (3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数x 的分布列和期望.参考公式:1221ˆ==-⋅=-∑∑ni ii ni i x y nx ybx nx,ˆˆay bx =- 参考数据:53x =,103y =,5127797i ii x y==∑,52114325i i x ==∑参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C 【解析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,数列{}n a 是等比数列, 则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础. 2.C 【解析】根据表中数据,即可容易求得中位数. 【详解】由图表可知,种子发芽天数的中位数为343.52+=, 故选:C. 【点睛】本题考查中位数的计算,属基础题. 3.B 【解析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为1445443643V V V =-=⨯⨯-⨯⨯⨯=柱锥,故选B 。
【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。
求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。
4.B 【解析】根据复数的除法法则计算z ,由共轭复数的概念写出z . 【详解】55(2)10522(2)(2)5i i z i i i i ++====+--+, ∴2z i =-,故选:B 【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题. 5.D 【解析】由两向量垂直可得()()0a b a b +⋅-=,整理后可知220a b -=,将已知条件代入后即可求出实数m 的值. 【详解】 解:()()a b a b +⊥-,()()0a b a b ∴+⋅-=,即220a b -=,将1a =和22212b m ⎛⎫=+ ⎪⎝⎭代入,得出234m =,所以2m =±. 故选:D. 【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理. 6.B 【解析】根据二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,再根据21211p p <<<和二次函数的性质求解. 【详解】因为随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.所以i ξ服从二项分布, 由二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,因为21211p p <<<, 所以()()12E E ξξ<,由二次函数的性质可得:()()1f x x x =-,在1,12⎡⎤⎢⎥⎣⎦上单调递减, 所以()()12D D ξξ>. 故选:B 【点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题. 7.B 【解析】设数列的公差为,0d d ≠.由12513a a a ++=,125,,a a a 成等比数列,列关于1,a d 的方程组,即求公差d . 【详解】设数列的公差为,0d d ≠,125113,3513a a a a d ++=∴+=①.125,,a a a 成等比数列,()()21114a d a a d ∴+=+②,解①②可得2d =. 故选:B . 【点睛】本题考查等差数列基本量的计算,属于基础题. 8.A 【解析】先由题意可得数列{}n a 为等差数列,再根据1239a a a ++=,48a =,可求出公差,即可求出5a . 【详解】数列{}n a 满足*212()n n n a a a n N +++=∈,则数列{}n a 为等差数列, 1239a a a ++=,48a =, 1339a d ∴+=,138a d +=,52d ∴=, 54521822a a d ∴=+=+=, 故选:A . 【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题. 9.B 【解析】根据条件先求出()g x 的解析式,结合三角函数的单调性进行求解即可. 【详解】将函数()cos2f x x =图象上所有点向左平移4π个单位长度后得到函数()g x 的图象, 则()cos 2cos 242g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 设22x πθ=+, 则当0x a <≤时,022x a <≤,22222x a πππ<+≤+,即222a ππθ<≤+, 要使()g x 在区间[]0,a 上单调递减,则22a ππ+≤得22a π≤,得4a π≤,即实数a 的最大值为4π, 故选:B . 【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题. 10.B 【解析】根据f (x )是R 上的奇函数,并且f (x +1)=f (1-x ),便可推出f (x +4)=f (x ),即f (x )的周期为4,而由x ∈[0,1]时,f (x )=2x -m 及f (x )是奇函数,即可得出f (0)=1-m =0,从而求得m =1,这样便可得出f (2019)=f (-1)=-f (1)=-1. 【详解】∵()f x 是定义在R 上的奇函数,且()()11f x f x +=-; ∴(2)()()f x f x f x +=-=-; ∴(4)()f x f x +=; ∴()f x 的周期为4;∵[0,1]x ∈时,()2x f x m =-; ∴由奇函数性质可得(0)10f m =-=; ∴1m =;∴[0,1]x ∈时,()21x f x =-;∴(2019)(15054)(1)(1)1f f f f =-+⨯=-=-=-. 故选:B . 【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题. 11.B 【解析】由已知结合等差数列的通项公式及求和公式可求d ,1a ,然后结合等差数列的求和公式即可求解. 【详解】解:因为130S =,3421a a +=,所以111313602521a d a d +⨯=⎧⎨+=⎩,解可得,3d =-,118a =,则7171876(3)632S =⨯+⨯⨯⨯-=.故选:B . 【点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题. 12.C 【解析】令圆的半径为1,则()22'41S P S ππππ--===-,故选C .二、填空题:本题共4小题,每小题5分,共20分。